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Abstract
This work investigates the effect of the Potassium promoter and the calcination temperature on the catalytic activity in the 
dry reforming of methane reaction and compares the performance of the Ni, Co, Fe–Al2O3 trimetallic catalysts with the refer-
ence Ni–Al2O3. Although higher activity was achieved with the Ni–Al2O3, trimetallic catalysts resulted in a more favorable 
CO/H2 ratio and considerably better coke resistance. Higher calcination temperature led to the increase in coke formation 
which caused the sintering of the catalysts. Promoting samples with 0.5%K in order to improve the coke formation resist-
ance, reduced the catalytic activity.
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1  Introduction

In recent years, the rise in population and associated indus-
trial needs have resulted in significant growth in the con-
sumption of fossil fuels which has introduced various envi-
ronmental pollutants into the atmosphere. This has led to a 
quick increase in greenhouse gas emissions including carbon 

dioxide which is the main reason for global warming and 
climate change. Methane is another greenhouse gas that is 
25 times more likely to cause global warming [1–3].

In order to reduce the emission of these two main green-
house gases, technical methods such as capture, catalytic 
conversion, and sequestration have been used. Dry reform-
ing of methane (DRM) is a complicated catalytic reforming 
process (Eq. 1–3) that has received much attention among 
other approaches [4–6].

This method utilizes methane and carbon dioxide as 
feedstock to produce synthesis gas. The ratio of CO/H2 in 
the final product is near to one which is suitable for Fis-
cher–Tropsch synthesis.

(1)CH
4
+ CO

2
↔ 2CO + 2H

2
ΔH

◦

298K
= 247kJmol

−1
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Based on the thermodynamic analysis, DRM is a highly 
endothermic reversible reaction that needs a high reaction 
temperature. As a result, catalysts applied in such circum-
stances may become deactivated because of the sintering 
of active metals. Moreover, during the DRM process, there 
are side reactions that lead to coke deposition (Eq. 2, 3) 
[7].

Ni-based catalysts have received a lot of attention for 
DRM owing to their accessibility, reasonable cost, and 
initial activity comparable to noble metals catalysts. How-
ever, quick deactivation and sintering of Ni due to coke 
formation is a big challenge [8–10]. In order to reduce 
catalyst coking, choosing appropriate support with mobile 
surface/subsurface oxygen with strong CO2 activation abil-
ity and alloying nickel with a second metal are the two 
common approaches [11]. As DRM requires high tem-
perature, oxide supports with high specific surface area 
and good thermal stability such as alumina are needed. 
Utilization of Al2O3 support for Ni can relieve the coke 
deposition because of the strong metal-support interaction 
and enhances the stability of the catalyst [12].

In catalyst design, the most common method is to add 
another metal to the catalyst as a promoter. Alkali and earth 
alkali metals such as K are the most popular promoters 
which are able to boost the catalytic performance in several 
different ways and can increase the resistance to coking. 
As the formation of coke happens on bigger Ni particles 
or on step-edge sites on the Ni surface, promoters prevent 
coke formation by blocking highly reactive sites [13–15]. 
In recent years, bimetallic catalysts have attracted a lot of 
interest as a way to enhance catalytic activity. Owing to 
their unique physical and chemical features that are differ-
ent from of their parent metals, bimetallic catalysts can add 
new features including promoted activity, selectivity, and 
stability properties. The recent research demonstrated that 
Ni–Fe alloy due to its redox functionality provided by Fe, 
has the ability to restrain carbon formation and upgrade the 
metal-support interaction which causes high dispersion [16, 
17]. When Co and Ni are reduced together, they have similar 
radii, making it easy to form an alloy within a special molar 
range, and thus CH4 is activated faster. Meanwhile, Co has 
a high oxygen affinity, which can significantly raise the con-
centration of O on the catalyst surface and enhance carbon 
gasification [18]. Joo et al. prepared Co–Ni–Fe ternary alloy 
nanoparticles using topotactic exsolution on the PBMCoNi 
system. This resulted in the upshift of the d-band center for 
Co–Ni–Fe ternary alloy and promoted the activation of the 
CO2 and CH4 reactants [19].

(2)CH
4
↔ C + 2H

2
ΔH

◦

298K
= 75kJmol

−1

(3)2CO ↔ C + CO
2
ΔH

◦

298K
= − 171kJmol

−1

In this study, Ni,Co,Fe–Al2O3 catalysts were synthesized 
under different calcination temperatures: 650, 750, and 
850 °C and further promoted by 0.5%K. The three metals’ 
synergetic effects and the influence of calcination tempera-
ture on catalytic activity in DRM were studied.

2 � Experimental

2.1 � Chemicals

Nickel (II) nitrate, Co (II) nitrate hexahydrate, Iron (III) 
nitrate nonahydrate, Potassium nitrate, and gamma-alumina 
(γ-Al2O3).

2.2 � Synthesis of Catalysts

2.2.1 � Synthesis of 3%Ni–Al2O3 & 3%Ni,0.5%K–Al2O3 
particles

The support (γ-Al2O3, Degussa AG) was impregnated with 
the aqueous solution of.

Ni(NO3)2ˣ6H2O to yield a nominal 3wt% metal content. 
In order to produce promoted catalysts, KNO3 was added to 
the aqueous solution to yield 0.5wt% of Potassium.

2.2.2 � Synthesis of 1%Ni, Co, Fe–Al2O3 & 1%Ni, Co, 
Fe,0.5%K–Al2O3

The catalysts were prepared by the impregnation of γ-Al2O3 
(Degussa AG) with an aqueous solution of Ni(NO3)2·6H2O, 
Co(NO3)2·6H2O, and Fe(NO3)3·9H2O to result in 1wt% 
amount of each metal. For promoted analogs, an aqueous 
solution of KNO3 was used to yield 0.5wt%.

All the samples were dried at 110 °C and calcined at 
650,750, and 850 °C.

2.3 � Catalytic Tests

Catalytic reactions were conducted in a fixed-bed continu-
ous flow reactor. The ratio of CH4/CO2 in the reacting gas 
mixture was 1:1 and the range of reaction temperature was 
450–750 °C. The loaded catalyst was 0.1 g. The reactants’ 
flow rate was 30 ml/min. The separation and analysis of the 
gases was carried out with the Agilent 6890 gas chromato-
graph using the HP-PLOT Q column. The catalysts were 
oxidized at 400 °C in O2 flow for 30 min and reduced at 
600 °C under H2 flow for 60 min in situ based on TPR results 
(Fig. 1) which will be discussed later.
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2.4 � Characterization of the Catalysts

The specific surface area, the pore size distribution, and 
the total pore volume were determined by a Quantachrome 
NOVA 2200 gas sorption analyzer by N2 gas adsorption/
desorption at − 196 °C and calculated by BET and BJH 
equations. Before the measurements, the samples were pre-
treated in a vacuum (< ~ 0.1 mbar) at 200 °C for 2 h.

The X-ray diffraction spectra were acquired using a 
Rigaku MiniFlex II instrument with a Ni-filtered CuKα 
source in the range of 2θ = 5–100°.

The temperature-programmed reduction (TPR) and 
carbon dioxide temperature-programmed desorption 
(CO2-TPD) measurements were carried out in a BELCAT-
A apparatus using a reactor (quartz tube with a 9 mm outer 
diameter) that was externally heated. Before the meas-
urements, the catalyst samples were treated in oxygen at 
200 °C for 30 min. Thereafter, the samples were cooled in 

flowing N2 to room temperature. The oxidized samples were 
flushed with N2 containing 10% H2 or with CO2 for 30 min, 
flushed with N2 for 15 min, and the reactor was heated lin-
early at a rate of 10 °C/min from 50 °C to 800 °C in the case 
of TPR and to 600 °C in the case of CO2-TPD. The H2/CO2 
consumption was detected by a thermal conductivity detec-
tor (TCD). The flowing rate was 50 ml/min in all cases.

TEM images of the samples presented on a carbon-coated 
copper grid were provided by FEI TECNAI G2 20 X-Twin 
high-resolution transmission electron microscope (equipped 
with electron diffraction) operating at an accelerating volt-
age of 200 keV.

3 � Results and Discussion

3.1 � Catalyst Characterization

Table 1 shows the N2 adsorption analysis results for all 
catalysts. Among trimetallic catalysts, the samples calci-
nated at 650 °C showed somewhat a higher specific sur-
face area while the highest amount was demonstrated by 
the Ni–Al2O3. An increase in the calcination temperature 
resulted in a decrease in surface area. This may be caused by 
the sintering of the catalyst and subsequent particle growth 
[20]. In addition, promoted samples showed lower surface 
area.

The H2-TPR measurements were performed for trimetallic 
catalysts and their promoted counterparts. The calcination 
temperature did not influence the reduction properties of the 
samples. TPR profiles for Ni, Co, Fe–Al2O3 and K/Ni, Co, 
Fe–Al2O3 (C.T:650 °C) are given in Fig. 1. Based on other 
studies, the reduction of alumina supported nickel-based 
catalysts to metallic nickel occurs at temperatures < 600 °C 
[21, 22]. Supporting this, our results demonstrated that the 

Fig. 1   H2-TPR profiles of Ni,Co,Fe–Al2O3 and K/Ni,Co,Fe–Al2O3 
calcined at 650 °C

Table 1   N2 adsorption analysis 
results

Sample BET surface area, 
m2/g

Pore Volume, 
cm3/g

Pore Size, nm

γ-Al2O3 101.575 0.1737 6.84153
3%Ni–Al2O3(C.T:650 °C) 100.924 0.3818 15.1320
3%Ni,0.5%–Al2O3(C.T:650 °C) 96.704 0.3282 13.5765
1%Ni, Co, Fe–Al2O3(C.T:650 °C) 93.939 0.4376 18.6319
1%Ni, Co, Fe,0.5%K–Al2O3(C.T:650) 91.676 0.3693 16.1125
3%Ni–Al2O3(C.T:750 °C) 93.769 0.4289 18.2972
3%Ni,0.5%K-Al2O3(C.T:750 °C) 92.529 0.2982 12.8909
1%Ni, Co, Fe–Al2O3(C.T:750 °C) 90.585 0.3519 15.5408
1%Ni, Co, Fe,0.5%K–Al2O3(C.T:750 °C) 91.525 0.3886 16.9823
3%Ni–Al2O3(C.T:850 °C) 89.767 0.4702 20.9502
3%Ni,0.5%K–Al2O3(C.T:850 °C) 89.767 0.4702 20.9502
1%Ni, Co,Fe–Al2O3(C.T:850 °C) 91.059 0.3465 15.2202
1%Ni, Co,Fe,0.5%K–Al2O3(C.T:850 °C) 88.760 0.3041 13.7034
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600 °C pre-treatment temperature leads to the formation 
of the metallic phase. Peaks at ~ 700 °C, ~ 800 °C could be 
attributed to the reduction of metal aluminates: Ni–Al2O4, 
Co–Al2O4, and Fe–Al2O4 which may form as a result of the 
interaction of the metals with the alumina support [23, 24].

CO2-TPD analysis was carried out to identify the num-
ber of basic sites present on the oxidized catalysts (Fig. 2). 
Obviously, the peak area of basic sites for the trimetallic 
catalyst was considerably larger after Potassium incorpora-
tion, which may greatly assist in the CO2 adsorption during 
dry reforming of methane reaction.

The XRD analysis was implemented to study the com-
position of the samples and the phase transformation 
caused by the calcination. Typical reflections of trime-
tallic catalysts calcined at different temperatures, of their 
K-promoted counterparts, and of the γ-Al2O3 which was 
used as the support are presented in Fig. 3A. All the dif-
fraction peaks were attributed to the crystal planes of 
γ-Al2O3 (JCPDS no. 29–0063) among which the (400) and 

the (440) reflections had the highest intensity in accord-
ance with other studies [25, 26]. No reflections which 
indicate the presence of bulk metals or their oxides were 
registered. However, the formation of aluminates during 
the calcination cannot be excluded since the reflections 
of MAl2O4, where M = Co,Ni,Fe are known to greatly 
overlap with those of γ-Al2O3 [27, 28]. The formation of 
aluminates is suggested from the H2-TPR analysis data as 
well. The interaction of transition metals with the support 
is observed in the improved crystallinity: all trimetallic 
samples exhibited sharper peaks of higher intensity. At the 
same time, the loading of a small amount of Potassium has 
the opposite effect. For comparison, promoted and unpro-
moted Ni–Al2O3 calcined at various temperatures was also 
analyzed by XRD (Fig. 3B). Similar conclusions can be 
derived in this case as well.

Transmission electron microscopy was applied to inves-
tigate the microstructure of the prepared samples. All the 
samples exhibit similar textures originating from γ-Al2O3 
with particles of various shapes and 10–15 nm in diam-
eter. As an example, TEM analysis results are shown for 
the Ni,Co,Fe-Al2O3 sample calcined at 650 °C (Fig. 4A) 
and its promoted analogue (Fig. 4B). The homogeneity of 
morphology was assured by investigating multiple areas on 
the TEM grid. The ED patterns demonstrate intense reflec-
tions of (400) and (440) planes as well several weaker 
reflections of the γ-Al2O3. In high magnification images, 
lattice fringes are visible which further confirms the crys-
talline nature of the trimetallic catalysts in agreement with 
XRD results. Calculated d-spacings from HR-images agree 
well with theoretical values. In Fig. 4, ~ 4.92 Å d-spacing 
corresponds to (111) crystal plane of the fcc structure of 
γ-Al2O3. No significant differences in the d-spacing values 
after the promotion with Potassium were observed. This 
indicates high dispersion of Potassium.Fig. 2   CO2-TPD curves of Ni, Co, Fe–Al2O3 and K/Ni, Co, Fe–Al2O3 

calcined at 650 °C

Fig. 3   XRD patterns of the A γ-Al2O3, Ni,Co,Fe–Al2O3 as well as the K/Ni,Co,Fe–Al2O3 calcined at 650, 750 and 850 °C; B γ-Al2O3, Ni–Al2O3 
as well as the K/Ni–Al2O3 calcined at 650, 750 and 850o
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3.2 � Catalytic Results

3.2.1 � Effect of the Calcination Temperature

The catalytic activity measurements revealed that optimal 
calcination temperature which results in higher reactant 
gases conversion for both Ni-supported and trimetallic cata-
lysts is 650 °C (Fig. 5). The decrease in catalytic activity at 
higher calcination temperatures is caused by the sintering 
which in turn results in lower dispersion and larger size of 
the metal particles. The formation of metal crystallites dur-
ing calcination happens mostly in the first phase of heating 
and is hardly controllable when applying the impregnation 
method [29]. This limits the dispersion that can be achieved. 
Following soaking at the calcination temperature, the gener-
ated crystallites from decomposed precursors interact more 
strongly with the support [29]. With regards to the selectiv-
ity, although Ni,Co,Fe–Al2O3 has shown to be less active, it 
in turn produces more favorable CO/H2 ratio which is prefer-
able for the Fischer–Tropsch process (Fig. 5C).

3.2.2 � Catalyst Deactivation

The extensive carbon deposition, which causes quick deac-
tivation of the catalyst during operation, is one of the major 

disadvantages of DRM [30, 31] Fig. 6 demonstrates the 
XRD results of the spent catalyst. The sharp diffraction 
peak 2θ =  ~ 26° in the case of Ni–Al2O3 is attributed to the 
(002) plane of graphite [32]. This peak is substantially lower 
for the Ni,Co,Fe–Al2O3, which indicates that the synergetic 
effect of trimetallic catalysts is able to decrease the coke 
formation during the reaction. To further confirm minimum 
coke deposition on the trimetallic catalyst, TPR experiments 
were conducted. In a typical experiment, the catalyst was 
kept under reaction conditions for 2 h at 750 °C. After cool-
ing in Ar to 50 °C, the flow was switched to H2, and the oven 
was linearly heated to 850 °C with 10 °C/min heating rate. 
The formation of hydrocarbons, primarily methane, was fol-
lowed. Minimum amount of methane was detected.

3.2.3 � Influence of the Potassium Promoter

It is well known that addition of small amount of Potassium 
aids in the suppression of carbon deposition [33]. Moreover, 
Potassium increases the catalyst basicity and thus assist in 
the CO2 activation. 0.5%K-promoted nickel and trimetal-
lic catalysts were prepared and tested for the dry reforming 
process. Compared to the unpromoted catalysts, loading of 
0.5%K had a negative effect on the catalytic performance at 
all calcination temperatures. According to literature, the step 

Fig. 4   TEM image, HR-TEM 
image, and ED pattern of A 
Ni,Co,Fe–Al2O3, and B K/
Ni,Co,Fe–Al2O3 calcined at 
650 °C

Fig. 5   Catalytic test measurements results: A CO2 conversion of Ni–Al2O3 and Ni,Co,Fe–Al2O3 catalysts calcined at different temperatures, B 
CH4 conversion of the catalysts and C CO/H2 ratio of Ni–Al2O3 and Ni,Co,Fe–Al2O3 catalysts at 750 °C
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sites, which are the most active sites for the reforming reac-
tion, are where a fraction of the potassium migrates from the 
support to the nickel surface. As a consequence, conversion 

rates of reactants are reduced when there is a low potassium 
content [14]. (Fig. 7, 8).

DRIFTS spectra were collected at elevated temperatures 
over Ni,Co,Fe–Al2O3 and K/Ni,Co,Fe–Al2O3 calcined at 
650 °C in order to establish surface adsorbed species formed 
during the DRM reaction and derive the influence of Potas-
sium onto the catalytic performance (Fig. 9). The assignment 
of IR bands was based on the previously reported vibrational 
fingerprints of relevant surface species.

No additional peaks evolved or seized with the Potassium 
addition. The main difference which can be spotted is the 
significant reduction in the intensity of the 1650 cm−1 IR 
band. The peaks at 1645–1650 cm−1 and ~ 1345 cm−1 may 
be assigned to the asymmetric and symmetric νCOO−vibra-
tion of bicarbonate anions, correspondingly [34]. The for-
mation of bicarbonate species usually originates from the 
interaction between CO2 molecules and the surface hydroxyl 
groups of the alumina support [35].

From 773 K bicarbonate species are transformed to the 
formate species at 2600 cm−1 (not shown) and ~ 1588 cm−1 

Fig. 6   XRD of spent Ni-Al2O3 and Ni, Co, Fe–Al2O3 catalysts cal-
cined at 650 °C

Fig. 7   Catalytic test measurements results: A CO2 conversion, B CH4 conversion of Ni–Al2O3, K/Ni–Al2O3, Ni, Co,Fe–Al2O3 and K/Ni,Co,Fe–
Al2O3 catalysts calcined at 650 °C temperatures (reaction temperature:750 °C).

Fig. 8   Catalytic test measurements results: A CO2 conversion, B CH4 conversion and C CO/H2 ratio of K/Ni–Al2O3 and K/Ni,Co,Fe–Al2O3 
catalysts calcined at different temperatures at 750 °C
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[36, 37]. The decomposition of formate, which is favored 
at high temperatures, generates CO which then desorbs 
from the surface. Gaseous H2 is formed by coupling of the 
surface hydrogen atoms, produced during the dehydroge-
nation of methane on the metallic surfaces [33].

The bands in the spectral region from ∼1300 to 
1550 cm−1 correspond to the different forms of adsorbed 
carbonate species [38].

The Potassium-promoted sample shows consider-
ably lower intensity and broadened bicarbonate feature 
(Fig. 9B), which is probably due to the interaction of 
Potassium with the alumina hydroxyl groups by the partial 
K+ for H+ cationic exchange [39] This might be the reason 
for the deterioration in the catalytic performance with the 
addition of Potassium.

4 � Conclusion

In this study, Ni–Al2O3, K/Ni–Al2O3, Ni, Co, Fe–Al2O3, 
and K/Ni, Co, Fe–Al2O3 catalysts were prepared at 3 dif-
ferent calcination temperatures: 650,750 and 850 °C. Tri-
metallic catalysts displayed a more favorable CO/H2 ratio 
and significantly better coke resistance compared to the 
reference Ni–Al2O3 catalyst at the expense of lower cata-
lytic conversion. The results demonstrated that alloying of 
3 metals at 650 °C calcination temperature can be applied 
to produce syngas which subsequently can be directly used 
for the Fischer–Tropsch synthesis. In addition, using K as 
a promoter to lessen coke deposition resulted in a decrease 
in the conversion rates of reactants.
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