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Prediction of early-stage melanoma recurrence using clinical
and histopathologic features
Guihong Wan 1,2,3,9, Nga Nguyen1,9, Feng Liu 4,9, Mia S. DeSimone 5, Bonnie W. Leung 1, Ahmad Rajeh1, Michael R. Collier1,
Min Seok Choi1, Munachimso Amadife1, Kimberly Tang1, Shijia Zhang1, Jordan S. Phillipps 1, Ruple Jairath1, Nora A. Alexander 1,
Yining Hua1,2, Meng Jiao4, Wenxin Chen1,2, Diane Ho1, Stacey Duey1, István Balázs Németh6, Gyorgy Marko-Varga7,
Jeovanis Gil Valdés 7, David Liu 8, Genevieve M. Boland 1, Alexander Gusev8, Peter K. Sorger 3, Kun-Hsing Yu 2,5,10 and
Yevgeniy R. Semenov 1,3,10✉

Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment
plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to
identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-
learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records
(EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the
Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with
supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB
cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations,
respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction
performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most
predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic
features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from
adjuvant immunotherapy.
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INTRODUCTION
Despite recent therapeutic advances in the treatment of
advanced-stage melanomas, the number of melanoma deaths in
the United States is estimated to exceed 90,000 over the next
decade1. Emerging evidence suggests that the majority of
melanoma mortality occurs in patients with a recurrence of the
disease that was early-stage (Stage I or Stage II) at the time of
diagnosis2. However, the recurrence of melanoma is typically not
detected until the onset of symptomatic metastatic progression.
Thus, there is a critical need for accurate prognostic tools to
identify high-risk patients who would benefit from enhanced
surveillance3. Additionally, identifying high-risk patients can
support clinicians in determining who should receive adjuvant
immunotherapy, which was recently approved for early-stage
melanomas4. This decision is particularly important as immu-
notherapy has been associated with a high rate of morbid and
potentially fatal immune-related adverse events (irAEs) occurring
in up to 40% of treated patients5–7. Accordingly, balancing
potential benefits with these risks requires a reliable under-
standing of which patients are most likely to experience disease
recurrence and thereby would be most likely to benefit from early
systemic therapy. Overall, early detection of melanoma recurrence
can help minimize the number of patients exposed to treatment

toxicities, prevent metastatic progression, and improve patient
survival.
Research to date on early-stage melanoma recurrence has been

limited by the sample size of individual studies8,9, duration of
follow-up10,11, or access to well-phenotyped cohorts with detailed
patient and tumor characteristics11,12. As a result, it has been
difficult to reliably determine disease recurrence status and assess
downstream outcomes in this population. In the present study, we
leverage detailed multi-institutional registries across the Mass
General Brigham healthcare system (MGB) and the Dana-Farber
Cancer Institute (DFCI) to develop risk prediction models for early-
stage melanoma recurrence. As the largest providers of dermatol-
ogy services in the state of Massachusetts, these hospital systems
offer access to detailed clinical features and tumor characteristics
from a large population of patients who were diagnosed with
melanoma both within and outside of the academic setting.
We build on prior literature on this topic by incorporating a

wide array of clinical and histopathologic variables in our risk
prediction assessment10,12–19. With the intent to stratify melanoma
by survival outcomes, the American Joint Committee on Cancer
(AJCC) melanoma staging system was established based on
analyses of a large international melanoma database, which
determined that Breslow thickness, ulceration, and historically
mitotic rate were the most important prognostic factors in
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patients with localized melanoma16,17. Patient age at diagnosis
and anatomic site of the primary melanoma were also shown to
be significantly associated with recurrence of primary melanoma
in separate investigations15,18,20. Furthermore, a recent study
suggested that the presence of lymphovascular invasion and the
baseline autoimmune disease were also independently associated
with melanoma recurrence10. However, there is insufficient
information on the cumulative predictive capacity of these
features in prognosticating melanoma recurrence. To address this
knowledge gap, we propose a comprehensive risk stratification
approach using machine-learning modeling of a wide range of
clinical and tumor synoptic features from EHRs. Similar approaches
have been previously applied with success in other cancer
settings21, achieving the area under the receiver operating
characteristic curve (AUC) of 0.79–0.8022,23. To the best of our
knowledge, our study presents a comprehensive analysis of
melanoma recurrence combining state-of-the-art machine-
learning techniques and granular EHR data. The primary goal of
this study is to build machine-learning models for reliable
prediction of early-stage melanoma recurrence and identification
of significant independent risk factors using the extracted clinical
and histopathologic features. Specifically, we performed two types
of prediction: (1) recurrence vs. non-recurrence classification; (2)
time-to-event recurrence risk prediction.

RESULTS
Patient characteristics
We identified 1720 stage I/II cutaneous melanomas, with 1172
(68%) melanomas from MGB and 548 (32%) melanomas from DFCI

(Fig. 1), that were diagnosed between 2000 and 2020. The non-
recurrent melanomas were categorized into two groups: one
group with a minimum of 5-year follow-up duration (to minimize
the risk of false non-recurrences); another group 3:1 best matched
to the recurrent melanomas in terms of follow-up duration. The
first group was compared to recurrent melanomas for the binary
recurrence classification tasks. The second group was compared to
recurrent melanomas for the time-to-event recurrence prediction
tasks. Comprehensive clinical and histopathologic features were
extracted from EHRs (Supplementary Table 1).
The basic patient characteristics of the entire study population

are described in Table 1. All characteristics are detailed in
Supplementary Table 3. The median follow-up for the entire
cohort was 7.2 (IQR: 3.6–11.6) years. Overall, 310 out of 1720 (18%)
melanomas recurred, among which 151 (48.7%) were distant
recurrences. The median time from diagnosis to recurrence was
1.9 (IQR: 0.9–3.9) years. There was a small difference in the
distribution of the year of diagnosis between the recurrent group
and the non-recurrent group (p-value: 0.02). However, the mean
and median years of diagnosis were identical for both groups
(2010). The recurrent group had a higher mortality rate (49% vs.
22%, p-value <0.001) and was older at the time of diagnosis (65 vs.
60 years old, p-value <0.001) when compared to the non-recurrent
group. The percentage of males in the recurrent group was higher
(64% vs. 55%, p-value: 0.004) than in the non-recurrent group.
Most of the population self-identified as Caucasian in both groups
(recurrence: 98%; non-recurrence: 99%). Among the 310 recurrent
melanomas, the respective number of cases that recurred within 5
years and 7 years after the diagnosis of the primary melanoma is
255 (82%) and 285 (92%) (Fig. 2). The majority of the entire cohort
(74% for recurrences and 95% for non-recurrences) was with

Fig. 1 MGB and DFCI primary melanoma registry design and cohort definitions. Non-recurrent melanomas were categorized into two
groups: one group with a minimum of 5-year follow-up duration; another group 3:1 best matched to the recurrent melanomas in terms of
follow-up duration. The first group was compared to recurrent melanomas in the binary recurrence classification tasks. The second group was
compared to recurrent melanomas in the time-toevent recurrence prediction tasks.
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negative or not indicated regional lymph node histology. There
were more patients in the recurrence group who didn’t have the
sentinel lymph node biopsy performed due to age or comorbidity
(19%) than in the non-recurrence group (2%).
The patient characteristics of the MGB and DFCI cohorts for the

binary recurrence classification tasks are shown in Supplementary
Table 4. In the MGB cohort, the median follow-up was 11.4 (IQR:
7.2–15.1) years, and 215 of 881 (24%) melanomas recurred, among
which 98 (46%) cases were distant recurrences. The median time
from diagnosis to recurrence was 1.9 (IQR: 0.9–4.2) years. In the
DFCI cohort, the median follow-up was 7.0 (IQR: 6.1–8.1) years, and
95 of 435 (22%) melanomas recurred, among which 53 (56%)
cases were distant recurrences. The median time from diagnosis to
recurrence was 1.8 (IQR: 1.1–3.5) years.
The patient characteristics of the MGB and DFCI cohorts for

time-to-event recurrence prediction tasks are shown in Supple-
mentary Table 5. The respective median follow-up duration for the
MGB and DFCI cohorts was 5.9 (IQR: 1.9–11.3) years and 5.8 (IQR:
3.4–7.8) years. After the non-recurrent melanomas were identified
by 3:1 best matching to the recurrent melanomas in terms of
follow-up duration, there were no significant differences in follow-
up duration and year of diagnosis between the recurrences and
non-recurrences in each cohort.

Melanoma recurrence classification
Melanomas were labeled as having a recurrence or not, and five
machine-learning algorithms were applied to classify recurrent
and non-recurrent melanomas. Recurrence prediction model
performances with successive additions of patient demographics,
medical history, and tumor characteristics are shown in Fig. 3a.
The area under the receiver operating characteristic curve (AUC),
positive predictive value (PPV), sensitivity, specificity, and accuracy
of models that used all extracted features are detailed in
Supplementary Table 6.

Table 1. Characteristics of the study population.

Characteristic Non-recurrence
(N= 1410)

Recurrence
(N= 310)

p-value

Institution

DFCI 453 (32.1%) 95 (30.6%) 0.660

MGB 957 (67.9%) 215 (69.4%)

Duration of follow-up (year)

Median [IQR] 7.3 [3.8, 12.2] 5.8 [3.2, 9.3] <0.001

Recurrence type

Distant Not applicable 151 (48.7%)

Locoregional Not applicable 159 (51.3%)

Time to recurrence (year)

Median [IQR] Not applicable 1.9 [0.9, 3.9]

Time to locoregional
recurrence (year)

Median [IQR] Not applicable 1.5 [0.9, 3.1]

Time to distant
recurrence (year)

Median [IQR] Not applicable 2.5 [1.3, 4.5]

Mortality status

Alive 1106 (78.4%) 158 (51.0%) <0.001

Dead 304 (21.6%) 152 (49.0%)

Year of diagnosis

2000–2005 364 (25.8%) 59 (19.0%) 0.020

2006–2010 388 (27.5%) 88 (28.4%)

2011–2015 514 (36.5%) 117 (37.7%)

2016–2020 144 (10.2%) 46 (14.8%)

Age at diagnosis (year)

Median [IQR] 60 [47, 70] 65 [55, 76] <0.001

Sex

Female 638 (45.2%) 112 (36.1%) 0.004

Male 772 (54.8%) 198 (63.9%)

Race

White 1399 (99.2%) 304 (98.1%) 0.122

Unavailable/Other 11 (0.8%) 6 (1.9%)

Histology type

Lentigo maligna
melanoma

107 (7.6%) 23 (7.4%) <0.001

Melanoma, NOS 269 (19.1%) 67 (21.6%)

Nodular melanoma 115 (8.2%) 85 (27.4%)

Superficial spreading
melanoma

919 (65.2%) 135 (43.5%)

Site

Skin of face 147 (10.4%) 51 (16.5%) <0.001

Skin of lower limb
and hip

268 (19.0%) 65 (21.0%)

Skin of scalp and neck 84 (6.0%) 46 (14.8%)

Skin of trunk 542 (38.4%) 89 (28.7%)

Skin of upper limb and
shoulder

369 (26.2%) 59 (19.0%)

AJCC Stage

1A 862 (61.1%) 49 (15.8%) <0.001

1B 386 (27.4%) 84 (27.1%)

2A 71 (5.0%) 58 (18.7%)

2B 62 (4.4%) 63 (20.3%)

2C 29 (2.1%) 56 (18.1%)

Table 1 continued

Characteristic Non-recurrence
(N= 1410)

Recurrence
(N= 310)

p-value

Breslow thickness

Mean (SD) 1.0 (1.4) 3.0 (4.2) <0.001

Median [IQR] 0.6 [0.04, 1.1] 2.0 [1.1, 3.9]

Anatomic level

Mean (SD) 3.2 (0.9) 4.0 (0.8) <0.001

Median [IQR] 3.0 [2.0, 4.0] 4.0 [4.00, 4.0]

Ulceration

Absent 1305 (92.6%) 210 (67.7%) <0.001

Present 101 (7.2%) 99 (31.9%)

Unavailable 4 (0.3%) 1 (0.3%)

Mitotic rate (mitoses/mm2)

Mean (SD) 1.8 (3.5) 7.6 (11.0) <0.001

Median [IQR] 1.0 [0.0, 2.0] 4.0 [2.0, 10.0]

Regional lymph node
histology

Not indicated 826 (58.6%) 55 (17.7%) <0.001

All nodes negative 519 (36.8%) 175 (56.5%)

Not performed:
unknown reason

30 (2.1%) 12 (3.9%)

Not performed: due to
age/comorbidity

30 (2.1%) 59 (19.0%)

Not performed:
deferred by patient

5 (0.4%) 9 (2.9%)
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When using only demographic features, all models failed to
yield an acceptable prediction performance (external AUC values
<0.65). After adding medical history features, the AUC values were
significantly improved in both internal and external validation for
GB models (p-value: <0.01), while the PPV was not significantly
improved (p-value: >0.05). After integrating all extracted tumor
characteristics, both AUC and PPV were significantly improved for
all models (p-value: <0.001), indicating that tumor characteristics
were the most dominant features for the melanoma recurrence
classification in our study.
When using all extracted features, GB models achieved the

highest AUC in both internal (0.845; 95% CI: 0.840–0.850) and
external (0.812; 95% CI: 0.804–0.819) validations. Additionally, GB
models achieved the highest performance in terms of PPV
(internal: 0.803; 95% CI: 0.797–0.810; external: 0.785; 95% CI:
0.774–0.795), and accuracy (internal: 0.772; 95% CI: 0.768–0.777;
external: 0.741; 95% CI: 0.735–0.746) (Supplementary Table 6). The
AUC and PPV of the GB model in the external validation are
significantly different from other models (p-value < 0.001). SVM
models did not achieve competitive performance in both internal
and external validations.
In addition to experiments on the original MGB and DFCI

cohorts (Supplementary Table 4), we also conducted sensitivity
analyses using subgroups with no missing values for core tumor
features (histologic type, tumor site, AJCC stage, Breslow
thickness, anatomic level, laterality, mitotic rate, and ulceration),
and only negative sentinel lymph nodes or not indicated sentinel
lymph node biopsy (labeled “core complete cohorts”). There were
142 recurrences vs. 410 non-recurrences in the MGB cohort, and
74 recurrences vs. 317 non-recurrences in the DFCI cohort. The
results are presented in Fig. 3b. Compared to the original cohorts,
the GB model achieved consistent performance in the external
validation (AUC: 0.812 vs. 0.809, p-value: 0.577, PPV: 0.785 vs.
0.772, p-value: 0.055).
The receiver operating characteristic (ROC) curves using GB

models are shown in Fig. 4. Each experiment was repeated 50
times. All 50 ROC curves, the mean ROC curve, and the standard
deviation are presented. The curves in Fig. 4a, b demonstrated
similar shapes. The ROC curves for RF, LR, MLP, and SVM are
presented in Supplementary Fig. 2.

Sensitivity analyses for recurrence classification
In the original MGB and DFCI cohorts (Supplementary Table 4), a
5-year minimum follow-up duration for non-recurrent melanomas

was applied to reduce the likelihood of false non-recurrence. We
further performed recurrence vs. non-recurrence classification
experiments using GB and RF models when the minimum follow-
up duration for non-recurrent melanomas was 7 years (labeled
“seven years”) and when all tumor features and median income
were without missing values, and regional lymph node histology
was negative or not indicated (labeled “complete cohorts”). The
sample sizes and results are summarized in Table 2.
In the complete cohorts, the number of recurrences in the MGB

cohort was 116 and the number of recurrences in the DFCI cohort
was 45. The prediction performance (internal AUC: 0.805, PPV:
0.785; external AUC: 0.752, PPV: 0.737) deteriorated significantly
(p-values: <0.001) compared to the performance of the original
analysis (internal AUC: 0.845, PPV: 0.803; external AUC: 0.812, PPV:
0.785). When the minimum follow-up duration for non-recurrent
melanomas was 7 years, the GB model achieved slightly better
results in the external validation (AUC: 0.827, PPV: 0.793, p-value:
0.001 for AUC; p-value: 0.175 for PPV) compared to the
performance of the original analysis (AUC: 0.812, PPV: 0.785).

Feature importance in recurrence classification
We further examined the primary features used in the recurrence
vs. non-recurrence classification by conducting permutation
importance24 with each classifier. All features after one-hot
encoding are described in Supplementary Table 2. The experi-
ments were performed with 50 repeats and AUC used for scoring.
Figure 5 and Supplementary Fig. 3 demonstrated the 20 most
predictive features in the recurrence classification tasks with GB,
RF (Fig. 5), MLP, LR, and SVM (Supplementary Fig. 3) models.
Figure 5 showed that in the experiments on all three types of
cohorts (original, core complete, and complete) by GB and RF
models (best models), the two most important features were
consistently Breslow thickness and mitotic rate. Other predictive
features included insurance type, age at diagnosis, median
income, AJCC stage, tumor site, total surgical margin, radial
growth, and anatomic level. In the MLP, LR, and SVM models
(Supplementary Fig. 3), the most important features included
insurance type, mitotic rate, AJCC stage, anatomic level, tumor
site, and sex. In these models, Breslow thickness was not among
the top 10 important features.
Given the collinearity of anatomic level, Breslow thickness, AJCC

stage, and ulceration, we also conducted the following experi-
ments by (1) keeping AJCC stage (removing anatomic level,
Breslow thickness, and ulceration) to examine the importance of

Fig. 2 Distribution of recurrent melanomas in the study population. Among the 310 recurrent melanomas, 255 (82%) recurred within five
years and 285 (92%) recurred within 7 years of primary melanoma diagnosis.
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AJCC stage; (2) by keeping Breslow thickness and ulceration
(removing anatomic level and AJCC stage) to see the importance
of ulceration. In these two experiments, all other unmentioned
features were kept in the models. Results are presented in
Supplementary Table 7 and Supplementary Fig. 4. Supplementary
Table 7 showed that overall consistent performances were
achieved. Supplementary Fig. 4 demonstrated that when ana-
tomic level, Breslow thickness, and ulceration were removed, AJCC
stage became one of the top two features in the GB model and
became more important in the RF model. When anatomic level
and AJCC stage were removed, ulceration became more important
in the GB model compared to the results when all extracted
features were used. In these experiments, mitotic rate remained as
one of the two most important features.

Time-to-event melanoma recurrence risk prediction
We built time-to-event models for melanoma recurrence risk
prediction using four well-known machine-learning algorithms.
Along with the original cohorts, we also conducted experiments
on the “core complete” and the “complete” cohorts. The sample
sizes and results are presented in Table 3 (GB-T and RF-T) and
Supplementary Table 8 (Coxnet and CoxPH).
For the original cohorts, GB-T and RF-T models achieved better

performance than Coxnet and CoxPH (p-value: <0.001). In both
internal and external validations, the GB-T model achieved better
time-dependent AUC (internal 0.853 vs. 0.845, p-value: 0.013;
external 0.820 vs. 0.810, p-value: <0.001) and concordance index
(internal 0.820 vs. 0.813, p-value: 0.007; external: 0.809 vs. 0.807, p-
value: 0.045) than the RF-T model.

Fig. 3 Model performances in the binary recurrence classification using patient demographics, medical history, and tumor
characteristics. a AUC and PPV in internal validation (first row) and external validation (second row) when experimenting on the original
cohorts (MGB: 215 recurrences vs. 666 non-recurrences; DFCI: 95 recurrences vs. 340 non-recurrences). b AUC and PPV in internal validation
(first row) and external validation (second row) when experimenting on the core complete cohorts: negative or not indicated regional lymph
node histology, known mitotic rate, and known ulceration (MGB: 142 recurrences vs. 410 non-recurrences; DFCI: 74 recurrences vs. 317 non-
recurrences). The best model performance among SVM, RF, GB, MLP, and LR models is specified below each plot.
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When experimenting on the core complete cohorts, the
prediction performance of the GB-T model deteriorated signifi-
cantly in the internal validation (time-dependent AUC: 0.853 vs.
0.829; concordance index: 0.820 vs. 0.788; p-values: <0.001) and
decreased slightly in the external validation (time-dependent AUC:
0.820 vs. 0.804, p-value: <0.001; concordance index: 0.820 vs.
0.808; p-value: 686) compared to the performance of the original

cohorts. In the complete cohorts, the number of recurrences was
116 in the MGB cohort and 45 in the DFCI cohort. The time-
dependent AUC and concordance index of the GB-T model were
further reduced in both internal (time-dependent AUC: 0.808,
concordance index: 0.768) and external (time-dependent AUC:
0.673, concordance index: 0.752) validations. In the external
validation, the best time-dependent AUC (0.692) achieved by the

Fig. 4 ROC curves with 50 repeats for the binary recurrence classification by GB models. a ROC curves in internal and external validations
with the original cohorts. b ROC curves in internal and external validations with the core complete cohorts: negative or not indicated regional
lymph node histology, known mitotic rate, and known ulceration. Consistent results between the original and core complete cohorts are
achieved.
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Coxnet and CoxPH models was significantly worse than the ones
on the original cohorts (p-value: <0.001).
Recurrence probabilities for seven randomly selected melano-

mas from the original DFCI cohort predicted by the four time-to-
event models trained by the original MGB cohort are presented in
Fig. 6. Among the seven examples, ID3, ID0, and ID6 recurred with
an increased duration from diagnosis of the primary melanoma to
recurrence. The RF-T and GB-T models predicted them to have the
highest recurrence probability proportional to their duration from
diagnosis to recurrence.

Feature importance in time-to-event recurrence risk
prediction
Feature importance in time-to-event prediction is presented in Fig.
7 and Supplementary 5. Results on the three types of cohorts were
consistent, where Breslow thickness and mitotic rate were the two
most important features. Additional important features included
insurance type, age at diagnosis, median income, and absent
radial growth phase. When experimenting with the case where
anatomic level, Breslow thickness, and ulceration were removed
and with the case where anatomic level and AJCC stage were
removed (Supplementary Table 9 and Supplementary Fig. 6),
overall consistent performances were achieved. In the first case,
AJCC stage became one of the top three features by the GB-T and
RF-T models. In the second case, ulceration became more
important in both GB-T and RF-T models compared with the
results when all extracted features were used.

Sample size verification
We performed sample size calculations to ensure that our sample
size was sufficient to evaluate the capacity of the machine-
learning models. Using the observed true-positive rate of 0.79, the
observed false-positive rate of 0.21, and a resulting standard
difference of 1.2 in the internal validation, a sample size of 24 was
required to achieve a power of 0.8 and a type I error rate of 0.05.
As we had 215 recurrent melanomas in the MGB cohort and non-
recurrent melanomas were randomly sampled to match the
number of recurrent cases, the total number of samples was 430.
With fivefold cross-validation, there were 86 testing samples in
each experiment, which was sufficient for internal validation.
Using the observed true-positive rate of 0.78, the observed false-
positive rate of 0.22, and a resulting standard difference of 1.1 in
the external validation, a sample size of 26 was required to
achieve a power of 0.8 and a type I error rate of 0.05. As we had 95
recurrent melanomas in the DFCI cohort and non-recurrent
melanomas were randomly sampled to match the number of
recurrent cases, the total number of samples was 190. Thus, our
models were adequately powered (>80%) to make predictions.

DISCUSSION
The increasing number of deaths associated with early-stage
melanoma recurrence and the recently expanded indications for
adjuvant immunotherapy in the management of early-stage
melanomas highlight the need for prognostic tools to support
clinicians in counseling patients and determining the optimal
surveillance and risk stratification strategy in this population. We

Table 2. Sensitivity analyses for recurrence classification by GB and RF models.

Data Sample size Validation GB RF

AUC PPV AUC PPV

Original cohorts (5 years)a MGB:
215 recurrences
666 non-recurrences
DFCI:
95 recurrences
340 non-recurrences

Internal 0.845
CIf:0.840–0.850

0.803
CI:0.797–0.810

0.842
CI:0.837–0.847

0.778
CI:0.771–0.785

External 0.812
CI:0.804–0.819

0.785
CI:0.774–0.795

0.790
CI:0.782–0.797

0.737
CI:0.727–0.748

p-valuee <0.001 0.021 <0.001 0.422

Core complete cohortsb MGB:
142 recurrences
410 non-recurrences
DFCI:
74 recurrences
317 non-recurrences

Internal 0.817
CI:0.812–0.82

0.781
CI:0.773–0.79

0.804
CI:0.798–0.81

0.745
CI:0.736–0.753

External 0.809
CI:0.802–0.815

0.772
CI:0.763–0.78

0.786
CI:0.778–0.793

0.733
CI:0.722–0.743

p-valuee 0.188 0.336 0.465 <0.001

Complete cohortsc MGB:
116 recurrences
299 non-recurrences
DFCI:
45 recurrences
193 non-recurrences

Internal 0.805
CI:0.799–0.812

0.785
CI:0.773–0.796

0.777
CI:0.771–0.783

0.741
CI:0.732–0.75

External 0.752
CI:0.742–0.763

0.737
CI:0.723–0.752

0.730
CI:0.721–0.740

0.697
CI:0.684–0.71

p-valuee <0.001 <0.001 <0.001 <0.001

Seven yearsd MGB:
215 recurrences
578 non-recurrences
DFCI:
95 recurrences
182 non-recurrences

Internal 0.851
CI:0.837–0.864

0.809
CI:0.794–0.825

0.852
CI:0.840–0.864

0.792
CI:0.777–0.807

External 0.827
CI:0.822–0.833

0.793
CI:0.786–0.801

0.816
CI:0.811–0.821

0.759
CI:0.751–0.766

p-valuee 0.002 0.077 <0.001 <0.001

aThe original cohorts (Supplementary Table 4) in which there were no missing values for sex, insurance type, age at diagnosis, HPCM, histological type, tumor
site, stage, thickness, anatomic level, laterality (Supplementary Table 1), and the minimum follow-up duration for the non-recurrent melanoma was 5 years.
bThe “core complete” cohorts were based on the original cohorts with no missing values for additional core features: negative or not indicated regional lymph
node histology, no missing values for ulceration, and no missing values for mitotic rate.
cThe “complete” cohorts were based on the core complete cohorts with additional constraints: no missing values for median income and all tumor
characteristics.
dThe “seven years” cohorts were based on the original cohorts in which the minimum follow-up duration for the non-recurrent melanomas was 7 years.
ep-value: comparison between the internal validation and the external validation.
fCI: 95% confidence interval.
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Fig. 5 Feature importance in recurrence classification by RF and GB models. a The 20 most important features when experimenting on the
original cohorts. b The 20 most important features when experimenting on the core complete cohorts: negative or not indicated regional
lymph node histology, known mitotic rate, and known ulceration. c The 20 most important features when experimenting on the complete
cohorts: negative or indicated regional lymph node histology, known median income, and all tumor features available. The box extends from
the first quartile to the third quartile of the feature importance values for each feature, with a line at the median. The whiskers extend from the
box by 1.5x the interquartile range. Flier points are those past the end of the whiskers.
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have performed the largest and most comprehensive study to
date assessing the ability of machine-learning algorithms to
predict early-stage melanoma recurrence using clinicopathologic
features extracted from EHR data in a real-world clinical setting.
In the melanoma recurrence vs. non-recurrence classification,

we were able to delineate melanomas with recurrence from non-
recurrence. The GB models achieved the best performance in both
internal (AUC: 0.845; PPV: 0.803) and external (AUC: 0.812;
PPV:0.785) validations. These results demonstrate that, as pre-
viously shown with other primary malignancies25, we can reliably
predict early-stage melanoma recurrence. A literature survey25

published recently reviewed the use of machine-learning techni-
ques in predicting various outcomes related to cancer diagnosis
and prognosis, including susceptibility, recurrence, and survival.
Studies investigating cancer recurrence generally reported AUC in
the range from 0.726 to 0.84625. The AUC values of these models
have been shown to depend primarily on how much information
is incorporated into the model, what type of information is used,
and what specific outcomes are investigated. Our AUC values are
consistent with the recent studies that investigated the recurrence
of prostate, non-small cell lung, colorectal, and biliary cancers,
with reported AUC ranging from 0.581 to 0.89426–31. The
incorporation of more potentially predictive features tends to
improve the performance of models. One study predicting oral
cancer recurrence was able to achieve a reported accuracy of
0.917 after incorporating genomics-related data into the
model25,32. Models based primarily on image analysis of digital
pathology often reported high AUC values in the range from 0.861
to 0.99333–35. Based on the existing literature, it is reasonable to
expect that by incorporating additional data, such as genomics
and digital histopathology, our model performance would be
significantly improved.
In the time-to-event recurrence prediction, the GB-T models

achieved the best performance (internal time-dependent AUC:
0.853, concordance index: 0.820; external time-dependent AUC:

0.820, concordance index: 0.809), demonstrating that our models
can achieve reliable performance in the time-to-event analysis. We
expect that incorporating additional samples and relevant
features, such as the histopathologic images and genomic data,
will further improve the model performance.
In the recurrence group, 18% (55/310) of early-stage melano-

mas recurred after 5 years following the primary melanoma
diagnosis, and among this population, 36% (20/55) recurred
distantly (Stage IV at the time of recurrence). Current post-surgical
monitoring guidelines for early-stage melanoma recurrence
include serial skin examinations, regional lymph node examina-
tions, and/or imaging modalities36,37. These recommendations
and long-term surveillance follow-up vary depending on the stage
of disease and individualized risk factors (i.e., family history)36,37.
As demonstrated in Fig. 6, recurrence probabilities can differ
significantly in a sample of 7 melanomas from our cohort over a
10-year time period depending on clinical and histopathologic
features. The recurrence probability of melanoma ID04 (>0.8) was
significantly higher as compared to melanoma ID01 (<0.1) at the
10-year follow-up mark. The time-to-event analysis provides an
additional tool to support clinicians in the decision-making
process of customizing surveillance and counseling patients
diagnosed with early-stage primary melanomas.
We also assessed the impact of individual risk factors on

machine-learning prediction of melanoma recurrence. These were
ranked using feature importance in the prediction by each model,
and the results provided further support for previously established
risk factors in addition to identifying new trends that have not
been reported previously. Breslow thickness has long been
established as one of the most predictive features for melanoma
recurrence38, and the results of this study support this finding. In
our comprehensive feature model (including Breslow thickness,
anatomic level, AJCC stage, and ulceration), Breslow thickness was
one of the most important features both in the recurrence vs. non-
recurrence classification by the RF and GB models and in the time-

Table 3. Time-to-event melanoma recurrence prediction by GB-T and RF-T models.

Data Sample size Validation GB-T RF-T

Time-dependent AUC Concordance index Time-dependent AUC Concordance index

Original cohortsa MGB:
215 recurrences
645 non-recurrences
DFCI:
95 recurrences
285 non-recurrences

Internal 0.853
CIe:0.849–0.857

0.820
CI:0.816–0.824

0.845
CI:0.841–0.850

0.813
CI:0.809–0.816

External 0.820
CI:0.819–0.821

0.809
CI:0.808–0.810

0.810
CI:0.809–0.811

0.807
CI:0.807–0.808

p-valued <0.001 0.012 <0.001 0.248

Core complete cohortsb MGB:
142 recurrences
516 non-recurrences
DFCI:
74 recurrences
276 non-recurrences

Internal 0.829
CI:0.819–0.840

0.788
CI:0.783–0.793

0.788
CI:0.783–0.793

0.783
CI:0.775–0.791

External 0.804
CI:0.802–0.806

0.808
CI:0.807–0.810

0.781
CI:0.778–0.783

0.793
CI:0.791–0.795

p-valued 0.001 0.001 0.057 0.312

Complete cohortsc MGB:
116 recurrences
365 non-recurrences
DFCI:
45 recurrences
175 non-recurrences

Internal 0.808
CI:0.800–0.816

0.768
CI:0.760–0.777

0.795
CI:0.786–0.804

0.769
CI:0.761–0.776

External 0.673
CI:0.671–0.675

0.752
CI:0.75–0.753

0.675
CI:0.67–0.68

0.734
CI:0.732–0.736

p-valued <0.001 0.007 <0.001 <0.001

aThe original cohorts (Supplementary Table 5) in which there were no missing values for sex, insurance type, age at diagnosis, HPCM, histological type, tumor
site, AJCC stage, Breslow thickness, anatomic level, and laterality (Supplementary Table 1).
bThe “core complete” cohorts were based on the original cohorts with no missing values for additional core features: negative or not indicated regional lymph
node histology, no missing value for ulceration, and no missing value for mitotic rate.
cThe “complete” cohorts were based on the core complete cohorts with additional constraints: no missing values for median income and all tumor
characteristics. Considering the small sample size for time-to-vent prediction, twofold cross-validation was used for internal validation.
dp-value: comparison between the internal validation and the external validation.
eCI: 95% confidence interval.
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to-event recurrence prediction by the RF-T and GB-T, which
typically yielded the most accurate prediction.
Currently, Breslow thickness and ulceration are the criteria used

to determine the tumor (T) stage in early-stage disease39. While
AJCC stage is another commonly cited risk factor for melanoma
recurrence12, the stage was not in the top five most important
features for recurrence prediction. This is likely due to how the
machine-learning models account for collinearity. For example,
when the model extracted predictive signals from Breslow
thickness, it would not extract the same signals contained in
AJCC stage. In addition, Breslow thickness was incorporated as a
continuous variable, which may provide more detailed informa-
tion as compared to the broad AJCC stage, leading to a higher
feature ranking in our RF, GB, RF-T, and GB-T models. After
performing sensitivity analyses by removing anatomic level,
Breslow thickness, and ulceration (Supplementary Table 7 and
Supplementary Fig. 4 for the binary recurrence classification,
Supplementary Table 9 and Supplementary Fig. 6 for time-to-
event prediction), AJCC stage was one of the two most important
features by the GB, GB-T, and RF-T models and became a more
important ranking feature in the RF model compared to the
original cohorts. In particular, stage 1A was ranked as a higher
predictive feature compared to other stages.

Mitotic rate was another critical feature in the discrimination of
recurrence vs. non-recurrence by the RF and GB models and in the
time-to-event prediction by the RF-T and GB-T models. Mitotic rate
was the second most important feature in the MLP and LR models
for the recurrence classification (Supplementary Fig. 3) and in the
Coxnet and CoxPH models for the time-to-event prediction
(Supplementary Fig. 5). Previous studies have identified tumor
mitotic rate or presence of mitoses as a risk factor for recurrence,
which our results support10,40,41. In the most recent AJCC
melanoma staging system, mitotic rate is no longer a T1 staging
criterion14,39,42,43. The most recent ASCO-SSO guidelines for
sentinel lymph node biopsy also removed mitotic rate greater
than 1 per mm2 as a high-risk factor for sentinel lymph node
biopsy consideration, however mitotic rate can still be taken into
account when considering a patient’s overall risk based on
clinicopathologic features43,44. Previously, the mitotic rate was
included in the 7th edition of the AJCC staging criteria13. Per the
guidelines, all melanomas with mitoses ≥1 mm2 were upstaged
from 1 A to 1B.13, however this criterion was removed due to the
poor inter-user reliability of mitotic rates45. Despite this, given how
our models performed, with the mitotic rate being a more
important feature than Breslow thickness in some machine-
learning models, this feature should be increasingly evaluated in
future studies and during consultations in clinical care. In our

Fig. 6 Recurrence probabilities for seven randomly selected melanomas in the external cohort (DFCI) predicted by the four time-to-event
models trained by the MGB cohort. ID3 (red), ID0 (blue), and ID6 (pink) recurred with an increased duration from diagnosis of the primary
melanoma to recurrence. The RF-T and GB-T models predicted them to have the highest recurrence probability proportional to their duration
from diagnosis to recurrence. In the comparison of ID0 (recurrence) and ID5 (non-recurrence) where they had similar duration from diagnosis
to recurrence or to last follow-up (ID0: 2.22, ID5: 2.34), all four models predicted ID0 to have a higher recurrence probability.
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Fig. 7 Feature importance in time-to-event recurrence prediction by RF-T and GB-T models. a The 20 most important features when
experimenting on the original cohorts. b The 20 most important features when experimenting on the core complete cohorts: negative or not
indicated regional lymph node histology, known mitotic rate, and known ulceration. c The 20 most important features when experimenting
on the complete cohorts: negative or not indicated regional lymph node histology, known median income, and all tumor features available.
The box extends from the first quartile to the third quartile of the feature importance values for each feature, with a line at the median. The
whiskers extend from the box by 1.5x the interquartile range. Flier points are those past the end of the whiskers.
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analyses, the mitotic rate was defined as a continuous variable,
allowing the machine-learning algorithm to use detailed informa-
tion for recurrence prediction, as compared to the AJCC 7th
edition categories of <1mm2 and ≥1mm2 13. In addition, the prior
mitotic rate criterion only affected melanomas diagnosed as
stages 1A and 1B. Our results show that mitotic rate can be
broadly incorporated in the risk assessment for melanoma
recurrence across all stages (1A, 1B, 2A, 2B, and 2C) of early-
stage primary melanomas.
Finally, this study also included social determinants of health

such as patient median income and insurance type. Median
income was in the top ten predictive risk factors in our best
performing models (RF, GB, RF-T, and GB-T), and the insurance
type “self-pay” was in the top ten predictive risk factors in the GB,
LR, and MLP models, and was in the top three predictive risk
factors in the GB-T models. To investigate the reasons for our
observations, we used a linear regression analysis to examine the
association between thickness and patient demographics (sex,
age at diagnosis, race, ethnicity, insurance type, median income,
and marital status). We found that patients with Self-Pay and
Medicaid insurance were at significantly greater risk for presenting
with thicker melanomas at the time of diagnosis (Beta: 0.64,
p < 0.001 for Self-Pay; 1.1, p= 0.025 for Medicaid). The findings are
consistent with prior literature identifying delays in primary
melanoma diagnosis and increased diagnosis of advanced-stage
melanoma among uninsured or publicly insured patients. In one
study, individuals who are underinsured have been found to
present with thicker tumors (OR: 2.19) compared with non-
Medicaid insured patients46. Similarly, Medicaid patients were
found to also present with thicker tumors at diagnosis compared
to those not on Medicaid coverage (OR: 2.37)47. Since Medicaid is
the primary insurance coverage for low-income individuals and
self-pay patients are likely underinsured individuals, our results
demonstrate socioeconomic disparities in the timeliness of
melanoma diagnosis. These SES risk factors are also surrogate
markers that affect melanoma care, from diagnosis to treatment
and surveillance. Medicaid patients experience delays in surgical
treatment of primary melanomas by 6 weeks48. Although, it is
unknown whether delay in surgical treatment affects mortality,
timing of melanoma treatment should be investigated in future
studies to assess associations between risk of recurrence and
timing of recurrence.
The overall results of our feature importance ranking remained

consistent after sensitivity analyses where only melanomas with
negative or not indicated regional lymph node histology, and
melanomas without no missing values for ulceration/mitotic rate
were included. Breslow thickness and mitotic rate were consis-
tently the two most important features for classification by RF and
GB binary classification models (Fig. 5) and for time-to-event
prediction by RF-T and GB-T models (Fig. 7). Median income and
the insurance type, self-pay, remained in the top five important
features classification by RF and GB binary classification models
and for time-to-event prediction by RF-T and GB-T models. We
also observed only a mild decrease in AUC (0.812 to 0.809 for
classification; 0.820 to 0.804 for time-to-event prediction) in these
more restricted settings. This is expected as our sample size was
reduced, however, the consistent results demonstrate the robust-
ness of the GB and GB-T models in the binary classification and
time-to-event prediction of melanoma recurrence. Despite limita-
tions with missing clinical or histology features, our sensitivity
analyses show our models yield robust results.
This study was also limited by its retrospective nature. However,

with 1,720 included melanomas, our study represents an
improvement in sample size and predictive power compared to
many prior studies investigating risk factors associated with
melanoma recurrence. Additionally, the mitotic rate variable in this
study was extracted from pathology reports, which is subject to
high levels of interobserver variation. Future investigations

incorporating automatic mitotic feature detection from H&E
whole slide images using similar deep learning approaches to
other cancers (e.g., breast cancer)49,50 are necessary to evaluate
the performance of a more objective mitotic rate variable in
predicting melanoma recurrence. Despite this limitation, mitotic
rate was nevertheless consistently selected as a top performing
feature in our models. It is also possible that some of the non-
recurrent melanomas included in our study experienced recur-
rence after the end of study follow-up (false non-recurrence).
However, this is likely to affect a minority of the population since
(1) more than 80% of our study population experienced
recurrence within 5 years (and more than 90% within 7 years),
and (2) we specifically selected our control population to have a
minimum of 5 years of follow-up in the binary melanoma
recurrence classification tasks. Furthermore, a sensitivity analysis
was performed to compare the performance of binary classifica-
tion when the criteria for non-recurrent melanomas was extended
to 7 years. The results of the sensitivity analysis (Table 2) show
consistent performance (AUC: 0.827) compared to the primary
models with criteria of at least 5 years of follow-up. Overall, this
study also provided longer follow-up than available in previous
investigations, further decreasing the possibility of misclassifica-
tion of non-recurrent melanomas. There were no minimum follow-
up constraints for non-recurrent melanomas in the time-to-event
analysis, and therefore the risk of false non-recurrence is not
applicable to this analysis. In the time-to-event recurrence
prediction, the censoring status for non-recurrences was classified
as either dead or censored. The time to event for recurrences was
defined as the duration from primary melanoma diagnosis to
recurrence. The time to event for non-recurrences was defined as
the duration from primary melanoma diagnosis to the date of
death or date of censoring.
In summary, we demonstrate consistent and reliable perfor-

mance of machine-learning models for predicting melanoma
recurrence in the largest cohort of patients diagnosed with early-
stage melanomas to date. We delineate the most significant
features for recurrence prediction, which include Breslow thick-
ness, mitotic rate, AJCC stage, median income, insurance type, and
age at diagnosis. Overall, our study provides important insights for
clinicians to counsel patients on the contributions of individua-
lized risk factors for early-stage melanoma recurrence. However,
despite the incorporation of a comprehensive array of over 36
demographic, clinical, and histopathologic features, there is a
plateau in model performance for the recurrence classification
(AUC: 0.812) and for the time-to-event recurrence prediction
(time-dependent AUC: 0.820). The predictive capabilities of these
models can benefit from the incorporation of additional features,
including digital histopathology images, genomics data, and novel
tumor biomarkers. Nevertheless, our presented models may be
deployed clinically to aid in the identification of high-risk early-
stage melanoma patients that may benefit from increased
surveillance or adjuvant immunotherapy.

METHODS
This study was conducted to determine the capabilities of
machine-learning algorithms to predict early-stage melanoma
recurrence using patient demographics, medical history, and
melanoma tumor characteristics. We performed two types of
prediction by using nine machine-learning algorithms: (1)
melanoma recurrence classification; (2) time-to-event melanoma
recurrence risk prediction. Models were all validated internally and
externally. First, we used the stratified fivefold cross-validation on
the MGB cohort (internal validation). Second, we trained models
using the MGB cohort and evaluated them independently on the
DFCI cohort (external validation) (Supplementary Fig. 1).
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Materials
Patients diagnosed with Stage I or Stage II melanoma at MGB and
DFCI between January 2000 and February 2020 were included in
this study. Melanoma histology (confirmed by ICD-O-3 codes),
diagnosis date of the primary melanoma, and recurrence date
were extracted from the cancer registrars at both institutions.
Cutaneous melanomas with no evidence of metastasis at the time
of diagnosis and of the following histological types were included:
lentigo maligna, nodular, superficial spreading, and melanoma
NOS (not otherwise specified). Acral, mucosal, and uveal
melanomas were excluded from the study. The Mass General
Brigham Institutional Review Board (IRB) approved the study
(Protocol # 2020P002179). The need for consent was waived by
the IRB as the study meets the criteria for exemption 45 CFR
46.104(d)(#). Secondary research for which consent is not required
if the research involves only information collection and analysis
involving the investigator’s use of identifiable health information
when that use is regulated under 45 CFR parts 160 and 164,
subparts A and E.
The Research Patient Data Registry (RPDR)51 and the Enterprise

Data Warehouse52 (EDW) are two institutional clinical databases at
MGB and DFCI, which were used to extract clinical and medical
history information. The RPDR contains multimodal clinical
information, including basic demographics, International Classifi-
cation of Diseases (ICD) codes, and lab results. The EDW provides
detailed documentation of medication administrations. For this
study, we extracted the following variables from RPDR: date of
birth, sex, race, ethnicity, insurance type, marital status, zip code,
date of death or last follow-up. Median income was extracted from
the U.S. Census data based on the patient’s zip code53. ICD codes
from all visits of a patient before the diagnosis of early-stage
melanoma were used to calculate Charlson Comorbidity score54

(CCS) and to extract medical history features (Supplementary
Table 1). The ICD codes used to identify non-melanoma skin
cancer, benign neoplasms of skin, cutaneous autoimmune
diseases, and other systemic autoimmune diseases were specified
in Supplementary Tables 10–12. Mortality information was
additionally ascertained via the institutional cancer registrars
using linkage with obituary databases and the National Death
Index (NDI). For patients who did not have known mortality
information, their last encounter with the system was considered
their censoring date.
We obtained data for collecting features of interest (Supple-

mentary Table 1) using established protocols for electronic data
extraction from institutional clinical databases. For all features with
incomplete information, rigorous manual chart review and data
extraction were performed. Manual chart reviews by two
independent reviewers were conducted to ascertain the recur-
rence status (recurrence vs. non-recurrence) and recurrence type
(locoregional recurrence vs. distant recurrence). All melanomas
that were Stage IV at the time of recurrence, based on the
American Joint Committee on Cancer (AJCC) 8th edition staging
guidelines39, were labeled as having a distant recurrence. All
recurrent melanomas without distant metastases were labeled as
having a locoregional recurrence. In classification tasks, melano-
mas that did not recur and were followed up at least 5 years were
labeled as “non-recurrence”. If a patient died without melanoma
recurrence and the follow-up duration was less than 5 years, the
patient was not included in the binary classification tasks. In the
time-to-event prediction tasks, all melanomas without recurrence
were labeled as “non-recurrence” regardless of the follow-up
duration. The time to event is the duration from diagnosis to
recurrence if the melanoma recurred; otherwise, the time to event
is the duration from diagnosis to date of death or last follow-up.
Figure 1 shows the flow diagram of how the study population

was obtained. The MGB population was utilized for model
development and the DFCI population was utilized for external

validation of the model. In total, 36 features were extracted for
inclusion in our registry (Supplementary Table 1), which can be
categorized into three groups: demographics, medical history, and
tumor characteristics. Specifically, seven demographic features
include age at diagnosis, sex, race, ethnicity, median income,
insurance type, and marital status. Medical history includes seven
features: Charlson comorbidity score (CCS), history of prior
cutaneous melanoma (HPCM), history of non-melanoma skin
cancer (HNMSC), history of situ or benign neoplasms of skin
(HSBN), history of other malignancy (HOM), history of cutaneous
autoimmune disease (HCAID), and history of systemic autoim-
mune disease (HSAID). Tumor characteristics consist of 22 features:
histological type, tumor site, AJCC stage at diagnosis, Breslow
thickness, anatomic level, mitotic rate, ulceration, laterality, tumor
infiltrating lymphocytes (TIL), tumor infiltrating lymphocytes type,
precursor lesion, precursor type, radial growth phase, vertical
growth phase, vertical growth type (VGT), microsatellites, regres-
sion, lymphovascular invasion (LVI), perineural invasion, total
surgical margins of excision(s), check if the surgical margins of the
excision(s) met management guidelines (margin check)36,55, and
regional lymph node histology (RLNH). All histopathologic features
included in this study were collected from treatment-naïve
biopsies of primary melanomas at the time of melanoma
diagnosis and the included tumors were all early-stage at
diagnosis. Therefore, no patients included in our study have
received treatment with systemic therapy for their primary early-
stage melanomas.
Based on clinical guidelines for melanoma, all melanomas with

tumor categories above T1b (Breslow thickness >1.00 mm) are
recommended to undergo a sentinel lymph node biopsy (SLNB)44.
SLNB was not recommended for patients diagnosed with primary
melanomas that are <0.8 mm thick, non-ulcerated lesions (T1a)44.
Patients diagnosed with primary melanomas that are 0.8 to
1.0 mm thick or are <0.8 mm thick, ulcerated lesions (T1b) may be
offered a SLNB after a clinical discussion of the risks and benefits
of the procedure with their provider44. As a result, patients with
stage IA melanoma were not recommended to undergo a SLNB
due to the low overall rate of SLNB positivity in this population.
Additionally, in real-world clinical settings, patients may defer the
SLNB due to various reasons, e.g., comorbidity, frailty, unwilling-
ness to undergo an additional invasive procedure, etc. Thus, we
detailed the variable regional lymph node histology (RLNH)
incorporating this complexity of SLNB in a real-world clinical
setting, which includes the following values: 0. all nodes negative;
1. not indicated; 2. not performed due to age or comorbidity; 3.
not performed due to an unknown reason; 4. deferred by the
patient.
To reduce the degree of omission for many included synoptic

features, we expanded our manual phenotyping efforts, including
reviews of manually scanned pathology reports uploaded into the
electronic medical records and reviews of all available clinical
notes in the electronic medical records, and incorporated input
from dermatopathologists with institutional experience in synop-
tic feature reporting across time. Given that our data was
extracted from real-world electronic medical records (non-clinical
trial settings), some variables, like precursor lesion and perineural
invasion, may not be included in the pathology report if they were
not identified in the biopsy by the pathologist. As a result, and
with input from dermatopathologists with expert knowledge of
the reporting schema at our institutions, precursor lesion,
precursor type, microsatellites, regression, lymphovascular inva-
sion, and perineural invasion were assumed absent if not listed as
present in the pathology report. All melanomas without a
pathology report available and melanomas with positive micro-
scopic satellites were excluded from this study.
Categorical features were converted by one-hot encoding

(Supplementary Table 2). For missing continuous features
(Supplementary Table 1), we assigned the median values of the
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samples to individuals, including median income, Charlson
comorbidity score, mitotic rate, and total surgical margins.

Machine-learning methods for binary recurrence classification
We compared the classification performances of five classic
supervised machine-learning algorithms using the extracted
clinicopathologic features. The algorithms include Support Vector
Machine (SVM)56, Gradient Boosting (GB)57,58, Random Forest
(RF)59, Logistic Regression (LR)60, and Multi-layer Perceptron
(MLP)61,62. Model parameters were optimized by cross-validated
grid-search over a parameter grid on the MGB cohort. The kernel
of SVM was the radial basis function. The GB had 100 estimators.
The L2 regularization was used for LR to reduce overfitting. The
MLP was performed with a logistic activation function. Model
performance was evaluated based on the area under the receiver
operating characteristic curve (AUC), positive predictive value
(PPV), sensitivity, specificity, and accuracy. Mean and 95%
confidence intervals were reported. All experiments were imple-
mented using scikit-learn Python library24.

Binary melanoma recurrence classification. For our primary out-
come, we evaluated the ability of machine-learning models to
predict the recurrence (recurrence vs. non-recurrence). Stratified
fivefold cross-validation was applied in the internal validation,
which preserves the percentage of samples for each class in each
fold. In the external validation, the entire MGB cohort was used for
training models and the DFCI cohort was left out for indepen-
dently evaluating the models. Each experiment was repeated 50
times, and each time non-recurrent melanomas were randomly
sampled to match the number of recurrent cases (Supplementary
Fig. 1a). We further investigated the predictive features used in the
recurrence prediction by conducting permutation importance24.
The permutation importance for feature evaluation was repeated
for 50 times and the AUC was used for scoring.

Sensitivity analyses. Ensuring sentinel lymph node biopsy nega-
tivity is important to be able to exclude possibility of nodal
involvement at time of diagnosis. However, given that our data
was extracted from EHRs in a real-world clinical setting and to
remain consistent with clinical guidelines, we didn’t exclude
patients who didn’t perform sentinel lymph node biopsy at time
of diagnosis in our main analysis. In the sensitivity analysis, we
excluded the melanomas for which the sentinel lymph node
biopsy was indicated but not performed, ulceration was missing,
or mitotic rate was unknown. We also conducted experiments on
a complete data for which median income and all tumor features
were without missing values. In our main analysis, a minimum of
5-year follow-up was used to ensure sufficient time to observe a
recurrence in the non-recurrence population. Though the
melanoma recurrence rate decreases significantly after 5 years
(Fig. 2), the minimum 5-year follow-up duration may not have
captured all recurrences. Therefore, we further performed binary
recurrence classification experiments when the minimum follow-
up duration for the non-recurrent melanomas was 7 years.

Machine-learning methods for time-to-event recurrence
prediction
Melanoma recurrence is a time-to-event outcome. It is important
to predict the risk probability as time goes by. We compared the
time-to-event prediction performances of four supervised
machine-learning algorithms using the extracted clinicopathologic
features. The algorithms include GradientBoostingSurvivalAnaly-
sis63 (GB-T), RandomSurvivalForest64 (RF-T), CoxnetSurvivalAnaly-
sis65 (Coxnet), and CoxPHSurvivalAnalysis66 (CoxPH). Similar to the
classification tasks, model parameters were optimized by cross-
validated grid-search over a parameter grid on the MGB cohort.
Model performance was evaluated based on the time-dependent

AUC67 and concordance index for right-censored data68. Each
experiment was repeated 50 times. Mean and 95% confidence
intervals were reported. All experiments were implemented by
using scikit-survival Python library69.
We also investigated the predictive features by conducting

permutation importance24. The permutation importance for
feature evaluation was repeated for 50 times and the concordance
index was used for scoring. Sensitivity analysis on cohorts with
negative or not indicated sentinel lymph node biopsy and with
available tumor features was also conducted.

Statistical methods
The minimum sample size at a power of 0.8 and a type I error rate
of 0.05 were calculated to ensure that our study sample size was
sufficient to evaluate the capacity of models for predicting
melanoma recurrence70. To compare groups, we used Pearson’s
Chi-squared test or Fisher’s exact test for categorical variables, and
the t-test or Kruskal–Wallis test for continuous variables, provided
by the stats package in R version 4.1.071.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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