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Abstract: Hybrid compounds of flavones, namely chrysin and kaempferol, and substituted
1,2,3-triazole derivatives, were synthesized by click reaction of the intermediate O-propargyl deriva-
tives. 4-Fluoro- and 4-nitrobenzyl-1,2,3-triazole-containing hybrid molecules were prepared. The
mono- and bis-coupled hybrids were investigated on 60 cell lines of 9 common cancer types (NCI60)
in vitro as antitumor agents. Some of them proved to have a significant antiproliferative effect.
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1. Introduction

Cancer treatment is one of the most important medical challenges. Permanent research
is in progress to produce more effective and less toxic derivatives. One of the exciting and
promising directions of this research is the synthesis of antitumor hybrid molecules [1,2].
The concept of molecular hybridization is to incorporate two or more pharmacophores into
one molecule with covalent bonds, increasing the chance of effectiveness and improving the
drug kinetic properties of the resulting hybrid compared to the corresponding fixed-dose
drug combination. It should be noted that rigid distance imposed by the structure of the
compound between potentially active parts of the hybrid may prevent biological efficiency.

During our previous work, numerous new molecules exerting a significant antiprolif-
erative effect have been developed in this field. Various hybrids of Vinca alkaloids [3] were
synthesized, coupling with amino acid esters [4,5], steroids [6], flavones (e.g., 3, chrysin) [7],
phosphorus derivatives [8], amines [5], and compounds containing the known pharma-
cophore 1,2,3-triazole (2) [5]. Recently our work was extended to the synthesis of new
aminochrysin derivatives coupled with different aromatics [9].

Several flavonoids with antitumor activity are known in the literature [10,11]. Flavones
containing a 2-phenylchromen-4-one (1) backbone, and 1,2,3-triazole derivatives keep at-
tracting much research interest, and many 1,2,3-triazole-containing hybrids are known as
effective anticancer agents [12–15]. During the last decade, numerous biologically active
flavone—1,2,3-triazole hybrids have been synthesized [16–18], for example, 5 apigenin-7-
methyl ether derivative, which showed promising activity against ovarian cancer
(IC50 = 10, 15 and 20 µM for SKOV3, OVCAR-3 and Caov-3 cancer cell lines) (Figure 1) [19].

In this study, the above outlined results inspired us to develop synthetic possibilities
for the preparation of flavone—1,2,3-triazole hybrids.
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way, were previously reported as antibacterial agents [20]. 

2.1. Coupling Components 
Chrysin (3) is among the best-known flavones. It is abundant in nature and present 

in many edible plants and honey [21]. It has an anticancer effect through inducing apop-
tosis and autophagy [21,22]. Chrysin (3) seems to be suitable for use alone and/or in com-
bination with other chemotherapeutic agents [21]. Kaempferol (4) and its derivatives are 
also found in many plants. They can prevent coronary heart disease and inflammatory 
problems, and they also show antiproliferative effects and may induce apoptosis [23]. 

It is known that 1,2,3-Triazole derivatives have been widely used as a pharmaco-
phore in hybrids. In addition to the advantageous physico-chemical properties of this 
moiety, it is also known to exert various biological effects [24,25]. 1,2,3-Triazole deriva-
tives are characterized by stability, the ability to form hydrogen bonds (increasing their 
water solubility), and weak basicity (they are not protonated at physiological pH). More-
over, 1,2,3-triazole derivatives have fungicidal, antibacterial, antituberculosis, and anti-
cancer effects [26,27]. The well-known click reaction is used for the preparation of 1,2,3-
triazole derivatives, as one of the tools of modern organic synthetic methods based on 
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resulting in the 7-substituted product (6) (known as an intermediate of antibacterial de-
rivative prepared by a method different from ours [20]). The reason for the regioselectivity 
is that the proton of the 5-hydroxyl group forms an intramolecular H-bond with the neigh-
boring oxo group. Certainly, with an excess of propargyl bromide (5 equivalent), exclu-
sively the 5,7-disubstituted derivative (7) proved to be the product, as expected. Others 
also synthesized this compound using gold(I) complexes without reporting any prepara-
tive and characterization details [29]. 

Figure 1. The structure of 2-phenylchromen-4-one (1), 1,2,3-triazole (2), chrysin (3), kaempferol (4),
and an anticancer flavone—1,2,3-triazole hybrid (5).

2. Results and Discussion

In the course of elaborating the synthetic design, chrysin (5,7-dihydroxyflavone) (3)
and kaempferol (3,4′,5,7-tetrahydroxyflavone) (4) were chosen (Figure 1) to couple with
1,2,3-triazole derivatives. Some chrysin—1,2,3-triazole hybrids prepared by a different way,
were previously reported as antibacterial agents [20].

2.1. Coupling Components

Chrysin (3) is among the best-known flavones. It is abundant in nature and present in
many edible plants and honey [21]. It has an anticancer effect through inducing apoptosis
and autophagy [21,22]. Chrysin (3) seems to be suitable for use alone and/or in combination
with other chemotherapeutic agents [21]. Kaempferol (4) and its derivatives are also found
in many plants. They can prevent coronary heart disease and inflammatory problems, and
they also show antiproliferative effects and may induce apoptosis [23].

It is known that 1,2,3-Triazole derivatives have been widely used as a pharmacophore
in hybrids. In addition to the advantageous physico-chemical properties of this moiety, it is
also known to exert various biological effects [24,25]. 1,2,3-Triazole derivatives are charac-
terized by stability, the ability to form hydrogen bonds (increasing their water solubility),
and weak basicity (they are not protonated at physiological pH). Moreover, 1,2,3-triazole
derivatives have fungicidal, antibacterial, antituberculosis, and anticancer effects [26,27].
The well-known click reaction is used for the preparation of 1,2,3-triazole derivatives, as one
of the tools of modern organic synthetic methods based on structure-activity relationships,
preferably the N1-(4-fluoro- and 4-nitrobenyzl)-1,2,3-triazole derivatives [24,28].

2.2. Chemistry

Chrysin (3) reacted with an equimolar quantity of propargyl bromide (PPGBr) in
dimethylformamide in the presence of cesium carbonate at room temperature (Scheme 1),
resulting in the 7-substituted product (6) (known as an intermediate of antibacterial deriva-
tive prepared by a method different from ours [20]). The reason for the regioselectivity is
that the proton of the 5-hydroxyl group forms an intramolecular H-bond with the neighbor-
ing oxo group. Certainly, with an excess of propargyl bromide (5 equivalent), exclusively
the 5,7-disubstituted derivative (7) proved to be the product, as expected. Others also
synthesized this compound using gold(I) complexes without reporting any preparative
and characterization details [29].

The next reaction step was the click reaction (Scheme 2) using 4-fluoro- and 4-nitrobenzyl
azide prepared in situ from the corresponding benzyl bromides with sodium azide in DMF
at room temperature [30].

The reaction was carried out in the presence of copper(I) iodide, triphenylphosphine,
and N,N-diisopropylethylamine, and resulted in known hybrids 8 and 9, respectively.
These two hybrids were prepared previously with another method, however, only their
antibacterial effect has been investigated [20]. Bis(propargyl) derivative 7 was also treated
with the same reaction conditions and gave the bis-hybrids 10 and 11. Avoiding the
difficult isolation from the triphenylphosphine oxide formed, the latter click reaction was
successfully achieved also with further reagents, namely with copper sulfate pentahydrate
and sodium L-ascorbate in a two-phase mixture.
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Scheme 2. The synthesis of chrysin hybrids (8–11) containing one or two 1,2,3-triazole units.

The second flavone building block, selected for the synthesis of hybrids, was kaempferol
(4). The alkylation with propargyl bromide was investigated with different bases and in
different solvents (Scheme 3). Using cesium carbonate or potassium carbonate as a base in
dimethylformamide compounds 12 and 13 were isolated. However, in acetone solution
compound 14 was obtained.
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2.3. Biological Evaluation

The in vitro antiproliferative activities of chrysin (3) and the synthesized compounds
(8–11, 15) were examined against 60 human tumor cell lines according to the given protocols
of NCI (USA) [31–35]. The results are summarized in Table 1. The percentages of growth
show the amount of living cancer cells compared to a reference. The negative numbers
indicate a significant decrease in the cell number. Since derivatives 8 and 10 had shown
remarkable antiproliferative activity on several cancer cell lines during the one-dose test,
they were subjected to a five-dose screening. The GI50 (50% growth inhibition) values are
also given in Table 1.
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Table 1. Antiproliferative activities of chrysin (3), hybrids 8–11 and 15 against 60 human cancer cell
lines in vitro. In connection with GPR values, the negative numbers causing cell death are highlighted
in bold. Values where GI50 < 10 µM are highlighted in bold, too.

Type
Growth Percent Rates (GPR) at 10 µM (%), GI50 (µM)

3 8 9 10 11 15

GPR GPR GI50 GPR GPR GI50 GPR GPR

Leukemia

CCRF-CEM 102.24 108.83 >100 112.13 77.52 >100 104.65 60.89

HL-60(TB) 116.20 103.89 >100 114.55 98.05 >100 111.80 105.09

K-562 96.80 109.01 >100 103.64 45.49 >100 97.39 46.23

MOLT-4 105.93 95.46 >100 105.64 83.24 >100 96.99 79.61

RPMI-8226 101.04 93.67 >100 99.31 45.61 - 116.61 72.72

SR 77.87 96.85 - - 32.75 - - 64.31

Non-small cell lung cancer

A549/ATCC 98.46 81.15 19.6 89.08 23.19 - 96.90 65.31

EKVX 89.35 60.13 63.8 90.34 57.19 - 102.98 87.06

HOP-62 113.09 −28.49 3.76 93.12 12.36 2.33 91.16 84.75

HOP-92 77.93 −3.35 4.43 94.82 −17.95 1.89 84.25 44.25

NCI-H226 86.84 60.93 3.51 75.07 - 2.07 - 42.31

NCI-H23 92.57 45.78 7.70 87.18 29.16 3.70 88.96 49.35

NCI-H322M 98.30 86.09 >100 93.16 43.54 - 95.03 70.85

NCI-H460 98.34 71.35 - 98.72 2.98 - 104.21 49.75

NCI-H522 88.95 15.11 6.60 87.56 17.59 3.66 73.12 48.28

Colon cancer

COLO 205 104.94 102.72 >100 102.46 68.37 - 118.35 108.22

HCC-2998 102.88 100.11 >100 88.27 74.13 >100 100.57 95.35

HCT-116 82.69 48.53 5.91 86.67 18.21 3.52 88.21 41.04

HCT-15 90.99 94.40 - 87.80 73.48 - 96.46 77.80

HT29 102.89 100.18 >100 99.75 35.13 - 113.48 100.61

KM12 92.93 99.40 >100 100.75 43.34 - 100.81 83.69

SW-620 101.60 102.02 >100 99.67 60.30 - 95.28 79.33

CNS cancer

SF-268 101.55 14.38 4.32 98.12 21.78 3.52 89.15 63.29

SF-295 99.86 10.37 10.2 96.99 38.91 2.32 99.59 65.43

SF-539 92.17 1.10 5.17 84.22 −10.54 2.21 88.21 38.91

SNB-19 86.04 −32.68 4.51 86.51 12.08 4.55 76.47 54.14

SNB-75 88.98 −65.88 3.74 85.58 6.29 1.69 81.23 53.82

U251 80.67 −16.90 13.9 93.22 10.45 2.80 106.25 71.92

Melanoma

LOX IMVI 85.08 78.50 >100 95.50 34.84 - 99.64 58.11

MALME-3M 101.76 6.44 5.06 83.74 15.21 2.03 88.16 53.41

M14 106.78 65.94 >100 94.81 56.84 - 89.13 55.83
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Table 1. Cont.

Type
Growth Percent Rates (GPR) at 10 µM (%), GI50 (µM)

3 8 9 10 11 15

GPR GPR GI50 GPR GPR GI50 GPR GPR

MDA-MB-435 99.53 98.22 - 95.76 40.86 - 100.25 67.94

SK-MEL-2 109.90 −39.78 6.80 99.46 48.82 4.49 85.75 83.61

SK-ML-28 101.70 93.61 - 92.25 29.89 - 100.20 39.71

SK-MEL-5 92.85 84.47 >100 93.58 17.09 - 89.29 54.58

UACC-257 118.94 86.27 >100 95.41 46.37 - 94.84 83.76

UACC-62 82.24 53.15 - 76.28 29.96 - 88.18 42.06

Ovarian cancer

IGROV1 95.22 31.22 17.6 78.98 43.47 4.45 94.68 53.46

OVCAR-3 97.60 61.68 - 112.53 21.16 - 105.28 53.34

OVCAR-4 112.07 - - 97.37 −9.56 - 100.27 66.63

OVCAR-5 99.07 83.70 >100 95.94 55.10 - 93.98 81.04

OVCAR-8 95.19 20.41 3.76 91.53 12.68 - 91.22 56.95

NCI/ADR-RES 92.84 43.17 5.57 78.12 70.43 >100 99.23 88.99

SK-OV-3 128.15 20.59 6.57 91.10 16.22 - 109.51 87.44

Renal cancer

786-0 99.20 2.24 9.26 101.61 1.13 1.96 100.98 74.81

A498 86.62 63.12 42.0 88.60 30.81 - 95.12 71.72

ACHN 85.03 5.21 6.23 89.78 7.30 - 85.97 53.80

CAKI-1 83.56 58.70 5.76 96.44 54.63 - 83.45 67.48

RXF 393 91.19 9.11 3.58 - −8.05 1.78 85.59 37.74

SN12C 85.77 58.08 >100 98.25 38.67 - 85.22 56.19

TK-10 107.21 0.59 10.4 102.72 37.10 3.01 106.68 90.47

UO-31 89.42 67.00 - 74.94 3.64 - 81.08 79.66

Prostate cancer

PC-3 93.17 75.99 - 92.51 35.99 - 107.77 77.08

DU-145 92.00 65.83 >100 107.16 40.01 - 101.38 67.54

Breast cancer

MCF7 103.05 65.73 - 87.76 53.27 - 88.82 59.60

MDA-MB-
231/ATCC 82.64 12.02 16.6 82.84 9.10 2.34 73.21 57.07

HS 578T 92.51 9.08 6.26 85.62 20.89 3.28 78.08 45.96

BT-549 91.01 16.31 7.98 83.18 18.75 - 78.58 49.15

T-47D 101.44 44.20 - 85.48 40.62 - 96.27 52.68

MDA-MB-468 91.09 53.94 20.0 80.62 38.69 1.97 74.09 54.70

It can be seen from Table 1 that no antiproliferative effect was shown by chrysin
(3) and compounds 9 and 11. Hybrids 8 and 10 cause cell death on several cell lines
of different types of cancer and show inhibition effect also on some cases. Despite the
relatively limited structural diversity of our compounds, the above results revealed some
interesting structure-activity relationships. We found that (i) the bis-hybrid compounds
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also exert considerable antiproliferative effect and (ii) replacement of the fluorine atom
by a nitro group reduces the bioactivity. The kaempferol-triazole hybrid (15) gave rather
modest results.

The two promising compounds (8 and 10) were tested for their antiproliferative activity
on further two human cervical cancer cell lines HeLa and SiHa (Table 2). Interestingly, the
monohybrid derivative 8 was active only against HeLa cells, and SiHa cells were relatively
resistant to it. The bis-hybrid derivative 10 was more potent and similarly active against
both cell lines, with a sub-micromolar IC50 value against HeLa. Both derivatives exhibited
higher activity than the reference agent cisplatin against HeLa cells.

Table 2. In vitro antiproliferative activity of compounds 8 and 10 against human cervical cancer cell
lines. Compounds were tested in the concentration range of 0.1–30 µM in 2 biological replicates,
5 parallel measurements each. IC50 values and their 95% confidence intervals (C.I.) are presented.
Value where IC50 < 1 µM is highlighted in bold. Cisplatin was included as a reference agent.

IC50 [95% Confidence Interval](µM)

Hybrid/Cell Line HeLa SiHa

8 1.909
[1.543–2.361] >30

10 0.7331
[0.5771–0.9312]

1.352
[1.148–1.592]

Cisplatin 12.26
[10.36–14.49]

5.305
[4.650–6.053]

The results obtained in this paper are encouraging for the future optimization of the
derivatives. We want to emphasize that this study may be the starting point for more
detailed synthetic and anticancer research.

3. Materials and Methods
3.1. General Materials and Methods

All chemicals were purchased from Sigma-Aldrich (Budapest, Hungary) and were
used as received. Melting points were measured on a VEB Analytik Dresden PHMK-
77/1328 apparatus (Dresden, Germany) and are uncorrected. IR spectra were recorded
on Zeiss IR 75 and 80 instruments (Thornwood, NY, USA). NMR measurements were
performed on a Bruker Avance III HDX 500 MHz NMR spectrometer equipped with a
1H{13C/15N} 5 mm TCI CryoProbe (Bruker Corporation, Billerica, MA, USA). 1H And 13C
chemical shifts are given on the delta scale as parts per million (ppm) relative to tetramethyl
silane. One-dimensional 1H, and 13C spectra and two-dimensional 1H–1H COSY, 1H–1H
NOESY, 1H–13C HSQC, and 1H–13C HMBC spectra were acquired using pulse sequences
included in the standard spectrometer software package (Bruker TopSpin 3.5, Bruker Corpo-
ration). ESI-HRMS and MS-MS analyses were performed on a Thermo Velos Pro Orbitrap
Elite (Thermo Fisher Scientific, Bremen, Germany) system. The ionization method was
ESI, operated in positive ion mode. The protonated molecular ion peaks were fragmented
by CID (collision-induced dissociation) at a normalized collision energy of 35–65%. For
the CID experiment, helium was used as the collision gas. The samples were dissolved
in methanol. EI-HRMS analyses were performed on a Thermo Q Exactive GC Orbitrap
(Thermo Fisher Scientific, Bremen, Germany) system. The ionization method was EI and
operated in positive ion mode. Electron energy was 70 eV and the source temperature was
set at 250 ◦C. Data acquisition and analysis were accomplished with Xcalibur software
version 4.0 (Thermo Fisher Scientific). TLC was carried out using DC-Alufolien Kieselgel
60 F254 (Merck, Budapest, Hungary) plates. Preparative TLC analyses were performed on
silica gel 60 PF254+366 (Merck) glass plates.
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3.2. Chemistry
3.2.1. 7-(O-Propargyl)chrysin (6)

Chrysin (3) (330 mg, 1.3 mmol) and cesium carbonate (426 g, 1.3 mmol) were dissolved
in DMF (15 mL), the solution was stirred at 10 min, then propargyl bromide (0.142 mL,
1.3 mmol) was added in 80% toluene solution. After stirring at room temperature for
18.5 hrs, the reaction mixture was evaporated to dryness, and the residue was dissolved in
dichloromethane (60 mL). Next, water (60 mL) was added, and the pH was adjusted to 1
with 2M hydrochloric acid solution. The water phase was extracted with dichloromethane
(2× 30 mL), then the combined organic phase was washed with water (60 mL) and saturated
sodium chloride solution (60 mL). The organic phase after drying with magnesium sulfate
was evaporated to dryness, and the crude product was purified with preparative TLC
(dichloromethane-methanol = 40:1) to give 274 mg (72%) of compound 6 as a yellow solid.
M.p.:180–182 ◦C. TLC (dichloromethane-methanol = 30:1); Rf = 0.83. IR (KBr) 3284, 1663,
1624, 1540, 1331, 1155, 767 cm−1. 1H NMR (499.9 MHz; DMSO-d6) δ (ppm) 3.69 (t; J = 2.4 Hz;
1H; C(7)-OCH2C≡CH); 4.97 (d; J = 2.4 Hz; 2H; C(7)-OCH2); 6.48 (d; J = 2.3 Hz; 1H; H-6);
6.88 (d; J = 2.3 Hz; 1H; H-8); 7.07 (s; 1H; H-3); 7.58–7.62 (m; 2H; H-3′, H-5′); 7.62–7.66 (m; 1H;
H-4′); 8.09–8.13 (m; 2H; H-2′, H-6′); 12.84 (s; 1H; C(5)-OH). 13C NMR (125.7 MHz; DMSO-
d6) δ (ppm) 56.2 (C(7)-OCH2); 78.3 (C(7)-OCH2C≡CH); 79.0 (C(7)-OCH2C≡CH); 93.7 (C-8);
98.6 (C-6); 105.2 (C-10); 105.4 (C-3); 126.4 (C-2′, C-6′); 129.1 (C-3′, C-5′); 130.5 (C-1′); 132.1
(C-4′); 157.1 (C-9); 161.1 (C-5); 163.1 (C-7); 163.5 (C-2). 182.1 (C-4). ESI-HRMS:M + H
= 293.08086 (delta = 0.08 ppm; C18H13O4). HR-ESI-MS-MS (CID = 55%; rel. int. %): 269(5);
265(100); 251(56); 247(4); 239(6); 223(10).

3.2.2. 5,7-Bis(O-propargyl)chrysin (7)

Chrysin (3) (500 mg, 1.97 mmol) and cesium carbonate (3.2 g, 9.84 mmol) were dis-
solved in dimethylformamide (20 mL), the solution was stirred at 10 min, then propargyl
bromide (1.1 mL, 9.84 mmol) was added in 80% toluene solution. After stirring at room
temperature for 45 min, the reaction mixture was evaporated to dryness, and the residue
was dissolved in dichloromethane (40 mL). Next, water (40 mL) was added, and the pH
was adjusted to 1 with 2M hydrochloric acid solution. The water phase was extracted with
dichloromethane (3 × 20 mL), then the combined organic phase was washed with water
(2× 20 mL) and saturated sodium chloride solution (20 mL). The organic phase after drying
with magnesium sulfate was evaporated to dryness and 620 mg (95%) pure product (7) was
obtained. M.p.: 204–206 ◦C. TLC (dichloromethane-methanol = 30:1); Rf = 0.33. IR (KBr)
3214, 1635, 1597, 1450, 1343, 1164, 833 cm−1. 1H NMR (499.9 MHz; DMSO-d6) δ (ppm) 3.63
(t; J = 2.4 Hz; 1H; C(5)-OCH2C≡CH); 3.70 (t; J = 2.4 Hz; 1H; C(7)-OCH2C≡CH); 4.93 (d;
J = 2.4 Hz; 2H; C(5)-OCH2); 4.98 (d; J = 2.4 Hz; 2H; C(7)-OCH2); 6.67 (d; J = 2.3 Hz; 1H; H-6);
6.82 (s; 1H; H-3); 7.00 (d; J = 2.3 Hz; 1H; H-8); 7.54–7.62 (m; 3H; H-3′, H-4′, H-5′); 8.01–8.09
(m; 2H; H-2′, H-6′). 13C NMR (125.7 MHz; DMSO-d6) δ (ppm) 56.2 (C(7)-OCH2); 56.4
(C(5)-OCH2); 78.3 (C(7)-OCH2C≡CH); 78.6 (C(5)-OCH2C≡CH); 78.8 (C(5)-OCH2C≡CH);
79.0 (C(7)-OCH2C≡CH); 95.0 (C-8); 98.8 (C-6); 108.2 (C-3); 109.1 (C-10); 125.9 (C-2′, C-6′);
129.0 (C-3′, C-5′); 130.7 (C-1′); 131.4 (C-4′); 157.8 (C-5); 158.8 (C-9); 159.7 (C-2); 161.2 (C-7);
175.4 (C-4). ESI-HRMS: M + H = 331.09618 (delta = −0.9 ppm; C21H15O4). HR-ESI-MS-
MS (CID = 35%; rel. int. %): 313(6); 303(89); 292(47); 289(16); 275(13); 265(13); 251(100);
185(36); 157(10).

3.2.3. Click Reaction of 7-(O-Propargyl)chrysin (6) with 4-Fluorobenzyl Azide; Preparation
of 8

To 7-O-propargyl chrysin (6) (48 mg, 0.164 mmol) was added 4-fluorobenzyl azide
(25 mg, 0.164 mmol) in toluene solution (4 mL) prepared in situ [30], triphenylphosphine
(9 mg, 0.0328 mmol), copper(I) iodide (4 mg, 0.0164 mmol) and 0.09 mL (0.492 mmol)
diisopropylethylamine. After reflux for 2 h, the reaction mixture was diluted with toluene
(25 mL), then the mixture was washed with water (30 mL). After washing the water
phase with toluene (10 mL), the combined organic phase after drying with magnesium
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sulfate was evaporated to dryness. The preparative TLC (dichloromethane-methanol = 40:1)
of the crude product resulted in 5 mg (7%) pure product (8). M.p.:163–165 ◦C. M.p.
lit.: 190-191oC [20]. TLC (dichloromethane-methanol = 40:1); Rf=0.34. IR (KBr) 3424,
1660, 1614, 1558, 1161, 766, 541 cm−1. 1H NMR (499.9 MHz; DMSO-d6) δ (ppm) 5.29
(s; 2H; H2-1′); 5.62 (s; 2H; H2-7′); 6.50 (d; J = 2.2 Hz; 1H; H-6); 6.96 (d; J = 2.2 Hz; 1H;
H-8); 7.06 (s; 1H; H-3); 7.19–7.24 (m; 2H; H-10′, H-12′); 7.39–7.44 (m; 2H; H-9′, H-13′);
7.58–7.66 (m; 3H; C(2)-Ph: 2x Hmeta, Hpara); 8.09–8.12 (m; 2H; C(2)-Ph: 2x Hortho); 8.35 (s;
1H; H-6′); 12.8 (br; 1H; C(5)-OH). 13C NMR (125.7 MHz; DMSO-d6) δ (ppm) 52.0 (C-7′);
61.7 (C-1′); 93.5 (C-8); 98.6 (C-6); 105.0 (C-10); 105.3 (C-3); 115.5 (d; 2JCF = 21.6 Hz; C-10′,
C-12′); 124.9 (C-6′); 126.4 (C(2)-Ph: Cortho); 129.1 (C(2)-Ph: Cmeta); 130.3 (d; 3JCF = 8.5 Hz;
C-9′, C-13′); 130.5 (C(2)-Ph: Cipso); 132.0–132.1 (m; C-8′, C(2)-Ph: Cpara); 142.0 (C-2′); 157.2
(C-9); 161.1 (C-5); 161.8 (d; 1JCF = 244.2 Hz; C-11′); 163.5 (C-2); 163.9 (C-7); 182.0 (C-4). ESI-
HRMS: M+H = 444.13547 (delta = 0.13 ppm; C25H19O4N3F). HR-ESI-MS-MS (CID = 45%; rel.
int. %): 416(100); 363(32); 307(24); 293(12); 291(60); 267(26); 255(47).

3.2.4. Click Reaction of 7-(O-Propargyl)chrysin (6) with 4-Nitrobenzyl Azide; Preparation
of 9

To 7-O-propargyl chrysin (6) (48 mg, 0.164 mmol) was added 4-nitrobenzyl azide
(29 mg, 0.164 mmol) in toluene solution (4 mL) prepared in situ [30], triphenylphosphine
(9 mg, 0.0328 mmol), copper(I) iodide (4 mg, 0.0164 mmol) and 0.09 mL (0.492 mmol)
diisopropylethylamine. After reflux for 4 h, the reaction mixture was diluted with toluene
(25 mL), then the mixture was washed with water (30 mL). After washing the water
phase with toluene (10 mL), the combined organic phase after drying with magnesium
sulfate was evaporated to dryness. The residue was dissolved in dichloromethane and after
filtration, the filtrate was evaporated to dryness, then 24 mg (31%) product (9) was obtained.
M.p.: 219–221 ◦C. M.p. lit.: 187–188 ◦C [20]. TLC (dichloromethane-methanol = 40:1);
Rf = 0.45. IR (KBr) 809; 1155; 1349; 1524; 1617; 1656; 3083 cm−1. 1H NMR (499.9 MHz;
DMSO-d6) δ (ppm) 5.32 (s; 2H; H2-1′); 5.83 (s; 2H; H2-7′); 6.51 (d; J = 2.1 Hz; 1H; H-6); 6.97
(d; J = 2.1 Hz; 1H; H-8); 7.07 (s; 1H; H-3); 7.53–7.58 (m; 2H; H-9′, H-13′); 7.58–7.67 (m; 3H;
C(2)-Ph: 2x Hmeta, Hpara); 8.07–8.13 (m; 2H; C(2)-Ph: 2x Hortho); 8.22–8.27 (m; 2H; H-10′,
H-12′); 8.43 (s; 1H; H-6′); 12.83 (s; 1H; C(5)-OH). 13C NMR (125.7 MHz; DMSO-d6) δ (ppm)
51.9 (C-7′); 61.7 (C-1′); 93.6 (C-8); 98.7 (C-6); 105.1 (C-10); 105.4 (C-3); 123.9 (C-10′, C-12′);
125.4 (C-6′); 126.4 (C(2)-Ph: Cortho); 129.0 (C-9′, C-13′); 129.1 (C(2)-Ph: Cmeta); 130.5 (C(2)-Ph:
Cipso); 132.1 (C(2)-Ph: Cpara); 142.2 (C-2′); 143.2 (C-8′); 147.2 (C-11′); 157.2 (C-9); 161.1
(C-5); 163.5 (C-2); 163.9 (C-7); 182.0 (C-4). ESI-HRMS: M+H=471.12976 (delta = −0.3 ppm;
C25H19O6N4). HR-ESI-MS-MS (CID=35%; rel. int. %): 443(25); 425(12); 307(18); 291(26);
255(100); 189(2).

3.2.5. Click Reaction of 5,7-Bis(O-propargyl)chrysin (7) with 4-Fluorobenzyl Azide;
Preparation of 10

(a) To 5,7-bis(O-propargyl) chrysin (7) (44 mg, 0.133 mmol) was added 4-fluorobenzyl
azide (40 mg, 0.265 mmol) in toluene solution (6 mL) prepared in situ [30], triphenylphos-
phine (14 mg, 0.0532 mmol), copper(I) iodide (5 mg, 0.0265 mmol) and 0.14 mL (0.798 mmol)
diisopropylethylamine. After reflux for 5 hrs, the reaction mixture was diluted with toluene
(25 mL), and the mixture was washed with water (30 mL), then the water phase was washed
with toluene (10 mL). The combined organic phase was dried with magnesium sulfate and
the precipitated product (10) (32 mg, 38%) could be separated with filtration.

(b) To 5,7-bis(O-propargyl) chrysin (7) (44 mg, 0.133 mmol) was added 4-fluorobenzyl
azide (40 mg, 0.266 mmol) in dichloromethane solution (4.5 mL) prepared in situ [30], cop-
per(II) sulfate pentahydrate (56 mg, 0.222 mmol), sodium L-ascorbate (88 mg,
0.443 mmol) and water (4.5 mL). After 18 hrs of intensive stirring at room temperature,
the reaction mixture was diluted with water (18 mL) and extracted with dichloromethane
(2 × 20 mL). The combined organic phase was washed with saturated sodium chloride
solution (50 mL), and after drying with magnesium sulfate the solution was evaporated.
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The residue was separated with preparative TLC (dichloromethane-methanol = 15:1) and
27 mg (32%) product (10) was obtained (Figure 2). Mp.: 229–231 ◦C. TLC (dichloromethane-
methanol = 20:1); Rf = 0.30. IR (KBr) 1642, 1605, 1511, 1352, 1225, 1159 cm−1. 1H NMR
(499.9 MHz; DMSO-d6) δ (ppm) 5.23 (s; 2H; H2-1”); 5.31 (s; 2H; H2-1′); 5.63 (s; 2H; H2-7′);
5.64 (s; 2H; H2-7”); 6.76 (s; 1H; H-3); 6.80 (d; J = 2.2 Hz; 1H; H-6); 7.07 (d; J = 2.2 Hz;
1H; H-8); 7.18–7.24 (m; 4H; H-10′, H-12′, H-10”, H-12”); 7.38–7.42 (m; 2H; H-9”, H-13”);
7.40–7.45 (m; 2H; H-9′, H-13′); 7.54–7.61 (m; 3H; C(2)-Ph: 2x Hmeta, Hpara); 8.02–8.06 (m; 2H;
C(2)-Ph: 2x Hortho); 8.31 (s; 1H; H-6′’); 8.37 (s; 1H; H-6′). 13C NMR (125.7 MHz; DMSO-d6) δ
(ppm) 51.9 (C-7”); 52.0 (C-7′); 61.6 (C-1′); 62.6 (C-1′’); 94.8 (C-8); 98.4 (C-6); 108.2 (C-3); 108.8
(C-10); 115.4–115.6 (m; C-10′, C-12′, C-10”, C-12′’); 124.5 (C-6”); 124.9 (C-6′); 125.8 (C(2)-Ph:
Cortho); 129.0 (C(2)-Ph: Cmeta); 130.2 (d; 3JCF = 8.5 Hz; C-9”, C-13”); 130.3 (d; 3JCF = 8.5 Hz;
C-9′, C-13′); 130.7 (C(2)-Ph: Cipso); 131.4 (C(2)-Ph: Cpara); 132.1–132.2 (m; C-8′, C-8”); 142.1
(C-2′); 142.9 (C-2′’); 158.7 (C-5); 159.0 (C-9); 159.6 (C-2); 161.78 (d; 1JCF = 244 Hz), 161.81
(d; 1JCF = 244 Hz): C-11′, C-11”; 162.2 (C-7); 175.4 (C-4). ESI-HRMS: M + H = 633.20636
(delta = 1.14 ppm; C35H27O4N6F2). HR-ESI-MS-MS (CID = 35%; rel. int. %): 605(43); 588(5);
577(6); 552(8); 498(8); 496(8); 456(5); 452(26); 444(48); 424(5); 399(6).
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3.2.6. Click Reaction of 5,7-Bis(O-propargyl)chrysin (7) with 4-Nitrobenzyl Azide;
Preparation of 11

(a) To 5,7-bis(propargyl) chrysin (7) (44 mg, 0.133 mmol) was added 4-nitrobenzyl azide
(47 mg, 0.266 mmol) in toluene solution (6 mL) prepared in situ [30], triphenylphosphine
(14 mg, 0.0532 mmol), copper(I) iodide (5 mg, 0.0265 mmol) and 0.14 mL (0.798 mmol)
diisopropylethylamine. After reflux for 4 hrs, the reaction mixture was diluted with toluene
(25 mL), and the mixture was washed with water (30 mL), then the water phase was washed
with toluene (10 mL). The combined organic phase was dried with magnesium sulfate, and
the precipitated crude product could be separated with filtration. After preparative TLC
(dichloromethane-methanol = 15:1) of the crude product, 9 mg (10%) pure product (11)
was obtained.

(b) To 5,7-bis(O-propargyl) chrysin (7) (176 mg, 0.532 mmol) was added 4-nitrobenzyl
azide (190 mg, 1.064 mmol) in dichloromethane solution (18 mL) prepared in situ [30], cop-
per(II) sulfate pentahydrate (224 mg, 0.888 mmol), sodium L-ascorbate (352 mg, 1.772 mmol)
and water (18 mL). After 16.5 h of intensive stirring at room temperature, the reaction mix-
ture was diluted with water (72 mL) and extracted with dichloromethane (3 × 80 mL). The
combined organic phase was washed with saturated sodium chloride solution (200 mL), and
after drying with magnesium sulfate the solution was evaporated. The residue was sepa-
rated with preparative TLC (dichloromethane-methanol = 15:1) and 30 mg (17%) product
(11) was obtained. M.p. = 182–184 ◦C. TLC (dichloromethane-methanol = 20:1); Rf = 0.40.
IR (KBr) 805; 1109; 1167; 1348; 1521; 1608; 1644; 3080 cm−1. 1H NMR (499.9 MHz; DMSO-d6)
δ (ppm) 5.27 (s; 2H; H2-1′’); 5.34 (s; 2H; H2-1′); 5.83 (s; 2H; H2-7′); 5.84 (s; 2H; H2-7′’); 6.76
(s; 1H; H-3); 6.82 (d; J = 2.3 Hz; 1H; H-6); 7.09 (d; J = 2.3 Hz; 1H; H-8); 7.53–7.61 (m; 7H;
H-9′, H-13′, H-9′’, H-13′’, C(2)-Ph: 2x Hmeta, Hpara); 8.02–8.06 (m; 2H; C(2)-Ph: 2x Hortho);
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8.22–8.26 (m; 4H; H-10′, H-12′, H-10′’, H-12′’); 8.39 (s; 1H; H-6′’); 8.45 (s; 1H; H-6′). 13C
NMR (125.7 MHz; DMSO-d6) δ (ppm) 51.8 (C-7′’); 51.9 (C-7′); 61.6 (C-1′); 62.6 (C-1′’); 94.9
(C-8); 98.4 (C-6); 108.2 (C-3); 108.8 (C-10); 123.8 (C-10′, C-12′, C-10′’, C-12′’); 125.0 (C-6′’);
125.4 (C-6′); 125.8 (C(2)-Ph: Cortho); 129.0 (C-9′, C-13′, C-9′’, C-13′’, C(2)-Ph: Cmeta); 130.7
(C(2)-Ph: Cipso); 131.4 (C(2)-Ph: Cpara); 142.2 (C-2′); 143.1 (C-2′’); 143.2 (C-8′); 143.3 (C-8′’);
147.2 (C-11′, C-11”); 158.7 (C-5); 159.0 (C-9); 159.6 (C-2); 162.1 (C-7); 175.4 (C-4). ESI-HRMS:
M+H = 687.19286 (delta = −2.6 ppm; C35H27O8N8). HR-ESI-MS-MS (CID = 35%; rel. int.
%): 659(45); 631(10); 507(84); 471(100); 443(12); 343(3); 291(7).

3.2.7. O-Alkylation of Kaempferol (4) with Propargyl Bromide

(a) Kaempferol (4) (113 mg, 0.393 mmol) and cesium carbonate (129 mg, 0.393 mmol)
were dissolved in dimethylformamide (5 mL) and after 10 min stirring propargyl bromide
(0.043 mL, 0.393 mmol) was added in 80% toluene solution. The reaction mixture was stirred
at room temperature for 2.5 hrs and was evaporated to dryness. The residue was dissolved
in dichloromethane (20 mL), then water (20 mL) was added and the pH was adjusted to 1
with 2N hydrochloric solution. The water phase was washed with dichloromethane (2× 10 mL),
the combined organic phase was treated with water (20 mL), and then with saturated
sodium chloride solution (20 mL). After drying with magnesium sulfate the solution was
evaporated to dryness and using preparative TLC (dichloromethane-methanol = 20:1)
two products were obtained: 8 mg (6%) of monopropargylated derivative (12), and 25 mg
(19%) of 3,7-bis(O-propargyl) kaempferol (13).

(b) Kaempferol (4) (1130 mg, 3.93 mmol) and potassium carbonate (543 mg, 3.93 mg)
were dissolved in dimethylformamide (15 mL). After 10 min stirring at room temperature
propargyl bromide (0.43 mL, 3.93 mmol, in 80% toluene solution) dissolved in dimethyl-
formamide (5 mL) was dropped into the reaction mixture. After 2.5 h further potassium
carbonate (272 mg, 1.97 mmol) and propargyl bromide (0.22 mL, 1.97 mmol, in 80% toluene
solution) dissolved in dimethylformamide (2 mL) were added. The reaction mixture was
stirred for a further 5 hrs at room temperature, evaporated to dryness, and the residue
was dissolved in chloroform (200 mL). Next, water (200 mL) was added, and the pH was
adjusted to 1 with 2N hydrochloric acid. The water phase was extracted with chloroform
(2x100 mL), and the combined organic phase was washed with water (200 mL) and with
saturated sodium chloride solution (200 mL) and evaporated to dryness. Preparative TLC
(dichloromethane-methanol = 20:1) separation of the residue 40 mg (3%) of 12 and 330 mg
(23%) of 13 were obtained.

3-(O-Propargyl)kaempferol (12): M.p. = 180–182 ◦C. TLC (dichloromethane-methanol
= 20:1); Rf = 0.19. IR (KBr) 821; 1180; 1235; 1557; 1660; 3293 cm−1. 1H NMR (499.9 MHz;
DMSO-d6) δ (ppm) 3.50 (t; J = 2.4 Hz; 1H; C(3)-OCH2C≡CH); 4.89 (d; J = 2.4 Hz; 2H;
C(3)-OCH2); 6.22 (d; J = 2.1 Hz; 1H; H-6); 6.46 (d; J = 2.1 Hz; 1H; H-8); 6.90–6.95 (m; 2H;
H-3′, H-5′); 7.98–8.01 (m; 2H; H-2′, H-6′); 10.28 (br s; 1H; C(4′)-OH); 10.90 (br; 1H; C(7)-OH);
12.55 (s; 1H; C(5)-OH). 13C NMR (125.7 MHz; DMSO-d6) δ (ppm) 58.8 (C(3)-OCH2); 78.6
(C(3)-OCH2C≡CH); 79.2 (C(3)-OCH2C≡CH); 93.7 (C-8); 98.6 (C-6); 103.8 (C-10); 115.4 (C-3′,
C-5′); 120.4 (C-1′); 130.4 (C-2′, C-6′); 134.8 (C-3); 156.25 (C-9); 156.34 (C-2); 160.1 (C-4′); 161.1
(C-5); 164.2 (C-7); 177.6 (C-4). EI-HRMS: M = 324.06174 (delta = −3.4 ppm; C18H12O6).

3,7-Bis(O-propargyl)kaempferol (13): M.p. = 185–187 ◦C. TLC (dichloromethane-
methanol = 20:1); Rf = 0.49. IR (KBr) 1180; 1289; 1332; 1493; 1602; 1662; 3259 cm−1. 1H
NMR (499.9 MHz; DMSO-d6) δ (ppm) 3.51 (t; J = 2.4 Hz; 1H; C(3)-OCH2C≡CH); 3.68 (t;
J = 2.4 Hz; 1H; C(7)-OCH2C≡CH); 4.91 (d; J = 2.4 Hz; 2H; C(3)-OCH2); 4.95 (d; J = 2.4
Hz; 2H; C(7)-OCH2); 6.46 (d; J = 2.3 Hz; 1H; H-6); 6.82 (d; J = 2.3 Hz; 1H; H-8); 6.93–6.97
(m; 2H; H-3′, H-5′); 8.01–8.05 (m; 2H; H-2′, H-6′); 10.3–10.4 (br; 1H; C(4′)-OH); 12.55 (s;
1H; C(5)-OH). 13C NMR (125.7 MHz; DMSO-d6) δ (ppm) 56.2 (C(7)-OCH2); 58.9 (C(3)-
OCH2); 78.3 (C(7)-OCH2C≡CH); 78.5 (C(3)-OCH2C≡CH); 79.0 (C(7)-OCH2C≡CH); 79.3
(C(3)-OCH2C≡CH); 93.3 (C-8); 98.4 (C-6); 105.2 (C-10); 115.4 (C-3′, C-5′); 120.3 (C-1′); 130.5
(C-2′, C-6′); 135.1 (C-3); 155.9 (C-9); 156.8 (C-2); 160.3 (C-4′); 160.8 (C-5); 162.9 (C-7); 177.8
(C-4). EI-HRMS: M = 362.07804 (delta = −1.2 ppm; C21H14O6).
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(c) Kaempferol (4) (200 mg, 0.699 mmol) and potassium carbonate (106 mg, 0.769 mg)
were dissolved in acetone (7 mL). After 10 min stirring at room temperature propargyl
bromide (0.076 mL, 0.699 mmol, in 80% toluene solution) dissolved in acetone (3 mL)
was dropped into the reaction mixture. After 7 hrs reflux further potassium carbonate
(53 mg, 0.35 mmol) and propargyl bromide (0.038 mL, 0.35 mmol, in 80% toluene solution)
dissolved in acetone (1.5 mL) were added. The reaction mixture was refluxed for a further
6 hrs, evaporated to dryness, and the residue was dissolved in dichloromethane (40 mL).
Next, water (40 mL) was added and the pH was adjusted to 1 with 2N hydrochloric
acid. The water phase was extracted with dichloromethane (2 × 20 mL), the combined
organic phase was washed with water (40 mL) and with saturated sodium chloride solution
(40 mL) and evaporated to dryness. After preparative TLC (dichloromethane-methanol
= 20:1) separation of the residue, 10 mg (3%) of product 14 was obtained. M.p. = 158–160 ◦C.
TLC (dichloromethane-methanol = 20:1); Rf = 0.82. IR (KBr) 1174; 1185; 1509; 1605;
1627; 3287 cm−1. 1H NMR (499.9 MHz; DMSO-d6) δ (ppm) 3.47 (t; J = 2.4 Hz; 1H;
C(3)-OCH2C≡CH); 3.64 (t; J = 2.4 Hz; 1H; C(4′)-OCH2C≡CH); 3.65 (t; J = 2.4 Hz; 1H;
C(5)-OCH2C≡CH); 3.69 (t; J = 2.4 Hz; 1H; C(7)-OCH2C≡CH); 4.91 (d; J = 2.4 Hz; 2H;
C(3)-OCH2); 4.92 (d; J = 2.4 Hz; 2H; C(4′)-OCH2); 4.93 (d; J = 2.4 Hz; 2H; C(5)-OCH2);
4.97 (d; J = 2.4 Hz; 2H; C(7)-OCH2); 6.64 (d; J = 2.3 Hz; 1H; H-6); 6.96 (d; J = 2.3 Hz;
1H; H-8); 7.15–7.19 (m; 2H; H-3′, H-5′); 8.07–8.11 (m; 2H; H-2′, H-6′). 13C NMR (125.7
MHz; DMSO-d6) δ (ppm) 55.5 (C(4′)-OCH2); 56.2 (C(7)-OCH2); 56.5 (C(5)-OCH2); 58.2
(C(3)-OCH2); 78.2 (C(7)-OCH2C≡CH); 78.5 (C(5)-OCH2C≡CH); 78.6 (C(4′)-OCH2C≡CH);
78.76 (C(4′)-OCH2C≡CH); 78.79 (C(3)-OCH2C≡CH); 78.9 (C(5)-OCH2C≡CH); 79.05 (C(7)-
OCH2C≡CH); 79.10 (C(3)-OCH2C≡CH); 94.7 (C-8); 98.4 (C-6); 108.8 (C-10); 114.7 (C-3′,
C-5′); 123.0 (C-1′); 129.8 (C-2′, C-6′); 137.4 (C-3); 152.7 (C-2); 157.80 (C-9); 157.82 (C-5); 158.8
(C-4′); 161.2 (C-7); 171.9 (C-4). EI-HRMS: M = 438.10893 (delta = −2.0 ppm; C27H18O6).

3.2.8. Click Reaction of 3,7-Bis(O-propargyl)kaempferol (13) with 4-Fluorobenzyl Azide;
Preparation of 15

(a) To 3,7-bis(O-propargyl) kaempferol (13) (140 mg, 0.387 mmol) was added
4-fluorobenzyl azide (117 mg, 0.773 mmol) in toluene solution (10 mL) prepared in situ [30],
triphenylphosphine (41 mg, 0.155 mmol), copper(I) iodide (15 mg, 0.077 mmol), 0.43 mL
(2.322 mmol) diisopropylethylamine and 13 mL toluene. After reflux for 5.5 hrs, the reac-
tion mixture was diluted with toluene (70 mL), and the mixture was washed with water
(45 mL), then the water phase was washed with toluene (15 mL). The combined organic
phase was dried with magnesium sulfate and after preparative TLC (dichloromethane-
methanol = 20:1) of the residue, 17 mg (7%) product (15) was obtained.

(b) To 3,7-bis(O-propargyl) kaempferol (13) (193 mg, 0.532 mmol) was added 4-
fluorobenzyl azide (161 mg, 1.064 mmol) in dichloromethane solution (18 mL) prepared in
situ [30], copper(II) sulfate pentahydrate (222 mg, 0.888 mmol), sodium L-ascorbate (351 mg,
1.77 mmol) and water (18 mL). After 8 h of intensive stirring at room temperature, the
reaction mixture was diluted with water (70 mL) and extracted with dichloromethane
(3 × 80 mL). The combined organic phase was washed with saturated sodium chloride
solution (200 mL), and after drying with magnesium sulfate the solution was evaporated.
The residue was separated with preparative TLC (dichloromethane-methanol = 20:1) and
18 mg (5%) product (15) was obtained (Figure 3). M.p. = 151–153 ◦C. TLC (dichloromethane-
methanol = 20:1); Rf = 0.31. IR (KBr) 1172; 1225; 1512; 1587; 1602; 1665; 3139 cm−1. 1H NMR
(499.9 MHz; DMSO-d6) δ (ppm) 5.20 (s; 2H; H2-1′’); 5.27 (s; 2H; H2-1′); 5.51 (s; 2H; H2-7′’);
5.62 (s; 2H; H2-7′); 6.47 (d; J = 2.2 Hz; 1H; H-6); 6.85–6.87 (m; 2H; C(2)-Ar: 2x Hmeta); 6.88
(d; J = 2.2 Hz; 1H; H-8); 7.14–7.19 (m; 2H; H-10′’, H-12′’); 7.19–7.25 (m; 4H; H-10′, H-12′,
H-9′’, H-13′’); 7.39–7.44 (m; 2H; H-9′, H-13′); 7.88–7.92 (m; 2H; C(2)-Ar: 2x Hortho); 8.14 (s;
1H; H-6′’); 8.34 (s; 1H; H-6′); 10.30 (br s; 1H; C(2)-Ar: Cpara-OH); 12.68 (s; 1H; C(5)-OH). 13C
NMR (125.7 MHz; DMSO-d6) δ (ppm) 51.7 (C-7′’); 52.0 (C-7′); 61.7 (C-1′); 64.1 (C-1′’); 93.0
(C-8); 98.3 (C-6); 105.2 (C-10); 115.3 (C(2)-Ar: Cmeta); 115.4 (d; 2JCF = 21.6 Hz; C-10′’, C-12′’);
115.5 (d; 2JCF = 21.6 Hz; C-10′, C-12′); 120.3 (C(2)-Ar: Cipso); 124.9 (C-6′); 125.0 (C-6′’);
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129.8 (d; 3JCF = 8.4 Hz; C-9′’, C-13′’); 130.27 (C(2)-Ar: Cortho); 130.30 (d; 3JCF = 8.3 Hz; C-9′,
C-13′); 132.1 (d; 4JCF = 3.0 Hz; C-8′, C-8′’); 135.6 (C-3); 142.1 (C-2′); 142.4 (C-2′’); 156.1 (C-9);
156.5 (C-2); 160.1 (C(2)-Ar: Cpara); 160.9 (C-5); 161.4 (d; 1JCF = 244.2 Hz; C-11′’); 161.7 (d;
1JCF = 244.4 Hz; C-11′); 163.7 (C-7); 178.0 (C-4). ESI-HRMS: M + H = 665.19497
(delta = −0.7 ppm; C35H27O6N6F2). HR-ESI-MS-MS (CID = 35%; rel. int. %): 637(51);
620(5); 584(8); 530(20); 512(51); 484(26); 476(100); 456(7); 448(51); 431(8); 299(4).
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3.3. Biological Evaluation
3.3.1. One-Dose Screen

All compounds were tested initially at a single high dose (10−5 M) in the full NCI60
cell panel [31–35]. The number reported for the one-dose assay is growth relative to the
no-drug control and relative to the time zero number of cells. This allowed the detection
of both growth inhibition (values between 0 and 100) and lethality (values less than 0).
For example, a value of 100 means no growth inhibition. A value of 30 would mean 70%
growth inhibition. A value of 0 means no net growth over the course of the experiment. A
value of −30 would mean 30% lethality. A value of −100 means all cells are dead.

3.3.2. Five-Dose Screen

Compounds that exhibited significant growth inhibition in the one-dose screen were
evaluated against the 60-cell panel at five concentration levels. The human tumor cell
lines of the cancer screening panel were grown in RPMI 1640 medium containing 5% fetal
bovine serum and 2 mM l-glutamine. Typically, cells were inoculated in 96-well microtiter
plates in 100 µL at plating densities ranging from 5000 to 40,000 cells/well, depending
on the doubling time of individual cell lines. After cell inoculation, the microtiter plates
were incubated at 37 ◦C, 5% CO2, 95% air, and 100% relative humidity for 24 h prior to the
addition of experimental drugs. After 24 h, two plates of each cell line were fixed in situ
with trichloroacetic acid (TCA), to represent a measurement of the cell population for each
cell line at the time of drug addition (tz). Experimental drugs were solubilized in dimethyl
sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior
to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and
diluted to twice the desired final maximum test concentration with complete medium
containing 50 µg ml−1 gentamicin. Additional four, 10-fold or 1

2 log serial dilutions were
made to provide a total of five drug concentrations plus control. Aliquots of 100 µL of these
different drug dilutions were added to the appropriate microtiter wells already containing
100 µL of medium, resulting in the required final drug concentrations.

Following drug addition, the plates were incubated at 37 ◦C, 5% CO2, 95% air, and
100% relative humidity for an additional 48 h. For adherent cells, the assay was terminated
by the addition of cold TCA. Cells were fixed in situ by the addition of 50 µL of cold 50%
(w/v) TCA, and incubated at 4 ◦C for 60 min. The supernatant was discarded, and the
plates were washed with water (5×) and dried in air. Sulforhodamine B (SRB) solution
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(100 µL) at 0.4% (w/v) in 1% acetic acid was added to each well, and plates were incubated
at room temperature for 10 min. After staining, the unbound dye was removed by washing
five times with 1% acetic acid, and the plates were dried in the air. The bound stain
is subsequently solubilized with 10 mM trizma base, and the absorbance is read on an
automated plate reader at λ = 515 nm. Using the seven absorbance measurements [time
zero (tz), control growth (c), and test growth in the presence of drug at the five concentration
levels (ti)], the percentage growth was calculated at each of the drug concentration levels.
Growth inhibition (%) was calculated as:

[(ti − tz)/(c − tz)] × 100, for concentrations where ti ≥ tz (1)

[(ti − tz)/(tz)] × 100, for concentrations where ti < tz. (2)

Three dose-response parameters were calculated as follows. GI50 (growth inhibition
of 50%) was calculated from Equation (3), which is the drug concentration resulting in a
50% reduction in the net protein increase (as measured by SRB staining) in control cells
during the drug incubation. The drug concentration resulting in total growth inhibition
(TGI) was calculated from Equation (4), where ti = tz. The LC50 indicating a 50% net loss of
cells following treatment was calculated from Equation (5):

[(ti − tz)/(c − tz)] × 100 = 50 (3)

[(ti − tz)/(c − tz)] × 100 = 0 (4)

[(ti − tz)/(tz)] × 100 = −50. (5)

3.3.3. Antiproliferative Assay on HeLa and SiHa Cells

Cervical adenocarcinoma (HeLa) and cervical carcinoma (SiHa) cells were obtained
from the European Collection of Cell Cultures (Salisbury, UK) and the American Type Tissue
Culture Collection (Manassas, VA, USA), respectively. The cells were cultured in Minimum
Essential Medium supplemented with 10% fetal bovine serum, 1% non-essential amino
acids, and 1% penicillin-streptomycin at 37 ◦C in a humidified atmosphere. Media and
supplements were purchased from Lonza Group Ltd. (Basel, Switzerland). Cell viability
was assessed by the MTT assay as published before [36]. Briefly, the cells were seeded in
96 well plates at 5000 cells/well density. After 24 h, 100 µL of new media containing the
test samples was added. After incubation for 72 h, an aliquot of 44 µL of MTT solution
(5 mg/mL) was added. After incubation for a further 4 h, the medium was removed by
aspiration, the precipitated formazan crystals were dissolved by adding 100 µL of DMSO
to each well, and the plates were shaken at 37 ◦C for 1 h. The absorbance was measured
at 545 nm with a microplate reader. IC50 values were calculated by fitting sigmoidal
dose–response curves by the nonlinear regression model log (inhibitor) vs. normalized
response and variable slope fit of GraphPad Prism 6 (GraphPad Software Inc., San Diego,
CA, USA). Clinically utilized anticancer agent cisplatin (Ebewe GmbH, Unterach, Austria)
was included as a reference molecule.

4. Conclusions

As a result of the current study, hybrid compounds containing chrysin coupled with
substituted 1,2,3-triazole pharmacophores showed significant in vitro anticancer activities
on several cell lines of different types of cancer. Moreover, the activity of the bis-conjugated
derivatives of chrysin was also considerable. Therefore, it may be a reasonable strategy
to prepare further hybrid molecules of flavones with more complex structures to obtain
potentially valuable new antitumor leads.
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