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Abstract: We establish a compartmental model for Zika virus disease transmission, with particular
attention paid to microcephaly, the main threat of the disease. To this end, we consider separate
microcephaly-related compartments for affected infants, as well as the role of asymptomatic carriers,
the influence of seasonality and transmission through sexual contact. We determine the basic
reproduction number of the corresponding time-dependent model and time-constant model and
study the dependence of this value on the mosquito-related parameters. In addition, we demonstrate
the global stability of the disease-free periodic solution ifR0 < 1, whereas the disease persists when
R0 > 1. We fit our model to data from Colombia between 2015 and 2017 as a case study. The fitting
is used to figure out how sexual transmission affects the number of cases among women as well as
the number of microcephaly cases. Our sensitivity analyses conclude that the most effective ways
to prevent Zika-related microcephaly cases are preventing mosquito bites and controlling mosquito
populations, as well as providing protection during sexual contact.

Keywords: non-autonomous epidemic model; Zika fever; microcephaly; basic reproduction number
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1. Introduction

Zika fever or Zika virus disease (ZIKV) is an arthropod-borne disease caused by a
Flavivirus, mainly spread by infected female mosquito bites. The species responsible for
transmission are primarily Aedes aegypti and Aedes albopictus [1]. Unlike other arboviruses,
Zika can also be transmitted via sexual contact, primarily from males to females [2]. Ev-
idence shows that ZIKV remains in semen up to six months, which is longer than it can
remain in other bodily fluids. This means that the disease can still be transmitted several
months after recovery [3]. The most common way for Zika to be transmitted is from a
pregnant woman to her child. This has been shown to cause microcephaly and other
serious fetal brain deficiencies although, historically, Zika fever was thought to have mild
symptoms in humans, such as moderate fever, conjunctivitis, rash and joint discomfort.
The Zika virus was first isolated in 1947 in a rhesus monkey in the Zika forest (Uganda).
It was shown that the virus is transmitted between primates and mosquitoes, especially
the mosquito species Aedes africanus [4]. At the end of 2015, the European Centre for
Disease Prevention and Control published a study on the possible connection between Zika
fever, congenital microcephaly and Guillain–Barré syndrome [5,6]. For example, in Brazil,
2782 microcephaly cases were reported in the year following the emergence of Zika fever,
while there were only 147 and 167 cases in the two preceding years [7]. ZIKV was found to
have been transmitted intrauterine for the first time in Brazil, in the uteri of two pregnant
women whose fetuses were born with microcephaly. In Colombia, a total of 19,993 female
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pregnant women with presumed Zika virus disease were recorded from the start of the
epidemic up to week 33 of 2017, of whom 6365 were laboratory-confirmed with Zika virus
infection [8,9]. In total, 1415 occurrences of microcephaly and other congenital disorders of
the central nervous system were recorded in Colombia between the first week of 2016 and
week 33 of 2017. Among these, 196 were laboratory-confirmed as being associated with
Zika virus infection. The number of cases having microcephaly reveals an increasing trend
in 2016, reaching its high in week 28. Whereas the number of cases has been decreasing
since, in comparison to the same period 2014 and 2015, the trend has nevertheless shown
a greater number of cases. In [10], the authors confirmed the link between microcephaly
and congenital Zika infection based on a case–control investigation in 2016. The study [11],
using data from national reporting databases in Brazil, also confirmed that congenital Zika
infection, in particular in the first six months of pregnancy, can be linked with microcephaly
and with other birth defects. Ref. [12] found that the number of Guillain–Barré syndrome
patients increased parallelly with the number of Zika cases, while microcephaly cases ap-
peared five months after the beginning of the outbreak, showing a functional relationship
between the transmission of Zika fever and the increase of microcephaly and Guillain–Barré
syndrome cases. Microcephaly was linked to other problems, such as miscarriage, stillbirth
and other birth defects [13].

Several researchers have studied the dynamics of the Zika virus spread using mathe-
matical models. Ref. [14] established a compartmental model that includes mosquito-borne
spread and sexual transmission as well. In this paper, males and females were not differen-
tiated. Ref. [15] formulated and analysed five compartmental models of Zika transmission,
modelling heterogeneity in sexual transmission in several different ways. Saad-Roy, Ma
and van den Driessche [16] introduced a model differentiating humans w.r.t. their sex and
sexual activity. Some studies also consider the changes in the weather and climate in the
models, see, e.g., [17–21]. A model for the transmission of the ZIKV presented in [22] also
includes the effect of the periodicity of weather. This model included time-dependent
mosquito parameters. The global dynamics are determined by the basic reproduction num-
berR0: the disease-free equilibrium is shown to be globally asymptotically stable ifR0 < 1,
whereas when R0 > 1 the disease persists in the population. The model studied in [23]
incorporated vertical transmission of the Zika virus among humans, the birth of newborns
having microcephaly and asymptomatic carriers of the virus. In [24], a non-autonomous
model was developed that took into account the majority of the important aspects of
Zika spread: vector-borne and sexual transmission, the prolonged time of infectiousness
following recovery, the role of asymptomatically infected persons, and the significance of
weather seasonality. As the main concern regarding Zika infections is the possibility of
malformations in newborns, a particular emphasis was put on the assessment of the effect
of the epidemic on women.

In the current study, we extend the compartmental model described in [24] by taking
into account the vertical transmission of Zika to the fetus in the early stages of pregnancy
in order to better estimate the risk of microcephaly due to Zika. We determine the basic
reproduction number of the corresponding time-dependent model using different methods.
In addition, we demonstrate the global stability of the disease-free periodic solution in
the case R0 < 1, whereas the disease persists when R0 > 1. To support the theoretical
conclusions, numerical simulations are provided. In addition, we fit our model to data
from Colombia between 2015 and 2017 as a case study.

2. Methods
2.1. Seasonal Compartmental Model

To account for sexual, vector-borne and vertical transmission, we divided the whole
human population Nh into three categories: adult females, denoted by Nf , adult males, de-
noted by Nm , and children, denoted by Nc and consisting of newly born babies and children
under puberty. In order to simplify our model, we do not introduce separate compartments
for pregnant women, but we assume that a constant percentage of women (in any of the
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adult female compartments) is pregnant at any time t. Susceptible humans (Sf , Sm and Sc )
are those who can be infected by the Zika virus. Once having contracted the disease, indi-
viduals progress to the exposed compartment (Ef , Em and Ec ), and these persons do not have
any symptoms yet. If a person has been exposed to the Zika virus but has not yet developed
symptoms or been confirmed as infected, they can still potentially spread the virus to others.
This is because the virus can be present in the blood (viraemia) and semen (virusemenia)
of an infected person for a period of time before symptoms appear [14,25]. Following the
incubation time, exposed humans transfer to one of the symptomatically infected classes
(Is

f
, Is

m , Is
c ) and the asymptomatically infected compartments (Ia

f
, Ia

m , Ia
c ), based on whether

that person shows symptoms or not. Both asymptomatically and symptomatically infected
adult males progress to the convalescent class (Ir

m ) which includes individuals who have
recovered from the disease but are still able to spread it through sexual contact. For adult
females, we introduce the compartment Ir

f
. A percentage of those in Ir

f
are those recovered

mothers who had Zika during their pregnancy. Children of women who were previously
infected by Zika might develop microcephaly and be born into the Mc class, or they might
be born healthy and thus arrive at the recovered compartment Rc . To incorporate the time
from infection of the mother to birth, we introduce a time delay (τ), which in our model is
given as a constant delay based on the average time between infection and delivery of moth-
ers who have given birth to babies with microcephaly. Adults enter the recovered classes
(Rf , Rm ) after the convalescent phase. Infected mothers’ children who are born healthy will
move to the recovered compartment Rc , while those who develop microcephaly will move
to compartment Mc . The Zika virus only causes microcephaly during pregnancy and not
after birth in non-infected children. It only affects the developing fetal brain leading to
abnormal brain development and microcephaly in some newborns. Children who were
not infected during pregnancy are not at risk of developing microcephaly [26]. Once the
infected children have recovered, they will be transferred to the recovered compartment.
We point out that the infectious classes (E, Is, Ia, Ir) also differ in terms of recovery and
transmission rates. We introduce three mosquito compartments: susceptible (Sv ), exposed
(Ev ) and infected (Iv). Figure 1 depicts the model’s transmission diagram.
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Figure 1. The dynamics of the spread of the Zika virus, taking into account three human groups,
and sexual, vertical and vectorial transmission. Adult males, adult females, children and mosquitoes
are denoted by the lower indices m, f , c and v, respectively. Yellow nodes denote non-infectious
and red nodes denote infectious compartments. The disease progression is depicted by black, solid
arrows. The direction of sexual transmission from adult males to adult females is shown by blue
dashed arrows, while blue dash–dotted arrows illustrate the direction of vertical infection from adult
females to their children. Green dashed arrows show the direction of the maturation from child to
adult. Red dashed lines show the direction of mosquito-to-human transmission.

The total human population is Nh(t) = Nf (t) + Nm(t) + Nc(t) and the total population
for each group is given as:

Nf (t) = Sf (t) + Ef (t) + Ia
f
(t) + Is

f
(t) + Ir

f
(t) + Rf (t),

Nm(t) = Sm(t) + Em(t) + Ia
m (t) + Is

m(t) + Ir
m(t) + Rm(t),

Nc(t) = Sc(t) + Ec(t) + Ia
c (t) + Is

c (t) + Mc(t) + Rc(t),

while the total mosquito population is given by Nv(t) = Sv(t) + Ev(t) + Iv(t).



Axioms 2023, 12, 263 5 of 25

In accordance with the transmission diagram in Figure 1 and the parameter description
given in Table 1, the mathematical model takes the form

A
du

lt
fe

m
al

es



S′
f
(t) = α

2 Sc(t)− β
Th (t)
Nf (t)

Sf (t)− α̃h(t)
Iv (t)
Nh (t)

Sf (t)− dSf (t),

E′
f
(t) = β

Th (t)
Nf (t)

Sf (t) + α̃h(t)
Iv (t)
Nh (t)

Sf (t)− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1− θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

R′
f
(t) = α

2 Rc(t) + γr Ir
f
(t)− dRf (t),

A
du

lt
m

al
es



S′m(t) =
α
2 Sc(t)− α̃h(t)

Iv (t)
Nh (t)

Sm(t)− dSm(t),

E′m(t) = α̃h(t)
Iv (t)
Nh (t)

Sm(t)− (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1− θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

R′m(t) =
α
2 Rc(t) + γr Ir

m(t)− dRm(t),

C
hi

ld
re

n



S′c (t) = Bc

Sf (t−τ)+Rf (t−τ)

Nf (t−τ)
e−ξτ − α̃h(t)

Iv (t)
Nh (t)

Sc(t)− αSc(t)− ξSc(t),

E′c (t) = α̃h(t)
Iv (t)
Nh (t)

Sc(t)− νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1− θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′c (t) = (1− p)Bc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

Nf (t−τ)
e−ξτ − ξMc(t),

R′c (t) = pBc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

Nf (t−τ)
e−ξτ + γa Ia

c (t) + γs Is
c (t)− αRc(t)− ξRc(t),

M
os

qu
it

oe
s 

S′v (t) = B̃v(t)− α̃v(t)
Tv (t)
Nh (t)

Sv(t)− µSv(t),

E′v (t) = α̃v(t)
Tv (t)
Nh (t)

Sv(t)− (νv + µ)Ev(t),

I′v (t) = νv Ev(t)− µIv(t),

(1)

where

Th(t) = κeEm(t) + κa Ia
m (t) + Is

m(t) + κr Ir
m(t),

Tv(t) = ηe
(
Ef (t) + Em(t) + Ec(t)

)
+ ηa

(
Ia
f
(t) + Ia

m (t) + Ia
c (t)

)
+ Is

f
(t) + Is

m(t) + Is
c (t),

and all other parameter descriptions are summarized in Table 1. In particular, Bc and ξ
are children’s birth and death rates, d is the adult death rate and β is the rate at which
symptomatic males spread the disease to susceptible females; β multiplied by κe, κa and κr
yields the rates at which exposed, asymptotically infected and convalescent men spread
the disease to women, respectively. The fraction of asymptomatically infected individuals
is represented by θ.
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Table 1. Description of the model (1) parameters.

Parameter Description

Bc Natural birth rate of children
ξ Natural death rate of children
α Maturation rate
d Natural death rate of adults
β Transmission rate from human to human
αh Baseline value of mosquito-to-human transfer rate
αv Baseline value of humans-to-mosquito transfer rate
θ Ratio of asymptomatic infections

κe, κa, κr Relative transmissibility of exposed humans to infectious humans
ηe, ηa Relative transmissibility of infectious human to mosquitoes

γa Progression rate from Ia to Ir

γs Progression rate from Is to Ir

γr Recovery rate of convalescent humans
νh Human incubation rate
νv Incubation rate in mosquitoes
Bv Baseline value of mosquito birth rate
µ Mosquito death rate
p Fraction of children who have recovered

1− p Fraction of children who have microcephaly
a, b Seasonality parameters
τ Constant delay

Humans have a latent period of 1/ν length and the infection periods are as follows:
1/γa, 1/γs and 1/γs. The period 1/γr represents the length of time that recovered men
are still infectious through sexual contact and recovered women are still infectious during
pregnancy. The functions α̃h(t), α̃v(t) and B̃v(t) represent, respectively, the transmission
rate from an infected mosquito to a susceptible person, the transmission rate from an
infected human to a susceptible mosquito and the birth rate of mosquitoes. These functions
are considered to be time-periodic, with one year serving as the period and following
for instance [22,24,27] they are expected to be of the form αh ·

(
sin
( 2π

P t + b
)
+ a
)
, αv ·(

sin
( 2π

P t + b
)
+ a
)

and Bv ·
(

sin
( 2π

P t + b
)
+ a
)

where P represents the length of the period,
a and b are free adjustment parameters, and αh , αv , Bv denote the (constant) baseline values
of the time-dependent parameters, respectively. Just like in the case of human-to-human
transmission, we also introduce the modification parameters ηe, ηa for the infectiousness of
exposed and asymptomatically infected people, respectively. We have 1/νv for the length of
the latent period for mosquitoes, while the average life span of mosquitoes is given by 1/µ.

2.2. Zika Fever and Microcephaly Cases Data

The public and freely available weekly ZIKV confirmed cases were collected from the
National Health Institute of Colombia [28–30] and Pan American Health Organization [31,32].
We focus our analysis on 2015–2017 confirmed ZIKV cases since the start of the epidemic on
week 33 of 2015 up to week 33 of 2017, while for microcephaly we use the data starting from
week 33 of 2015 up to week 3 of 2017. There was a delay between the mother’s infection
and the delivery which caused the lag time between the peaks observed in the number
of symptomatically infected cases and microcephaly cases. Figure 2a shows the weekly
confirmed cases of the 2015–2017 ZIKV outbreak in Colombia. Figure 2b shows the weekly
confirmed microcephaly cases of 2015–2017 in Colombia.



Axioms 2023, 12, 263 7 of 25

Weekly Zika Cases

Oct 2015 Oct 2016 Sep 2017
0

1

2

3

4

5

6

103 Feb 2016 Feb 2017

2015-2017

W
ee
kl
y
Z
ik
a
C
as
es

(a)

Weekly Microcephaly Cases

Oct 2015 Jul 2016
0

10

20

30

40
Feb 2016 Jan 2017

2015-2017

W
ee
kl
y
M
ic
ro
ce
ph
al
y
C
as
es

(b)

Figure 2. Colombia, weekly distribution of ZIKV and microcephaly cases, 2015–2017. (a) Weekly
Zika cases. (b) Weekly microcephaly cases.

2.3. Parameter Estimation, Sensitivity and Reproduction Numbers

To calculate the parameters of model (1) providing the most satisfactory fit to data, we
use Latin hypercube sampling. This sampling method is used to simultaneously measure
the variance in various parameter values (see, e.g., [33] for details). The main idea of the
method is to generate a representative sample set from the ranges for all fitted parameters.
To obtain a representative sample set of size m, the parameter ranges are divided into m
equal subintervals and one point is selected from each subinterval. After obtaining the
m lists of samples, they are combined randomly into m-tuples. For each element of this
sample set, the solutions of the model (1) are numerically calculated. Finally, we apply
the least squares method to find the parameters providing the best fit. In order to classify
the parameters w.r.t. their influence on the number of microcephaly cases, we employ
partial rank correlation coefficients estimation (PRCC, see, e.g., [34]), to perform sensitivity
analysis. When we change the parameters within the predetermined ranges, the PRCC-
based sensitivity analysis assesses the impact of the parameters on the response function
(in our case, the number of microcephaly cases). Higher positive (or negative) PRCC values
indicate that a parameter has a positive (or negative) correlation with the outcome function.

The basic reproduction number (R0) of a periodic mathematical model can be de-
termined as the spectral radius of a linear integral operator on a set of time-dependent
functions (see [35], for details). Although the value ofR0 cannot be computed analytically,
there are methods to do it numerically (see, e.g., [36] for details). There are also interesting
results from calculating the basic reproduction number as a time average for the corre-
sponding periodic model. Setting the time-dependent parameters (mosquito birth rate and
bite rates) to constant yields the formula for the time-average basic reproduction number,
which can be found in (12). In addition to the basic reproduction number (R0), the instan-
taneous reproduction rate,Rinst, which measures the average number of secondary cases
per infectious case in a population, can be computed by multiplyingR0 by the size of the
susceptible percentage of the host population.

3. Results
3.1. Threshold Dynamics

We present some notations for studying the existence of solutions to the system (1)
as well as the uniqueness of those solutions. For a certain continuous ω-periodic function
h(t), we introduce ĥ = supt∈[0,ω) h(t).

Let

C := C
(
[−τ, 0],R6)×R15,

C+ := C
(
[−τ, 0],R6

+

)
×R15

+ .
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Thus (C, C+) defines an ordered Banach space together with the maximum norm.
If x = (x1, x2, . . . , X21) : [−τ, σ] → R21

+ is continuous function with σ > 0, then, for any
t ∈ [0, σ), we define xt ∈ C to be xt(θ) =

(
x1(t + θ), x2(t + θ), x3(t + θ), x4(t + θ), x5(t +

θ), x6(t + θ), x7(t), x8(t), . . . , x21(t)
)
, ∀ θ ∈ [−τ, 0].

Define

Ω :=

{
φ ∈ C+ :

φi(θ) > 0, i = {1, 2, . . . , 6}, ∀ θ ∈ [−τ, 0],

φj > 0, j = {7, 8, . . . , 21}.

}
.

Lemma 1. Equation (1) has a unique non-negative bounded solution u(t, φ) on [0, ∞) with u0 = φ,
for any φ ∈ Ω, such that ut(φ) ∈ Ω for all t > 0.

Proof. We introduce the following matrix function f̃ (t, φ), for any φ = (φ1, φ2, . . . , φ21) ∈
Ω, as follows:

f̃ (t, φ) =



α
2 φ13(0)− β

Th (0)
Nf

φ1(0)−
α̃h (t)φ21(0)

Nh
φ1(0)− dφ1(0)

β
Th (0)

Nf
φ1(0) +

α̃h (t)φ21(0)
Nh

φ1(0)− (νh + d)φ2(0)

θνh φ2(0)− γaφ3(0)− dφ3(0)
(1− θ)νh φ2(0)− γsφ4(0)− dφ4(0)

γaφ3(0) + γsφ4(0)− γrφ5(0)− dφ5(0)
α
2 φ18(0) + γrφ5(0)− dφ6(0)

α
2 φ13(0)−

α̃h (t)φ21(0)
Nh

φ7(0)− dφ7(0)
α̃h (t)φ21(0)

Nh
φ7(0)− (νh + d)φ8(0)

θνh φ8(0)− γaφ9(0)− dφ9(0)
(1− θ)νh φ8(0)− γsφ10(0)− dφ10(0)

γaφ9(0) + γsφ10(0)− γrφ11(0)− dφ11(0)
α
2 φ18(0) + γrφ11(0)− dφ12(0)

Bc
φ1(−τ)+φ6(−τ)

Nf
e−ξτ − α̃h (t)φ21(0)

Nh
φ13(0)− αφ13(0)− ξφ13(0)

α̃h (t)φ21(0)
Nh

φ13(0)− νh φ14(0)− ξφ14(0)

θνh φ14(0)− γaφ15(0)− ξφ15(0)
(1− θ)νh φ14(0)− γsφ16(0)− ξφ16(0)

(1− p)Bc
φ2(−τ)+φ3(−τ)+φ4(−τ)

Nf
e−ξτ − ξφ17(0)

pBc
φ2(−τ)+φ3(−τ)+φ4(−τ)

Nf
e−ξτ + γaφ15(0) + γsφ16(0)− αφ18(0)− ξφ18(0)

B̃v(t)− α̃v(t)
Tv (0)

Nh
φ19(0)− µφ19(0)

α̃v(t)
Tv (0)

Nh
φ19(0)− (νv + µ)φ20(0)

νv φ20(0)− µφ21(0)



,

where

Th(0) = κeφ8(0) + κaφ9(0) + φ10(0) + κrφ11(0),

Tv(0) = ηe
(
φ2(0) + φ8(0) + φ14(0)

)
+ ηa

(
φ3(0) + φ9(0) + φ15(0)

)
+ φ4(0) + φ10(0) + φ16(0).

Notice that f̃ (t, φ) is continuous in (t, φ) ∈ R+ ×Ω and f̃ (t, φ) is Lipschitz in φ on
each compact subset of Ω. Therefore, by [37] (Theorems 2.2.1 and 2.2.3) (1) has a unique
solution u(t, φ) on its maximal interval [0, σφ) of existence with u0 = φ.
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Let φ = (φ1, φ2, . . . , φ21) ∈ Ω. If φ13 = 0, then f̃13(t, φ) > 0. If φ17 = 0, then
f̃17(t, φ) > 0. If φ18 = 0, then f̃18(t, φ) > 0. If φi = 0 for some i = {1, 2, . . . , 21}, then
f̃i(t, φ) > 0. Obviously, the total number of humans, represented by Nh(t), abides by:

N′
h
(t) = Bc e−ξτ − ξNc(t)− dNf (t)− dNm(t) ≥ Bc e−ξτ − (ξ + 2d)Nh(t).

It is important to note that the linear equation dy
dt = Bc e−ξτ− (ξ + 2d)y(t) has a globally

stable equilibrium Bc e−ξτ

ξ+2d and for any 0 < δ < Bc e−ξτ

ξ+2d , dy
dt |y=δ = Bc e−ξτ − (ξ + 2d)δ > 0. As a

result, if y(0) ≥ δ, then y(t) ≥ δ holds true for all t ≥ 0. Based on the comparison principle,
if Nh(0) = ∑18

i=1 φi(0) ≥ δ, then Nh(t) ≥ δ. Then by [38] (Theorem 5.2.1 and Remark 5.2.1),
the unique solution u(t, φ) of (1) with u0 = φ satisfies ut(φ) ∈ Ω for all t ∈ [0, σφ).

From (1), we obtain

N′
h
(t) = Bc e−ξτ − ξNc(t)− dNf (t)− dNm(t) ≤ Bc e−ξτ − ξNh(t), (2)

where ξ ≤ d. Clearly, Nv(t) satisfies

N′v (t) = B̃v(t)− µNv(t) 6
ˆ̃Bv − µNv(t), ∀ t ∈ [0, σφ).

Hence, Nh(t) and Nv(t) are ultimately bounded on [0, σφ). By [37] (Theorem 2.3.1),

it follows that σφ = ∞. When Nh(t) > max{ Bc e−ξτ

ξ+2d ,
ˆ̃Bv
µ } and Nv(t) > max{ Bc e−ξτ

ξ+2d ,
ˆ̃Bv
µ }, we

have
dNh(t)

dt
< 0 and

dNv(t)
dt

< 0.

This implies that all solutions are uniformly bounded.

Next, we investigate the existence and uniqueness of the disease-free periodic solution
of system (1). Define

ψ =
(
Sf (0), Ef (0),I

a
f
(0), Is

f
(0), Ir

f
(0), Rf (0), Sm(0), Em(0), Ia

m (0), Is
m(0), Ir

m(0), Rm(0), Sc(0), Ec(0),

Ia
c (0), Is

c (0), Mc(0), Rc(0), Sv(0), Ev(0), Iv(0)
)
∈ R21

+ .

When there is no disease present, with a positive initial condition ψ ∈ R21
+ , we have

the following system

S′
f
(t) =

α

2
Sc(t)− dSf (t),

S′m(t) =
α

2
Sc(t)− dSm(t),

S′c (t) =Bc e−ξτ − ξSc(t)

(3)

from the last equation of system (3) we can derive

Sc(t) = Sc(0)e
−ξt +

Bc e−ξτ

ξ
(1− e−ξt). (4)

with an arbitrary initial value Sc(0). Equation (4) has a unique equilibrium S∗c = Bc e−ξτ

ξ in
R+. Consequently, |Sc(t)− S∗c | → 0 as t→ ∞ and S∗c is globally attractive on R+. Therefore,

system (3) has a unique equilibrium (S∗
f

, S∗m , S∗c ) = ( αBc e−ξτ

2dξ , αBc e−ξτ

2dξ , Bc e−ξτ

ξ ).
To get the disease-free periodic equilibrium of (1), consider the following equation:

dSv(t)
dt

= B̃v(t)− µSv(t). (5)
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It is clear that (5) admits a single positive ω-periodic solution S∗v (t) given by

S∗v (t) =

[∫ t

0
B̃v(r)eµrdr +

∫ ω
0 B̃v(r)eµrdr

eµt − 1

]
e−µ,

that is globally attractive in R and, hence, (1) has a single disease-free periodic solution

E0 =
(
S∗

f
, 0, 0, 0, 0, 0, S∗m , 0, 0, 0, 0, 0, S∗c , 0, 0, 0, 0, 0, S∗v (t), 0, 0

)
. (6)

3.1.1. Basic Reproduction Numbers

By linearizing system (1) at the disease-free periodic solution E0, we get the periodic
linear system for the infective variables as follows:

E′
f
(t) = βTh(t) +

α̃h (t)Iv (t)
N∗

h
S∗

f
− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1− θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

E′m(t) =
α̃h (t)Iv (t)

N∗
h

S∗m − (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1− θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

E′c (t) =
α̃h (t)Iv (t)

N∗
h

S∗c − νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1− θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′c (t) = (1− p)Bc

Ef (t−τ)+Ia
f
(t−τ)+Is

f
(t−τ)

N∗
f

e−ξτ − ξMc(t),E′v (t) = α̃v(t)
Tv (t)
N∗

h
S∗v (t)− (νv + µ)Ev(t),

I′v (t) = νv Ev(t)− µIv(t),

(7)

Let C := C
(
[−τ, 0],R4)×R10. Assume that v = (v1, v2, . . . , v14) : [−τ, σ] → R14 is a

continuous function with σ > 0, we define vt ∈ C by

vt(θ) = (v1(t + θ), v2(t + θ), v3(t + θ), v4(t + θ), v5(t), v6(t), . . . , v14(t)), ∀θ ∈ [−τ, 0],

for any t ∈ [0, σ). Define a map F : R→ L(C,R14) and a matrix function V(t) as follows:

F(t)φ =



β
(

κeφ8(0)+κaφ9(0)+φ10(0)+κrφ11(0)
)
+α̃h (t)

φ14(0)
N∗

h
S∗

0
0
0

α̃h (t)φ14(0)
N∗

h
S∗m

0
0
0

α̃h (t)φ14(0)
N∗

h
S∗c

0
0
0

α̃v (t)
ηe(φ2(0)+φ8(0)+φ14(0))+ηa(φ3(0)+φ9(0)+φ15(0))+φ4(0)+φ10(0)+φ16(0)

N∗
h

S∗v (t)

0



,
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V(t) =



νh+d 0 0 0 0 0 0 0 0 0 0 0 0 0
−θνh γa+d 0 0 0 0 0 0 0 0 0 0 0 0

−(1−θ)νh −γa γs+d 0 0 0 0 0 0 0 0 0 0 0
0 −γs −γs γr 0 0 0 0 0 0 0 0 0 0
0 0 0 0 νh+d 0 0 0 0 0 0 0 0 0
0 0 0 0 −θνh γa+d 0 0 0 0 0 0 0 0
0 0 0 0 −(1−θ)νh −γa γs+d 0 0 0 0 0 0 0
0 0 0 0 0 −γa −γs γr 0 0 0 0 0 0
0 0 0 0 0 0 0 0 νh+ξ 0 0 0 0 0
0 0 0 0 0 0 0 0 −θνh γa+ξ 0 0 0 0
0 0 0 0 0 0 0 0 −(1−θ)νh −γa γs+ξ 0 0 0

− (1−p)Bc
N∗

f
− (1−p)Bc

N∗
f
− (1−p)Bc

N∗
f

0 0 0 0 0 0 0 0 ξ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 νh+µ 0
0 0 0 0 0 0 0 0 0 0 0 0 −νh µ



.

System (7) can be written as:

dv(t)
dt

= F(t)vt −V(t)v(t), ∀ > 0. (8)

Assume Z(t, s), t > s to be the evolution operator of the linear ω-periodic system

dz
dt

= −V(t)z. (9)

That is, for each s ∈ R, the 14× 14 matrix Z(t, s) satisfies

d
dt

Z(t, s) = −V(t)Z(t, s), ∀t > s, Z(s, s) = I,

where I is the 14× 14 identity matrix.
Following Zhao [39] (Section 2), we suppose that the initial distribution of infectious

individuals is v(t), ω-periodic in s. F(t − s)vt−s is the distribution of newly infected
individuals at time t− s, which is formed by the infectious individuals who were presented
throughout the time period [t − s − τ, t − s] for any s > 0. Then Z(t, t − s)F(t − s)vt−s
provides the distribution of those infected individuals who were newly infected at time
t− s and remain infected at time t. It concludes that∫ ∞

0
Z(t, t− s)F(t− s)vt−sds =

∫ ∞

0
Z(t, t− s)F(t− s)v(t− s + .)ds,

represents the distribution of accumulative new infections at time t caused by all those
infected people raised at a time previous to t.

Let Cω stands for the ordered Banach space of all ω-periodic functions from R to R14,
that has the maximum norm ‖.‖∞ and the positive cone

C+
ω := {v ∈ Cω : v(t) > 0, ∀t ∈ R}.

Then, a linear operator L : Cω → Cω can be defined as

[Lv](t) =
∫ ∞

0
Z(t, t− s)F(t− s)v(t− s + .)ds, ∀t ∈ R, v ∈ Cω. (10)

As stated in [39], the basic reproduction number is defined as R0 := ρ(L). Let P̄(t)
be the solution map of (7) for any t > 0 and, hence, P̄(t)φ = ut(φ), where u(t, φ) is the
unique solution of (7) with u0 = φ ∈ C. Thus, P̄ := P̄(ω) is the Poincaré map associated
with (7). Assume ρ(P̄) is the spectral radius of P̄. By [39] (Theorem 2.1), we have the
following lemma.

Lemma 2. R0 − 1 has the same sign as ρ(P̄)− 1.
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These results suggest thatR0 is a critical value for the disease local spread, as well as
that the stability of the zero solution of system (7) depends on the sign ofR0 − 1.

3.1.2. Derivation of the Time-Average Reproduction Number

In model (1) the delay τ was introduced to take account of the delay between the
infection of the mother and the delivery which caused the lag time between the peaks
observed on symptomatically infected cases and microcephaly cases. By setting τ = 0, we
can use the general approach established in [40] to calculate a formula for the time-average
reproduction number [R0] of (1).

We calculate a formula for the basic reproduction number RA
0 of the autonomous

model obtained from (1) by setting the time-dependent parameters (mosquito birth B̃v(t) ≡
Bv ) and biting rates (α̃h(t) ≡ αh and α̃v(t) ≡ αv ) to constant. Given the infectious states Ef , Ia

f
,

Is
f
, Ir

f
, Em , Ia

m , Is
m , Ir

m , Ec , Ia
c , Is

c , Ev and Iv in (1) and substituting the values in

E0 =
(

S∗
f

, 0, 0, 0, 0, 0, S∗m , 0, 0, 0, 0, 0, S∗c , 0, 0, 0, 0, 0, S∗v , 0, 0
)

=
(

αBc
2d(ξ+α)

, 0, 0, 0, 0, 0, αBc
2d(ξ+α)

, 0, 0, 0, 0, 0, Bc
ξ+α , 0, 0, 0, 0, 0, Bv

µ , 0, 0
)

,

we compute the matrices F and V for the new infection terms and the remaining transfer
terms. These two matrices are, respectively, given by

F =



0 0 0 0 βκe βκa β βκr 0 0 0 0 0
αh S∗

f
N∗

h
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
αh S∗m

N∗
h

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
αh S∗c
N∗

h
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0

αv ηeS∗v
N∗

h

αv ηaS∗v
N∗

h

αv S∗v
N∗

h
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0


and

V =



d+νh 0 0 0 0 0 0 0 0 0 0 0 0 0
−θνh γa+d 0 0 0 0 0 0 0 0 0 0 0 0

−(1−θ)νh 0 γs+d 0 0 0 0 0 0 0 0 0 0 0
0 −γa −γs γr+d 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d+νh 0 0 0 0 0 0 0 0 0
0 0 0 0 −θνh γa+d 0 0 0 0 0 0 0 0
0 0 0 0 −(1−θ)νh 0 γs+d 0 0 0 0 0 0 0
0 0 0 0 0 −γa −γs γr+d 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ξ+νh 0 0 0 0 0
0 0 0 0 0 0 0 0 −θνh γa+ξ 0 0 0 0
0 0 0 0 0 0 0 0 −(1−θ)νh 0 γs+ξ 0 0 0

(p−1)Bc
N∗

f

(p−1)Bc
N∗

f

(p−1)Bc
N∗

f
0 0 0 0 0 0 0 0 ξ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 µ+νv 0
0 0 0 0 0 0 0 0 0 0 0 0 −νv µ



,

hence the next generation matrix FV−1 has the following characteristic polynomial:

λ11
(

λ3 − (R f vRv f + RvmRmv + RvcRcv)λ− Rm f R f vRvm

)
= 0



Axioms 2023, 12, 263 13 of 25

where

Rm f =
βκe

d+νh
+

θβκaνh
(d+γa)(d+νh )

+
(1−θ)βνh

(d+γs)(d+νh )
+

βκrνh (γaγs+θγad+(1−θ)γsd)
(d+γa)(d+γs)(d+γr)(d+νh )

R f v = Rmv =
αv ηeS∗v

(d+νh )N∗
h
+

θαv ηaνh S∗v
(d+γa)(d+νh )N∗

h
+

(1−θ)αv νh S∗v
(d+γa)(d+νh )N∗

h
,

Rcv =
αv ηeS∗v

(ξ+νh )N∗
h
+

θαv ηaνh S∗v
(ξ+γa)(ξ+νh )N∗

h
+

(1−θ)αv νh S∗v
(ξ+γs)(ξ+νh )N∗

h
,

Rv f = Rvm = α
2d Rvc =

α
2d

αh νv Bc
µ(ξ+α)(µ+νv )N∗

h
,

The characteristic polynomial, therefore, takes the form

2dλ3 − 2Rvc(dRcv + αR f v)λ− αRm f R f vRvc = 0.

Following [40], RA
0 is the spectral radius of FV−1. Accordingly, RA

0 corresponds to the
dominant eigenvalue given by the root of the cubic equation

RA
0 =

2Rvc(dRcv+αR f v)

3 3√6
(√

(9d2αR f vRm f Rcv)2−48R3
vc(dRcv+αR f v)3−9d2αR f vRm f Rcv

)1/3

+

(√
(9d2αR f vRm f Rcv)2−48R3

vc(dRcv+αR f v)3−9d2αR f vRm f Rcv

)1/3

3 3√36d
,

(11)

where Rm f is the basic reproduction number corresponding to sexual transmission and
R f v, Rcv, Rvc are the reproductive numbers relevant to vector-borne transmission.

We derive the formula for [R0] (the time-average reproduction number) of the corre-
sponding non-autonomous model (1) by using the following remark presented in [36].

Remark 1. Given a continuous ω-periodic function q(t), its average is defined as

[q] :=
1
ω

∫ ω

0
q(t) dt.

Then, [R0] is given by

[R0] =
2[Rvc ](d[Rcv ]+α[R f v ])

3 3√6
(√

(9d2α[R f v ]Rm f [Rcv ])2−48[Rvc ]3(d[Rcv ]+α[R f v ])3−9d2α[R f v ]Rm f [Rcv ]
) 1

3

+

(√
(9d2α[R f v ]Rm f [Rcv ])2−48[Rvc ]3(d[Rcv ]+α[R f v ])3−9d2α[R f v ]Rm f [Rcv ]

) 1
3

3 3√36d
,

(12)

where

[R f v] =
ηe [α̃v ][B̃v ]

µ(d+νh )N∗
h
+

θηaνh [α̃v ][B̃v ]

µ(d+γa)(d+νh )N∗
h
+

(1−θ)νh [α̃v ][B̃v ]

µ(d+γa)(d+νh )N∗
h

,

[Rcv] =
ηe [α̃v ][B̃v ]

µ(ξ+νh )N∗
h
+

θηaνh [α̃v ][B̃v ]

µ(ξ+γa)(ξ+νh )N∗
h
+

(1−θ)νh [α̃v ][B̃v ]

µ(ξ+γa)(ξ+νh )N∗
h

,

[Rvc] =
Bc νv [α̃h ]

µ(ξ+α)(µ+νv )N∗
h

.

3.1.3. Global Dynamics

In terms of R0, we investigate the global dynamics of (1). We employ the theory of
monotone semiflows developed in [41] (Section 2.3). Then, we continue with a new phase
space on which (7) eventually forms a strongly monotone periodic semiflow. We prove
that, ifR0 < 1, then the unique disease-free equilibrium is globally asymptotically stable
and the disease dies out, while, ifR0 > 1, the infection persists and there exists at least an
ω-periodic solution of (1).
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Define

Y := C
(
[−τ, 0],R4)×R10 and Y+ := C

(
[−τ, 0],R4

+

)
×R10

+ .

The following lemma can be obtained by using the method of steps.

Lemma 3. For any φ ∈ Y+ and for all t > 0, system (7) has a unique non-negative solution v(t, φ)
with v0 = φ.

Assume that P(t) is the solution map of system (1) on Y for any given t > 0. Therefore,
P := P(ω) is the Poincaré map corresponding to the linear Equation (7) and ρ(P̄) = ρ(P)
by using Lou and Zhao [42] (Lemma 3.8).

Define

X := C([−τ, 0],R6
+)×R15

+ ,

X0 :={φ = (φ1, φ2, . . . , φ21) ∈ X : φi(0) > 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21},
∂X0 :=X \ X0 = {φ ∈ X : φi(0) = 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}.

Theorem 1. The subsequent statements are valid:

(i) If ρ(P) < 1, the disease-free periodic solution E0 defined by (6) is globally attractive for system
(1) in X.

(ii) If ρ(P) > 1, then system (1) admits a positive ω-periodic solution and there exists a positive
constant κ > 0 such that any solution u(t, φ) of system (1) for all initial values φ ∈ X0
satisfies

lim inf
t→∞

(
Ef (t, φ), Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ),

Ia
c (t, φ), Is

c (t, φ), Ev(t, φ), Iv(t, φ)
)T

> (κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ)T .

Proof. If ρ(P) < 1, let v(t, φ) and w(t, ψ) be the unique solutions of (7) with v0 = φ and
w0 = ψ, respectively, for any ψ and φ in Y+ with φ > ψ. Smith [38] (Theorem 5.1.1)
implies that v(t, φ) > v(t, ψ) for all t > 0 and. hence, P : Y+ → Y+ is monotone for all
t > 0. Consider φ, ψ ∈ Y satisfy φ > ψ and represent v(t, φ) = (x̄1(t), x̄2(t), . . . , x̄14(t))
and w(t, ψ) = (x1(t), x2(t), . . . , x14(t)). By applying a simple comparison argument on
each interval [nτ, (n + 1)τ], n ∈ N, it is possible to demonstrate that x̄i(t) > xi(t) for all
t > t0, i = {1, 2, 3, 4}. The next step is to demonstrate that P(t) becomes eventually strongly
monotone. We assume, without losing generality, that φ14 > ψ14.

Claim 1. There exists t0 ∈ [0, τ] s.t. x̄1(t) > x1(t), ∀ t > t0.
First, for some t0 ∈ [0, τ], we show that x̄1(t0) > x1(t0). If not, then for each t0 ∈ [0, τ],
x̄1(t) = x1(t) and, consequently, dx̄1(t)

dt = dx1(t)
dt for all t0 ∈ (0, τ). Then, we get

α̃h(t)
S∗

f

N∗
h

(x̄14(t)− x14(t))− (νh + d)(x̄1(t)− x1(t)) = 0.

It is observed that x̄1(t) = x1(t) and x̄14(t) = x14(t) for all t0 ∈ [0, τ], then φ14(θ) = ψ14(θ)
for all t0 ∈ [0, τ], which contradicts the hypothesis that φ14 > ψ14.
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Let g1(t, x) := α̃h(t)
S∗

f
N∗

h
x14(t)− (νh + d)x(t). Then, we have

dx̄1(t)
dt

= α̃h(t)
S∗

f

N∗
h

x̄14(t)− (νh + d)x̄1(t)

> α̃h(t)
S∗

f

N∗
h

x14(t)− (νh + d)x̄1(t)

= g1(t, x̄1(t)),

we obtain dx̄1(t)
dt − g1(t, x̄1(t)) > 0 = dx1(t)

dt − g1(t, x1(t)) ∀t > t0. Since x̄1(t0) > x1(t0),
the comparison theorem [43] (Theorem 4) indicates that x̄1(t) > x1(t), ∀ t > t0.

Claim 2. x̄2(t) > x2(t), ∀ t > t0 + τ.
Let g2(t, x) := θνh x1(t)− (γa + d)x(t). Then we have

dx̄2(t)
dt

= θνh x̄1(t)− (γa + d)x̄2(t)

> θνh x1(t)− (γa + d)x̄2(t)

= g2(t, x̄2(t)),

and, hence, dx̄2(t)
dt − g2(t, x̄2(t)) > 0 = dx2(t)

dt − g2(t, x2(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄2(t) > x2(t) for all t > t0 + τ.

Claim 3. x̄3(t) > x3(t) for all t > t0.
Let g3(t, x) := (1− θ)νh x1(t)− (γs + d)x(t), Then we have

dx̄3

dt
= (1− θ)νh x̄1(t)− (γs + d)x̄3(t)

> (1− θ)νh x1(t)− (γs + d)x̄3(t)

= g3(t, x̄3(t)),

and hence, dx̄3(t)
dt − g3(t, x̄3(t)) > 0 = dx3(t)

dt − g3(t, x3(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄3(t) > x3(t) for all t > t0.

Claim 4. x̄4(t) > x4(t) for all t > t0.
Let g4(t, x) := γax2(t) + γsx3(t)− (γr + d)x(t). Then we have

dx̄4

dt
= γa x̄2(t) + γs x̄3(t)− (γr + d)x̄4(t)

> γax2(t) + γsx3(t)− (γr + d)x̄4(t)

= g4(t, x̄4(t)),

and therefore, dx̄3(t)
dt − g3(t, x̄3(t)) > 0 = dx3(t)

dt − g3(t, x3(t)) ∀t > t0. It follows from [43]
(Theorem 4) that x̄3(t) > x3(t) for all t > t0.

Claim i (i = 5, 6, . . . , 14). x̄i(t) > xi(t), i = 5, 6, . . . , 14 for all t > t0.
In a similar way to the previous four claims, we can show that x̄i(t) > xi(t), i = 5, 6, . . . , 14
for all t > t0.

Given two positive real numbers a and b, we write a � b if and only if a is much
greater than b. If we take into consideration the claims made above, we arrive at(

x̄1(t), x̄2(t), . . . , x̄14(t)
)
�
(
x1(t), x2(t), . . . , x14(t)

)
, ∀t > t0 + τ.

Because t0 ∈ [0, τ], it can be shown that(
x̄1t, x̄2t, . . . , x̄14t

)
�
(
x1t, x2t, . . . , x14t

)
, ∀t > 2τ,
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that is vt(φ) � wt(ψ) for all t > 2τ. Hence, it follows that P(t) is strongly monotone for
any t > 2τ.

According to [37] (Theorem 3.6.1), the linear operator P̄(t) is compact on Y+ for any
t > 2τ. Hence, P(t) is compact and strongly monotone on Y for t > 2τ. Select a positive
integer n0 > 0 such that n0ω > 2τ. Given that Pn0ω = P(n0ω), it follows from [44]
(Lemma 3.1) that ρ(P) is a simple eigenvalue of P with a strongly positive eigenvector
and the modulus of any additional eigenvalue is smaller than ρ(P). By [45] (Lemma 1),
there is a positive ω-periodic function v̄(t) = (v̄1(t), v̄2(t), . . . , v̄14(t))T s.t. v∗(t) = eλtv̄(t)
is a positive solution of (7) where λ = ln ρ(P)

ω .
Assume the linear periodic system with parameter ε:

E′
f
(t) = βTh(t) + α̃h(t)Iv(t)

S∗
f

N∗
h
− ε
− (νh + d)Ef (t),

Ia
f
′(t) = θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) = (1− θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),

Ir
f
′(t) = γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

E′m(t) = α̃h(t)Iv(t)
S∗m

N∗
h
− ε
− (νh + d)Em(t),

Ia
m
′(t) = θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) = (1− θ)νh Em(t)− γs Is

m(t)− dIs
m(t), (13)

Ir
m
′(t) = γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

E′c (t) = α̃h(t)Iv(t)
S∗c

N∗
h
− ε
− νh Ec(t)− ξEc(t),

Ia
c
′(t) = θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) = (1− θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′c (t) = (1− p)Bc

Ef (t− τ) + Ia
f
(t− τ) + Is

f
(t− τ)

N∗
f
− ε

e−ξτ − ξMc(t),

E′v (t) = α̃v(t)Tv(t)
S∗v (t) + ε

N∗
h
− ε

− (νv + µ)Ev(t),

I′v (t) = νv Ev(t)− µIv(t).

Assume that Pε(t) is the solution map of system (13) on Y+ and Pε := Pε(ω). Since
limε→0 ρ(Pε) = ρ(P) < 1, we can choose a small enough ε > 0 s.t. ρ(Pε) < 1. It is straight-
forward to demonstrate that Pε(t) is also compact and eventually strongly monotone on
Y. Then, there exists a positive ω-periodic function vε(t) = (vε1(t), vε2(t), . . . , vε14(t)) such

that uε(t) = e
ln ρ(Pε)

ω tvε(t) is a positive solution of (13). As a result,

lim
t→∞

uε(t) = 0.

Clearly, Sv(t) satisfies S′v (t) = B̃v(t)− µSv(t); it has a globally attractive ω-periodic
solution S∗v (t). Then there is a large enough integer T1 > 0 s.t. T1ω > τ and S∗v (t)− ε 6
Sv(t) 6 S∗v (t) + ε for all t > T1ω. Then we have

E′
f
(t) ≤ βTh(t) + α̃h(t)Iv(t)

S∗
f

N∗
h
− ε
− (νh + d)Ef (t),

Ia
f
′(t) ≤ θνh Ef (t)− γa Ia

f
(t)− dIa

f
(t),

Is
f
′(t) ≤ (1− θ)νh Ef (t)− γs Is

f
(t)− dIs

f
(t),
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Ir
f
′(t) ≤ γa Ia

f
(t) + γs Is

f
(t)− γr Ir

f
(t)− dIr

f
(t),

E′m(t) ≤ α̃h(t)Iv(t)
S∗m

N∗
h
− ε
− (νh + d)Em(t),

Ia
m
′(t) ≤ θνh Em(t)− γa Ia

m (t)− dIa
m (t),

Is
m
′(t) ≤ (1− θ)νh Em(t)− γs Is

m(t)− dIs
m(t),

Ir
m
′(t) ≤ γa Ia

m (t) + γs Is
m(t)− γr Ir

m(t)− dIr
m(t),

E′c (t) ≤ α̃h(t)Iv(t)
S∗c

N∗
h
− ε
− νh Ec(t)− ξEc(t),

Ia
c
′(t) ≤ θνh Ec(t)− γa Ia

c (t)− ξ Ia
c (t),

Is
c
′(t) ≤ (1− θ)νh Ec(t)− γs Is

c (t)− ξ Is
c (t),

M′c (t) ≤ (1− p)Bc

Ef (t− τ) + Ia
f
(t− τ) + Is

f
(t− τ)

N∗
f
− ε

e−ξτ − ξMc(t),

E′v (t) ≤ α̃v(t)Tv(t)
S∗v (t) + ε

N∗
h
− ε

− (νv + µ)Ev(t),

I′v (t) ≤ νv Ev(t)− µIv(t),

for all t > T1ω. Choose a sufficiently large number K > 0 such that(
Ef (t, φ),Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ), Ia
c (t, φ), Is

c (t, φ),

Ev(t, φ), Iv(t, φ)
)
6 Kuε(t),

for all t ∈ [T1ω, T1ω + τ]. By using [38] (Theorem 5.1.1), ∀ t > T1ω + τ, we obtain

lim
t→∞

(
Ef (t, φ),Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ), Ia
c (t, φ),

Is
c (t, φ), Ev(t, φ), Iv(t, φ)

)T
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

Furthermore, it follows from the chain transitive sets arguments (see, [46] (Theorem 3.6)
and [47] (Theorem 2.5)) that limt→∞(Sf (t)− S∗

f
) = 0, limt→∞ Rf (t) = 0, limt→∞(Sm(t)−

S∗m ) = 0, limt→∞ Rm(t) = 0, limt→∞(Sc(t)− S∗c ) = 0, limt→∞ Rc(t) = 0 and limt→∞(Sv(t)−
S∗v (t)) = 0. This completes the proof of the first statement.

For the sake of simplicity, we only show the main steps of the proof of the second state-
ment when ρ(P) > 1. In this case, we employ the persistence theory for periodic semiflows.

Let Q(t) : X → X be the solution maps of (1) on X, that is, Q(t)ψ = ut(φ), t > 0,
where u(t, φ) is the unique solution of (1) satisfying u0 = φ ∈ X. Therefore, Q := Q(ω) is
the Poincaré map associated with (1). From (1), it follows that Q(t)X0 ⊆ X0 for all t > 0.
It is important to note that a map Q is point dissipative if there exists a bounded set B
such that, for each x ∈ Rn, there is an integer n0 = n0(x) such that Qnx ∈ B for n ≥ n0.
Therefore, the discrete-time system {Qn : X → X}n>0 is point dissipative by Lemma 1 and
from [37] (Theorem 3.6.1), Q(t) is compact for each t > τ, and, then, Qn is compact for
enough large n. According to [39] (Theorem 1.1.3), Q has a global attractor.

Next, we demonstrate that Q is uniformly persistent w.r.t. (X0, ∂X0). Let M =(
S∗

f
, 0, 0, 0, 0, 0, S∗m , 0, 0, 0, 0, 0, S∗c , 0, 0, 0, 0, 0, S∗v , 0, 0

)
, where S∗v = S∗v (ξ) for all ξ ∈ [−τ, 0].

Define

M∂ := {φ ∈ ∂X0 : Qn(φ) ∈ ∂X0, ∀n > 0}
= {φ ∈ ∂X0 : φi(0) = 0, i = 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}.

For any given φ ∈ M∂, we see that Qn(φ) → M as n → ∞ by using the theory of
internally chain transitive sets (see [39] (Theorems 1.2.1 and 1.2.2) and [42]). From the above
discussion, it is clear that M is an isolated invariant set for Q in X, and Ws(M)

⋂
X0 = ∅,
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where Ws(M) is the stable set of M for Q. By the acyclicity theory on uniform persistence
for maps (see [39] (Theorem 1.3.1 and Remark 1.3.1)), it follows that Q : X → X is uniformly
persistent w.r.t. (X0, ∂X0) where there exists κ0 > 0 s.t.

lim inf
n→∞

d(Qn(φ), ∂X0) > κ0, ∀φ ∈ X0.

As a result, Q : X0 → X0 has a compact global attractor A0 by [39] (Theorem 4.5). For any
φ ∈ A0, we have φi(0) > 0 for all i = {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}. Let B0 :=⋃

t∈[0,ω] Q(t)A0. Then φi(0) > 0, i = {2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 20, 21}, for all φ ∈ B0.
Furthermore, B0 ⊆ X0 and limt→∞ d(Q(t)φ, B0) = 0 for all φ ∈ X0. The attractiveness of
B0 completes the proof.

Following the statements in [48] (Lemma 3.8), we get ρ(P) = ρ(P̄). Using Lemma 2
and Theorem 1, we have the subsequent result.

Theorem 2. The following statements are valid:

1. If R0 < 1, then the disease-free periodic solution E0 defined by (6) is globally attractive for
system (1) in X.

2. If R0 > 1, then system (1) admits a positive ω-periodic solution and there exists a positive
constant κ > 0 such that any solution u(t, φ) of system (1) for all initial values φ ∈ X0
satisfies

lim inf
t→∞

(
Ef (t, φ), Ia

f
(t, φ), Is

f
(t, φ), Ir

f
(t, φ), Em(t, φ), Ia

m (t, φ), Is
m(t, φ), Ir

m(t, φ), Ec(t, φ),

Ia
c (t, φ), Is

c (t, φ), Ev(t, φ), Iv(t, φ)
)T

> (κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ, κ)T .

3.2. Numerical Results

Figure 3a is in accordance with the analytical results noting that the disease-free
equilibrium E0 is globally asymptotically stable if R0 < 1. According to Theorem 1,
Equation (1) is persistent w.r.t. the infective compartments ifR0 > 1. Figure 3b indicates
the disease persistence ifR0 > 1.

3.2.1. Parameter Estimation for Colombia

By employing the method explained in Section 2.3, we fitted our system to symptomat-
ically infected and microcephaly data in Colombia, 2015–17. Figure 2 shows the weekly
confirmed ZIKV cases of the 2015–2017 outbreak and the weekly microcephaly cases of
2015–2017 from Colombia with parameter values are given in Table 2. Figure 4a depicts
model (1) fitted to symptomatically infected data and Figure 4b illustrates model (1) fitted
to microcephaly data from Colombia, showing a reasonably good fit.
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(a)R0 = 0.585 < 1
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(b)R0 = 1.2 > 1

Figure 3. Weekly number of Zika new infections in (a) when R0 = 0.585 < 1, αh = 0.112, αv = 1.2
and Bv = 41, 400, and in (b) whenR0 = 1.2 > 1, αh = 0.185, αv = 0.139 and Bv = 95, 000. The rest of
the parameter values are given in Table 2.
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Table 2. Parameters, ranges and fitted values of model (1) in the case of Colombia.

Parameter Range
Value Value

SourceSymptomatically
Infected Microcephaly

Bc – 1826.81 1826.81 [49]
ξ 1

22×365 – 1
14×365

1
16.98×365

1
18.68×365 [23]

d – 0.0000368 0.0000368 [49]
α 1

18×365 – 1
12×365

1
16.52×365

1
17.56×365 [23]

β 0.01–0.1 0.029 0.029 [14,24]
αh 0.03–0.75 0.382 0.283 [50,51]
αv 0.09–0.75 0.227 0.227 [50,51]
θ 0.75–0.9 0.822 0.853 [14,24,52]
κe 0.2–0.9 0.654 0.845 [14,24]
κa 0.2–0.8 0.505 0.509 [14,24]
κr 0.2–0.8 0.493 0.309 [14,24]
ηe 0.2–0.7 0.653 0.518 [14,24]
ηa 0.2–0.7 0.471 0.672 [14,24]
γa 0.05–0.4 0.2907 0.2907 [14,24]
γs 0.2–0.5 0.421 0.2268 [53]
γr 0.03–0.09 0.0652 0.0719 [54,55]
νh 0.1–0.5 0.35 0.209 [53]
νv 0.08–0.125 0.0911 0.115 [51,56]
Bv 500–100, 000 18, 000 51, 047 Fitted

1/µ 7–35 10.169 10.169 [51]
p 0.9–1 0.95 0.95 Fitted
a 1–10 1.8674 4.0325 Fitted
b 1–365 269.4 348.3 Fitted
τ 1–270 160 200 [31,32]
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Figure 4. The model (1) fits Colombian data between 2015 and 2017, with parameter values shown in
Table 2. (a) Number of symptomatically infected. (b) Number of microcephaly cases.

3.2.2. The Impact of Sexual Transmission

Our model (1) allows us to estimate the effect of sexual transmission on infectious
cases. Figure 5 depicts the number of symptomatically infected individuals in Colombia
and the number of symptomatically infected estimated by our model ignoring sexual trans-
mission. The results suggest that sexual transmission, a phenomenon previously unknown
in mosquito-borne diseases, increased the total number of cases by several hundred.

Utilizing our model (1), we compare the symptomatic cases in adult females and
the microcephaly cases with the corresponding numbers without sexual transmission
(see Figure 6). Moreover, we observe a noticeable increase in the number of symptomatic
cases in adult females and microcephaly cases with sexual transmission compared to those
without it. This indicates that sexual transmission is playing a crucial role in spreading the
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disease to this specific group of individuals. The results of our simulations suggest that
sexual transmission is a significant contributor to the spread of the disease, and it should be
taken into account in the development of effective control and prevention strategies. Using
our model, we estimate that 9–18% of the total number of microcephaly cases in Colombia
could be linked to Zika infection caused by sexual transmission.

with sexual transmission

without sexual transmission
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Figure 5. Number of the symptomatically infected and estimated number of symptomatically infected
humans in the absence of sexual transmission.
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(b) Microcephaly cases

Figure 6. Number of symptomatically infected adult females and estimated number of symptomati-
cally infected adult females without sexual transmission in (a), and in (b) the number of microcephaly
cases and estimated number of microcephaly cases without sexual transmission.

3.2.3. Sensitivity Analysis and Reproduction Numbers

To evaluate the dependency of the microcephaly number of cases on the controllable
parameters of the model, we perform sensitivity analysis utilizing PRCC analysis. In
Figure 7, we demonstrate the comparison of the PRCC values obtained for the parameters
αh , αv , β, Bv and µ. The result of the sensitivity analysis suggests that the most crucial factors
in the transmission of the disease, and consequently in the elevation of the number of
microcephaly cases, are birth and death rates of mosquitoes. In comparison with these,
the transmission rates, including sexual transmission, seem to have a somewhat smaller
effect; however, they are still important factors in the transmission of Zika fever, as can also
be seen from the simulations of the previous subsection. Based on the sensitivity analysis,
we can assess that the most efficient ways to prevent Zika-related microcephaly cases are
mosquito control and defence against mosquito bites.
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Human-to-human transmission rate (β)

Mosquito-to-human transmission rate (αh)

Human-to-mosquito transmission rate (αv)

Mosquito birth rate (Bv)

Mosquito death rate (μ)

Figure 7. Partial rank correlation coefficients of the five parameters which can be subject to control
measures. Parameters with positive (or negative) PRCC are positively (or negatively) correlated with
the total number of cases.

Using the method established in [36], we obtained numericallyR0 ≈ 0.974 in the case
of Colombia, as per the fact that the disease disappeared. We deduce a Formula (12) for
the basic reproduction number, which provides the time-average reproduction number of
the associated time-varying model (1) in any time point by substituting the values of the
parameters into it, where the value of the time-dependent parameters is always taken at that
given time point t. Moreover, Formula (11) provides us with the basic reproduction number
of the associated time-constant model. To evaluate the dependence of the time-average
basic reproduction number on the three controllable model parameters ([B̃v ], [α̃h ], [α̃v ]),
the contour plots of the time-average reproduction number, [R0], in terms of mosquito
birth rate and mosquito-to-human transmission rate (left panel) and human-to-mosquito
transmission rate (right panel), are shown in Figure 8, respectively. Similarly, the contour
plots of the basic reproduction number,RA

0 , of the autonomous model are given in Figure 9.
The rest of the parameters are set as obtained in the fitting of symptomatically infected
cases in Table 2. Figures 8 and 9 illustrate that the most significant measures to control the
transmission of Zika involve decreasing mosquito birth rate, decreasing mosquito bites,
personal bite surveillance and sexual contact protection.

Figure 10 shows the instantaneous reproduction number along with the number of
symptomatically infected in Colombia, 2015–2017, showing that the number of infected
individuals begins to decline when the instantaneous reproduction number goes below
1. The highest value of the instantaneous reproduction number is calculated to be about
Rinst ≈ 1.25; this value can be contrasted with previous estimates. The authors in [16]
estimatedRinst ≈ 1.4 for Brazil. Furthermore, the authors in [24] estimatedRinst ≈ 1.47 in
Costa Rica, while in SurinameRinst ≈ 1.45. These values are close to our results.

Figure 8. The contour plot of [R0] as a function of [B̃v ] and one of the three controllable parameters:
mosquito-to-human transmission rate ([α̃h ]) and human-to-mosquito transmission rate ([α̃v ]).
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Figure 9. The contour plot of RA
0 as a function of Bv and one of the three controllable parameters:

mosquito-to-human transmission rate (αh ) and human-to-mosquito transmission rate (αv ).
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Figure 10. The instantaneous reproduction number and the number of symptomatically infected in
Colombia, 2015–2017.

4. Discussion

We have developed a mathematical model for Zika virus disease transmission, with the
particular aim of providing a better understanding of the effect on the most important
health risk created by this disease, i.e., microcephaly. In our model, we tried to include most
of the relevant characteristics of the Zika virus disease, namely, by improving our model
given in [24], we consider both transmission ways (vectorial and sexual transmission),
the role of asymptomatic carriers and time-dependent mosquito-related parameters due to
the seasonality of weather. Our model also has its limitations: we have assumed an equal
percentage of pregnant women in all female compartments, which might be different from
reality. Furthermore, we have made the technical simplification of taking the time delay, τ,
as a constant. Although periodic functions are a rather efficient tool to model the roughly
periodic change of weather, they are, of course, unable to exactly describe the variance of
weather. It is essential to acknowledge that the existence of a large number of parameters
and broad intervals for their possible values makes it unlikely to identify a single set of
parameters that precisely fits the data of the epidemic. The objective instead is to provide
a credible estimate of the actual scenario and establish ranges for each parameter such
that the true values have a high probability of falling within these intervals. This way,
we can have a better understanding of the dynamics of the epidemic and make informed
decisions accordingly.

We have established that the global dynamics of the system are described by the
reproduction number: ifR0 < 1, namely, we have shown global asymptotic stability of the
disease-free periodic solution E0, in this case, the disease goes extinct. IfR0 > 1, the disease
becomes endemic in the population. We also provided numerical simulations in accordance
with these theoretical results (see Figure 3).
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As an example of the application of the model, we fitted it to the number of Zika cases
and the number of microcephaly cases in Colombia. Using the results of the fitting and
partial rank correlation coefficients analysis, we tried to assess which phenomena are the
main drivers of the increase in microcephaly cases. We have estimated the contribution of
sexual transmission to the increase in the number of cases to find that about 9–18% of the
microcephaly cases might be attributed to this sexual transmission, a novel phenomenon
for mosquito-borne diseases. Our results indicate that the sexual transmission rate increases
the number of infected adult females and consequently increases the risk of microcephaly
due to vertical transmission.

The basic reproduction number of the time-periodic model, the instantaneous repro-
duction number and the time-dependent reproduction number were calculated. The results
are consistent with the extinction of the ZIKV epidemic in Colombia. By calculating both
the time-average reproduction number for the time-period model and the reproduction
number of the time-constant model, we determine the dependency of the basic reproduc-
tion number on the model’s controllable parameters. We obtain that mosquito birth and
biting rates are the most significant factors in the transmission of Zika and the increase
of microcephaly cases after the end of the outbreak in Colombia; however, the sexual
transmission rate also has an important impact on the spread of the disease.

Based on our results, we may conclude that mosquito control, protection against
mosquito bites and sexual contact protection during the pregnancy period are the most
successful ways to prevent Zika-related microcephaly cases.
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