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Abstract: In this paper, we provide a simple forward-looking approach to compare rating methods
with respect to their stability over time. Given a rating vector of entities involved in the comparison
and a ranking indicated by the rating, the stability of the methods is measured by the change in rating
vector and ranks of the entities over time from a forward-looking perspective. We investigate various
linear algebraic rating methods and use the Euclidean distance and Kendall tau rank correlation
to measure their stability in rating and ranking, respectively. The investigations are based on both
rolling and expanding window approaches. We apply the methodology to sports as a widely known
ranking and rating environment. The results suggest that PageRank and Massey rating methods
provide better rating and ranking stability than simple methods, such as winning percentage, and
more advanced ones, such as Colley’s least square and Keener’s eigenvector-based method. Finally, a
simple way to examine the potential predictive power of the rating methods is also provided.

Keywords: rating; ranking; stability

1. Introduction

Rating items is a fundamental task that aims at providing a ranking and making
decisions according to it. For instance, in sports, the ranking of players or teams is provided
by some scoring system, such as ‘three points for a win and one for the draw’ in soccer,
or more complex systems such as Élő in chess or ATP ranking in men’s tennis. For a good
book on ratings in sports, see, e.g., [1].

Many different rating methods have been developed, and all of them are based on
some assumptions or formal axioms that have to be satisfied by the rating; see, e.g., [2–5].
In the case of sports, rating methods are also considered as key elements of making single-
game outcome predictions; see, e.g., [6].

Although the literature on rating and rating-based predictions in sports is vast, only
a few papers can be found that address the problem of evaluating and comparing the
stability and robustness of rating methods over a season in a round robin-like system, such
as soccer or US major sports. For some related papers, see, e.g., [5,7,8]. Our study, however,
is different from the above ones, as outlined in the following paragraph.

The paper [5] focuses on the general properties of sport ranking including Colley,
Win-loss, Elo, and Markov methods. The authors evaluate the ranking of these methods in
relation to properties such as Opponent Strength, Incentive to Win and Sequence of Matches.
In our case, we propose a new comparison method based on a forward-looking approach
to evaluate the ranking and rating stability of selected common ranking methods. In [7],
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the authors empirically evaluate the predictive power of eight sports ranking methods.
Although we evaluated similar ranking methods such as PageRank, Winning Pacentage,
Rating Percentage Index, and Keener, our comparison approach is different mainly by the
stability measures using forward-looking approach. Our investigations may be considered
as a meta analysis for predictive power studies: we hypothesize that there is a relation
between predictive power and stability/robustness, and we consider our study as an initial
step in this direction. Finally, in [8], the authors focus on the analysis of the sensitivity
measure of the rating vectors of three linear-algebra-based ranking methods including
Colley, Massey, and Markov methods. The authors employ reverse engineering of a simple
input ranking vector that they use to build a perfect season to determine the output rating
vectors produced by the three methods to measure the sensitivity. This is also a different
technique from our approach.

The stability problem has also been addressed in the literature of network science,
especially in the case of centrality measures; see, e.g., [9–11]. Since many rating methods
can be interpreted as network centrality measures, investigating the stability problem for
ratings in the sport domain is a convenient next step in this direction.

In this study, we propose a simple forward-looking approach to actively compare rat-
ing and ranking methods with respect to their robustness and stability over time. Informally,
a rating (or ranking) method is considered to be stable over time if the differences between
the rating (or ranking) vectors obtained for the consecutive time periods are steadily small,
using proper functions to calculate the difference. Our approach is a forward-looking one in
the sense that stability is measured from a future perspective: if a rating ‘at present’ is closer
to the rating obtained at some future time point, this indicates stability. This study attempts
to evaluate and compare ratings and rankings by dynamically modifying the dataset (used
to calculate ratings) using rolling and expanding window simulations, respectively.

The rest of this paper is organized as follows: In Section 2, we formally discuss several
commonly used rating and ranking methods that we use in our simulations. In Section 3,
we describe the evaluation framework and comparison methods. In Section 4, we discuss
the simulations results on some European football league datasets. Finally, we conclude
and address some future research directions in Section 5.

2. Rating and Ranking Methods

In this section, we give a short description of the ranking methods we will use. For
a more detailed introduction about ranking methods, refer to [12,13].

Let V = (1, . . . , n) be the set of n teams to be rated, and let R be the number of rounds
in a competition among the teams in V. After round r (r = 1, . . . , R), a rating function
φr : V → R assigns a score to each team which we may call their quantitative ‘strength’.
A ranking σr : V → V is an ordering of the teams simply obtained from a rating on V by a
proper sorting. For rating the teams, we consider only the final scores of the games played.

We define the n× n matrices W and D as

Wij = #{i won against j},

and
Dij = #{draws between i and j}.

The score matrix S ∈ Rn×n is defined as

Sij = #{ points i scored against j}.

To avoid fully zero rows in S, we consider Sij = Sji = 1/2 if the outcome of the game is 0:0.
Using W matrix, the elements of the vectors w = W1, l = Wt1, d = D1, and

t = (W + Wt + D)1 are the number of wins, loses, draws, and total number of games
played by team i (i = 1 . . . , n), respectively, where 1 is the n-element vector with all entries
being one. Since each game is either a win, a lose, or a draw, t = w + l + d. We define
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T = diag(ti), which is the diagonal matrix with entries Tii = ti and Tij = 0, if i 6= j
(i, j = 1 . . . , n). Similarly, we may define the vectors s = S1, u = St1 as the total number of
scores by team i against the opponents and by the opponents against team i, respectively.

2.1. Winning Percentage (WP)

The winning percentage of team i after round r is simply defined as φr
WP(i) = (wi +

κdi)/ti, where κ is a parameter between 0 and 1 and can be interpreted as the ‘value’ of
a draw. For example, if we take κ = 1/3, it refers to the fact that the value of a draw is
one third of the value of a win. The vector of winning percentages after round r can be
computed as

φr
WP = T−1(w + κd).

By considering the score matrix S, a similar quantity can be calculated as φr
WP(S) = T−1s.

Observe that this method does not take into consideration the strength of the opponent
teams; only the outcome games count.

2.2. Rating Percentage Index (RPI)

The Rating Percentage Index takes into account the WP of the team’s opponents and
the WP of their opponents’ opponents [14]. The average winning percentage of team i’s
opponents after round r is calculated as

1
ti

∑
j
(Wij + Wji + Dij)φ

r
WP(j),

where the average is taken over the set of the team’s previous opponents after round
r. The vector of the average opponents’ winning percentages is T−1(W + Wt + D)φr

WP.
The winning percentages of the opponents’ opponents can be calculated as T−1(W + Wt +
D)2φr

WP. After round r, RPI vector is calculated as the following weighted average:

φr
RPI =

1
4

φr
WP +

1
2

T−1(W + Wt + D)φr
WP +

1
4

T−1(W + Wt + D)2φr
WP,

and similarly, given score matrix S, as

φr
RPI =

1
4

φr
WP(S) +

1
2

T−1(S + St)φr
WP(S) +

1
4

T−1(S + St)2φr
WP(S).

2.3. Massey’s Least Squares Method (M)

The only statistics used in Massey’s least squares method [15] are the number of wins
and losses for each team. The rating φr

M of the teams after round r is obtained by the
solution of the linear system

Mφr
M = w− l,

where M = T−W−Wt−D contains the total number of games played by the teams in the
diagonal, while Mij is −1 times the number of games played between teams i and j, i 6= j.
The method naturally incorporates draws, since a draw between two teams increases Mij
and Mji by one, while the right-hand side w− l remains unchanged. Since rank(M) < n,
the linear system does not have a unique solution. To handle this problem, one possible
solution is to replace any row in M with 1 and the corresponding entry of w− l with zero.

2.4. Colley’s Least Squares Method (C)

The Colley method is also a modification of the least squares method utilizing an
observation called Laplace’s rule of succession (see [16], p. 148), which states that if one
observed k successes out of m attempts, then (k + 1)/(m + 1) is a better estimate for the
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next event to be a success than k/m. The rating vector φr
C of the teams is the solution of the

linear system
Cφr

C = b,

where C = M + 2I (here, I is the identity matrix) and b = 1 + 1/2(w− l). It can be proved
that the linear system has a unique solution.

2.5. Keener Method (K)

Keener’s method [17] is a so-called spectral rating method which uses the Perron–
Frobenius eigenvector for the rating, and (after round r) it is given by the solution of the
eigenvalue equation

T−1(W + κD)φr
K = λφr

K,

where λ is the dominant eigenvalue of the matrix T−1(W + κD), and it exists for a matrix
with non-negative entries such that any other eigenvalue is smaller in absolute value.
The corresponding eigenvector, called the Perron–Frobenius eigenvector, has non-negative
entries and provides the rating of the teams. Originally, the method was defined for the case
in which we consider the score matrix S. The Keener matrix, also based on the Laplace’s
rule of succession, is defined as

Kij = h
( Sij + 1

Sij + Sji + 1

)
,

where h is a skewing function helping to reduce the difference between the upper and
lower ends of the rating. We use the original function defined by Keener, namely,

h(x) =
1
2
+

1
2

sgn(x− 1
2
)
√
|2x− 1|

The Keener rating vector φr
K(S) of the teams is given by the solution of the equation

T−1Kφr
K(S) = λφr

K(S).

2.6. PageRank Method (PR)

The PageRank method [18] was originally designed to rank web pages based on their
position in the WWW network. The idea behind it came from the basic properties of
Markov chains (see, e.g., [12], Chapter 4). In the context of sports, the rating of the teams is
calculated in an iterative way using the recursion formula

PR(i) =
λ

n
+ (1− λ) ∑

j∈N+(i)

PR(j)
wj

,

where N+(i) is the set of teams defeated by team i at least once, wj is the total number of
wins of team j, and λ ∈ [0, 1] is a parameter (usually 0.1 or 0.2) to guarantee convergence.

To see the relationship between the PageRank formula and the theory of Markov
chains, we may write the above equation in a vector equation form as

PR =
λ

N
[I − (1− λ)SD−1]−11,

where PR PageRank vector contains the PageRank values of each team, D is the diagonal
matrix D = diag[(Dii = ∑n

`=1 Si`)
n
i=1)], while I is the n× n identity matrix. Assuming that

1PR = 1 implies that PR = MPR, with M = λ/n11T − (1− λ)SD−1. This shows that PR
is the eigenvector of matrix M for eigenvalue one, which is the largest eigenvalue of M as
a consequence of the Perron–Frobenius theorem for row-stochastic matrices. The rating
vector φr

PR(S) of the teams after round r can be calculated using, for instance, the power
iteration method.
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2.7. Graph Representation of the Methods

We shall emphasize that all the above-defined methods have a graph theoretical
interpretation. Using the game results data set, one can define a directed multigraph, where
nodes represent players/teams, while edges between them represent outcomes of games
they played. The edges are directed and each of them is going from the loser team to the
winning team. If ties are also considered, they can be represented by two directed links
with opposite directions and half or some fractional weight. In this case, matrix W is the
adjacency matrix of the directed multigraph, and w and l contain the in- and out-degrees
of nodes, respectively. From a network science perspective, Massey’s M matrix is the
graph Laplacian if the result matrix is treated as the matrix of a symmetric undirected
graph. The Massey rating vector φM is then equivalent to the potential vector over a resistor
network defined by W with supply vector w− l [19]. The PageRank method is a simple
modification of the classic PageRank algorithm, performed on the results graph.

3. Evaluation and Comparison of Rating Methods

In this section, we present the applied simulation approaches and the definitions of
the stability of ratings and rankings as well as the rating error. To deal with the dynamic
nature of sport competitions, we perform rolling window (RW) and expanding window
(EW) simulations, described as follows.

3.1. Rolling Window Approach

Let Wt (or St) be the results matrix generated just after t games (here t = 50, 60, 70, . . .).
Let φt

RW be the rating vector after t games played. We generate the results matrix W∆t,t+∆t
RW

with the fixed number of games (window length) ∆t and calculate the rating φ
(∆t,t+∆t
RW for

the new matrix using the same rating method. For example, if ∆t = 10, then games from 1
to 50, 11 to 60, etc., are considered to create the results matrix and ratings.

3.2. Expanding Window Approach

In the expanding window case, let W(T,∆t)
EW (or S(T,∆t)

EW ) be the result matrix generated
by an incremental number of games starting from the first T games with expansion factor
∆t. For instance, if starting from T = 50 with expansion factor ∆t = 10, then W(T,∆t=10)

EW is
the result matrix generated considering the first 50, 60, 70, etc., games from the beginning
of the competition. The team rating after game t is given by φt

EW .

3.3. Rating Stability

To measure the stability of the considered methods, we compute the Euclidean distance
between consecutive rating vectors obtained by either the rolling or the expanding window
approach with specified ∆t values [20]. Formally, we calculate

d2
RW(t) = ||φ(k∆t,t+∆t)

RW − φt
RW)||22,

where || · ||2 denotes the Euclidean norm. If we average d2
RW(t) for all t = 50, 60, . . .

with k = 1, 2, . . . we obtain a single value representing the average stability of the rating
method over the whole competition or up to a given round. The stability in the case of the
expanding window approach is measured similarly.

3.4. Ranking Stability

To measure the stability of rankings generated by the applied rating methods, we
measure rank correlations using the Kendall tau method [21]. Given two consequtive
rankings, σt

RW = σ1 and σ
(t+∆t)
RW = σ2 , the Kendall tau distance is defined as

τt
RW =

#
{

teams (i, j) :
(

σ1
i > σ1

j and σ2
i < σ2

j

)
or
(

σ1
i < σ1

j and σ2
i > σ2

j

)}
1
2 n(n− 1)
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where σ1
i and σ2

i is the rank of team i in ranking σt
RW and σ

(k∆t,t+∆t)
RW (t = 50, 60, . . . with

k = 1, 2, . . . ), respectively.
We can average τt

RW for all t = 50, 60, . . . : we obtain a single value representing the
mean stability of the ranking method over the whole competition or up to a given round.
The stability in the case of the expanding window approach can be measured similarly.

3.5. Rating Error

We also estimate the potential predictive power of the rating methods in a simple way.
Each dataset is divided into two subsets: a training set and a test set. For the training set,
a rating φt is calculated for t games (t = 50 fixed in the case of rolling window approach,
while t = 50, 60, . . . in the case of the expanding window approach). The test set consists
of the next ∆t games (∆t = 10 in our simulations). We define the prediction error Et

φ of a
rating method φ as the proportion of games in the test set, such that the lower-rated team
beat the higher-rated one, i.e.,

Et
φ =

#{team i beats j in test set and φi<φj}
#{games in testset }

+
#{team i and j tie in dataset t and φi 6=φj}

#{games in testset}

The total error is calculated as the average of the errors obtained for each train and
test set sample.

4. Results

We performed our experiments using English Premier League Datasets (source: https:
//www.kaggle.com/datasets/saife245/english-premier-league (accessed on 15 March
2022)). The datasets contain the date of the game, the name of the teams, the home and
away scores, and the total points of the teams during the competition. To generate the
results matrices (graphs), we used W matrix in the case of PageRank, Massey, Colley, WP,
and RPI methods. In the case of the Keener Method, we considered the Score matrix S. We
performed rolling window (RW) and expanding window (EW) simulations to analyze the
ranking and rating stability using the Kendall tau and Euclidean methods, respectively.
The results are presented via tables and plots in this section.

4.1. Comparison of Top-5 Teams Ranking by Rolling Window Approach

First, we compared the rankings and ratings of the top-5 teams using our rolling
window and expanding window approaches. Here, we considered standard deviation
in rating the top-5 teams at different window times (games). Table 1 summarizes the
rolling window results. In all the investigated windows (10–60, 20–70, and 30–80 games),
Man. City was rated and ranked the best team among the top-5 teams by PageRank
(sd ± 0.0522; sd ± 0.0116; sd ± 0.0125), Massey (sd ± 0.0333; sd ± 0.0409; sd ± 0.0418), and
Keener (sd ± 0.0328; sd ± 0.0434; sd ± 0.0482), while the Massey and Keener methods
ranked and rated Man. United as the second best team among the top five. On the other
hand, Man. City and Man. United were rated and ranked as the first and second teams,
respectively, by the WP (sd ± 0.2418; sd ± 0.2256; sd ± 0.2097) method in all the windows.
In general, using our rolling window approach, we can observe that PageRank, Massey,
and Keener perform relatively better compared to other investigated ranking methods
(see Table A1 in Appendix A). These three ranking methods recorded a relatively small
standard deviation. Small standard deviation at different windows implies small variation
in team rating, hence rank–rate stability and vice versa.

https://www.kaggle.com/datasets/saife245/english-premier-league
https://www.kaggle.com/datasets/saife245/english-premier-league
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Table 1. Comparison of top-5 teams rate–rank by rolling window approach.

10–60 Games 20–70 Games 30–80 Games
Method Teams Ranks Rating Teams Ranks Rating Teams Ranks Rating

PageRank

‘Man. City’ 1 0.0696 ‘Man. City’ 1 0.0894 ‘Man. City’ 1 0.0895
‘Man. United’ 2 0.0067 ‘Arsenal’ 2 0.0815 ‘Arsenal’ 2 0.083
’Arsenal’ 3 0.1564 ‘Man. United’ 3 0.0671 ’Man. United’ 3 0.068
‘Tottenham’ 4 0.0544 ‘Newcastle’ 4 0.0612 ‘Newcastle’ 4 0.0655
‘Chelsea’ 5 0.1344 ‘Tottenham’ 5 0.0635 ‘Tottenham’ 5 0.0639

sd ± 0.0522 sd ± 0.0116 sd ± 0.0125

Colley

‘Man. City’ 1 0.1923 ‘Man. United’ 1 −0.042 ‘Arsenal’ 1 −0.0368
‘Man. United’ 2 −0.0138 ‘Man. City’ 2 −0.0579 ‘Man. City’ 2 0.057
‘Arsenal’ 3 −0.1511 ‘Newcastle’ 3 0.1823 ‘Tottenham’ 3 0.2564
‘Tottenham’ 4 −0.0149 ‘Arsenal’ 4 0.0206 ‘Man. United’ 4 −0.1074
‘Newcastle’ 5 0.061 ‘Tottenham’ 5 −0.0821 ‘Newcastle’ 5 0.1348

sd ± 0.1104 sd ± 0.1267 sd ± 0.1333

Massey

‘Man. City’ 1 −0.0696 ‘Man. City’ 1 −0.1379 ‘Man. City’ 1 −0.1053
‘Man. United’ 2 −0.0067 ‘Man. United’ 2 −0.0599 ‘Man. United’ 2 −0.2243
‘Arsenal’ 3 −0.1564 ‘Arsenal’ 3 0.7011 ‘Arsenal’ 3 0.8573
‘Tottenham’ 4 −0.0544 ’Tottenham’ 4 −0.3316 ‘Tottenham’ 4 −0.314
‘Newcastle ’ 5 0.1344 ’Newcastle’ 5 0.4368 ‘Chelsea’ 5 0.4633

sd ± 0.0333 sd ± 0.0409 sd ± 0.0418

Keener

‘Man. City’ 1 0.1843 ‘Man. City’ 1 0.1612 ‘Man. City’ 1 0.1617
‘Man. United’ 2 0.2164 ‘Man. United’ 2 0.2157 ‘Man. United’ 2 0.2145
‘Arsenal’ 3 0.2415 ‘Tottenham’ 3 0.2238 ‘Tottenham’ 3 0.2258
‘Tottenham’ 4 0.2348 ‘Arsenal’ 4 0.2496 ‘Arsenal’ 4 0.2465
‘Newcastle’ 5 0.2065 ‘Newcastle’ 5 0.1889 ‘Newcastle’ 5 0.1759

sd ± 0.0328 sd ± 0.0434 sd ± 0.0482

WP

‘Man. United’ 1 0.0513 ‘Man. United’ 1 0.0511 ‘Man. United’ 1 0.0509
‘Man. City’ 2 0.0484 ‘Man. City’ 2 0.0485 ‘Man. City’ 2 0.0484
‘Chelsea’ 3 0.0514 ‘Arsenal’ 3 0.0518 ‘Chelsea’ 3 0.0513
‘Arsenal’ 4 0.0509 ‘Tottenham’ 4 0.0502 ‘Arsenal’ 4 0.0508
‘Tottenham’ 5 0.0531 ‘Newcastle’ 5 0.0519 ‘Tottenham’ 5 0.0515

sd ± 0.2418 sd ± 0.2256 sd ± 0.2097

RPI

‘Man. City’ 1 0.0489 ‘Man. United’ 1 0.0484 ‘Man. United’ 1 0.0483
‘Man. United’ 2 0.0490 ‘Chelsea’ 2 0.0510 ‘Chelsea’ 2 0.0514
‘Arsenal’ 3 0.0526 ‘Man. City’ 3 0.0510 ‘Man. City’ 3 0.0527
‘Tottenham’ 4 0.0482 ‘Arsenal’ 4 0.0514 ‘Arsenal’ 4 0.0508
‘Newcastle’ 5 0.0523 ‘Tottenham’ 5 0.0533 ‘Tottenham’ 5 0.0491

sd ± 0.2122 sd ± 0.2819 sd ± 0.3418

4.2. Comparison of Top-5 Teams Ranking by Expanding Window Approach

Next, we compared the rank–rate of the top-5 teams using expanding window ap-
proach. Table 2 shows the summary of results. According to the analysis after 60 and
70 games, Man. City and Man. United were rated and ranked the best teams among the
top-5 teams by PageRank (sd ± 0.0165; sd ± 0.0174; sd ± 0.0176), Massey (sd ± 0.0242;
sd ± 0.0226; sd ± 0.0210), and WP (sd ± 0.0971; sd ± 0.0865; sd ± 0.0737). Both WP and
PageRank rated and ranked Man. City as the best team among top-5 teams in all windows,
while Arsenal was rated and ranked the best team in all windows by Colley (sd ± 0.0773;
sd ± 0.0754; sd ± 0.0775). In general, using our expanding window approach, we can ob-
serve that PageRank and Massey perform relatively better compared to other investigated
ranking methods (see Table A2 in Appendix A), although the PageRank and Massey meth-
ods recorded a relatively small standard deviation. PageRank was more stable in ranking
compared to the other investigated methods. As mention in Section 4.1, a small standard
deviation for team ratings implies small variation in team ranking, hence rank–rate stability.

4.3. Rating Stability

We evaluate the rating stability based on the Euclidean distance measure described in
Section 3.3. In this analysis, we compute Euclidean distance between two consecutive rating
vectors obtained by rolling and expanding window approaches, respectively, to measure
their similarity or deviation. In this scenario, the mean stability of the rating methods is
based on average Euclidean distance d2

RW(t) and d2
EW(t) (t = 50, 70, . . . ). In this case, we

measure the mean distance between team rating vectors. The lower the d2(t) value, the
more stable the rating method.
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Table 2. Comparison of top-5 teams rate–rank by expanding window approach.

After 60 Games After 70 Games After 80 Games
Method Teams Ranks Rating Teams Ranks Rating Teams Ranks Rating

PageRank

‘Man. City’ 1 0.1217 ‘Man. City’ 1 0.1226 ‘Man. City’ 1 0.1237
‘Chelsea’ 2 0.0889 ‘Chelsea’ 2 0.0898 ‘Chelsea’ 2 0.0907
‘Man. United’ 3 0.0757 ‘Man. United’ 3 0.0758 ‘Man. United’ 3 0.0759
‘Newcastl’ 4 0.0670 ‘Arsenal’ 4 0.0668 ‘Arsenal’ 4 0.0666
‘Tottenham’ 5 0.0640 ‘Tottenham’ 5 0.0641 ‘Tottenham’ 5 0.0643

sd ± 0.0165 sd ± 0.0174 sd ± 0.0176

Colley

‘Arsenal’ 1 0.1923 ‘Arsenal’ 1 0.1815 ‘Arsenal’ 1 0.1846
‘Man. City’ 2 −0.0138 ‘Man. City’ 2 −0.0205 ‘Man. City’ 2 −0.0290
‘Man. United’ 3 −0.1511 ‘Man. United’ 3 −0.1462 ‘Man. United’ 3 −0.1436
‘Tottenham’ 4 −0.0149 ‘Tottenham’ 4 −0.0085 ‘Tottenham’ 4 −0.0113
‘Newcastle’ 5 0.0610 ‘Chelsea’ 5 0.0030 ‘Chelsea’ 5 0.0001

sd ± 0.0773 sd ± 0.0754 sd ± 0.0775

Massey

‘Man. City’ 1 −0.0696 ‘Man. City’ 1 −0.0569 ‘Man. United’ 1 0.1560
‘Arsenal’ 2 −0.0067 ‘Man. United’ 2 −0.0055 ‘Man. City’ 2 −0.0509
‘Man. United’ 3 −0.1564 ‘Arsenal’ 3 −0.1278 ‘Arsenal’ 3 −0.1044
‘Tottenham’ 4 -0.0544 ‘Tottenham’ 4 −0.0444 ‘Newcastle’ 4 0.0121
‘Newcastle’ 5 0.1344 ‘Newcastle’ 5 0.1098 ‘Chelsea’ 5 0.0464

sd ± 0.0242 sd ± 0.0226 sd ± 0.0210

Keener

‘Man. United’ 1 0.1843 ‘Man. United’ 1 0.1870 ‘Man. United’ 1 0.2382
‘Man. City’ 2 0.2164 ‘Man. City’ 2 0.2169 ‘Man. City’ 2 0.2150
‘Arsenal’ 3 0.2415 ‘Arsenal’ 3 0.2403 ‘Chelsea’ 3 0.2109
‘Tottenham’ 4 0.2348 ‘Tottenham’ 4 0.2341 ‘Arsenal’ 4 0.1791
‘Newcastle’ 5 0.2065 ‘Newcastle’ 5 0.2073 ‘Tottenham’ 5 0.1947

sd ± 0.0326 sd ± 0.0408 sd ± 0.0418

WP

‘Man. City’ 1 0.0555 ‘Man. City’ 1 0.0553 ‘Man. City’ 1 0.0550
‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0490
‘Arsenal’ 3 0.0483 ‘Tottenham’ 3 0.0497 ‘Tottenham’ 3 0.0497
‘Tottenham’ 4 0.0497 ‘Arsenal’ 4 0.0483 ‘Arsenal’ 4 0.0484
‘Newcastle’ 5 0.0502 ‘Newcastle’ 5 0.0501 ‘Newcastle’ 5 0.0501

sd ± 0.0971 sd ± 0.0865 sd ± 0.0737

RPI

‘Man. City’ 1 0.0573 ‘Man. United’ 1 0.0497 ‘Man. United’ 1 0.0497
‘Man. United’ 2 0.0497 ‘Man. City’ 2 0.0570 ‘Man. City’ 2 0.0567
‘Arsenal’ 3 0.0490 ‘Arsenal’ 3 0.0490 ‘Arsenal’ 3 0.0490
‘Tottenham’ 4 0.0494 ‘Newcastle’ 4 0.0499 ‘Tottenham’ 4 0.0495
‘Newcastle’ 5 0.0499 ‘Chelsea’ 5 0.0479 ‘Swansea’ 5 0.0503

sd ± 0.0506 sd ± 0.0831 sd ± 0.0843

4.3.1. Evaluation by Rolling Window Approach

We measure the distance d2
RW(t) between two consecutive rating vectors. According

to the results in Figure 1, for rolling window simulation, the distance values d2
RW(t) tend

to change over time (i.e., on each window/game). Generally, PageRank and Massey
recorded low average values of d2

RW = 0.025 and d2
RW = 0.029, respectively. On the other

hand, Colley, Keener, WP, and RPI recorded higher distance values with an average of
d2

RW ≥ 0.035. This implies those methods have lower rating stability due to high deviation
(i.e., low similarity) in rating vectors.

4.3.2. Evaluation by Expanding Window Approach

We also compared and evaluated the rating stability of the investigated methods using
the expanding window approach. Similarly, we measure distance d2

EW(t) between two
consecutive rating vectors at incremental window size (i.e., after 50, 60, 70,. . .) as described
in Section 3.3. The results in Figure 2 suggest that the distance values d2

EW(t) for expanding
window simulation increase over time (i.e., on each window/game). Again, PageRank
and Massey recorded low average distance values ranging between d2

EW = 0.025 and
d2

EW = 0.03. Again, low d2
EW value implies low deviation (i.e., high similarity) in rating

vectors and hence a high rating stability. Similarly, Colley, Keener, WP, and RPI recorded
slightly higher average distance values ranging between d2

EW = 0.035 and d2
EW = 0.040.

This indicates that those methods have lower rating stability due to high deviation (i.e.,
low similarity) in rating vectors.
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Figure 1. Rating stability based on Euclidean distance by rolling window approach. The figure above
shows that the distance value d2

RW(t) for PageRank, Colley, Massey, Keener, WP, and RPI methods
changes over time at fixed window size (i.e., 10 games per window). Smaller value indicates a higher
rating stability.

Figure 2. Rating stability based on Euclidean distance by expanding window approach. The figure
above shows that the distance value d2

EW(t) for PageRank, Colley, Massey, Keener, WP, and RPI
methods increases over time at incremental window size (i.e., an increase of 10 games per window).
Smaller distance value indicate higher rating stability.
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4.4. Ranking Stability

As mentioned in Section , we compared ranking stability for the investigated methods
using rolling window and expanding window based on the Kendall tau method. Here, we
consider rank correlation coefficient τ taking values between −1 and +1, which character-
izes the degree of ranking stability (i.e., agreement between two rank lists). Statistically, τ
measures the similarity (concordant and discordant) of two rank lists. The values of τ = +1
indicate the highest possible ranking stability, i.e., the two rank lists are exactly the same,
while τ = −1 indicates low ranking stability, i.e., the two team rank lists are exactly the
opposite, and τ(r) = 0.00 implies that one rank list is a random reordering of the other.

4.4.1. Evaluation by Rolling Window Approach

According the result in Figure 3, PageRank and Massey recorded the highest rank
correlation, τRW ≥ 0.60 and τRW ≥ 0.80, respectively. On the other hand, both Colley
and Keener recorded a rank correlation of τRW ≈ 0.60. However, WP and RPI recorded
a low rank correlation, i.e., τRW ≤ 0.60. In general, PageRank, Colley, and Massey have
relatively stable ranking performance compared with Keener, WP, and RPI, which tend to
be unstable over time (at different windows/number of games). τRW ≤ 0 implies that all six
investigated ranking methods show ranking stability using our rolling window approach.

Figure 3. Rank stability of PageRank, Colley, Massey, Keener, WP, and RPI methods using rolling
window simulations.

4.4.2. Evaluation by Expanding Window Approach

We further compared the ranking stability of all the investigated ranking methods
using the expanding window approach. According to the result in Figure 4, PageRank,
Colley, Massey, and Keener methods recorded a higher rank correlation value of τEW ≤ 0.60
with PageRank recording highest values of τEW ≥ 0.70. WP and RPI recorded a relatively
low rank correlation value of τEW ≤ 0.60. Overall, the analysis indicates that as we
increase/expand the window size (i.e., number of games), the rating stability tends to
increase over time.
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Figure 4. Rank stability of PageRank, Colley, Massey, Keener, WP, and RPI methods using expanding
window simulations.

4.5. Rating Error

As described in Section 3.5, we evaluated the predictive power of the rating methods
using a very simple and intuitive approach. For the training set, we considered a fixed
number of games (50) or incremental number of games (50, 70, . . .) with respect to rolling
window and expanding window simulations. For the test set, a fixed number of games
(10 in our case), played right after the games considered in the training set, was used.

According to the evaluation results, the rating errors are shown in Table 3. It was
evidenced that PageRank and Massey had a low average rating error, that is, Eφ& ≤ 0.2568
and Eφ& ≤ 0.2819, respectively. This leads to the hypothesis that both PageRank and
Massey rankings had higher predictive power than the others. A more detailed comparison
of rating error can be seen from Figures A1 and A2 in Appendix B.

Table 3. Average rating error for rolling and expanding window simulations

PageRank Colley Massey Keener WP RPI

RMSE sd RMSE sd RMSE sd RMSE sd RMSE std RMSE sd

RW 0.2568 0.0188 0.4133 0.1156 0.2819 0.0318 0.4067 0.0435 0.4722 0.0927 0.4809 0.2220
EW 0.2826 0.0193 0.4025 0.0765 0.3237 0.0172 0.3859 0.0573 0.4446 0.0489 0.4425 0.0692

5. Discussions

To gain a deeper insight into how some widely used rating systems work, we compared
the rating and ranking performance of six rating methods. We applied a forward-looking
approach to compare and evaluate their ranking and rating stability. In our experimental
investigations, we considered the 2014 English Primer League dataset for simulations
(similar to NFL data used in a related study [12], or US major sports data used in [7]). Our
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approach provides an efficient tool to compare and evaluate the stability of ranking or
rating of teams obtained by different methods.

We used a distance-based approach to compare the rating stability utilizing the Eu-
clidean distance measure. It takes into consideration the difference of the consecutive
rating vectors. Rating methods with small deviation measures tend to have higher rating
stability [22,23]. According to the results in Figures 1 and 2, PageRank generally recorded
low deviation measures in both rolling window and expanding window simulation.

The results of the evaluation of ranking stability by rolling window and expanding
window are presented in Section 4. Among the six methods we examined (PageRank,
Colley, Massey, Keener, WP, and RPI), we observed the difference of ranking results at
different time windows and window sizes using Kendall tau rank correlation. Some rating
methods, such as WP and RPI rank are similar compared to the others. If we consider the
round-robin tournament, the rank correlation coefficient changes irregularly over time at
different window sizes.

We also conducted a comparison of rank–rate performance providing some new
insights into the functionality of rating systems (see Tables A1 and A2, Appendix A).

When we considered an increasing time window (by a constant factor), we observed
that the Kendall tau rank correlation stabilized over time. This implies that the overall
ranking is becomes generally more stable when approaching the end of the competition.

According to the prediction error results in Table 3, for the rolling window simulation,
PageRank and Massey methods recorded a low mean prediction error of 0.257 and 0.282,
respectively. On the other hand, WP (0.472) and RPI (0.481) recorded higher prediction
errors. Further evaluation of the prediction error based on the expanding window approach
shows a similar trend. However, PageRank and Massey recorded slightly higher prediction
errors in this case, being 0.283 and 0.324, respectively. In contrast, Colley, Keener, WP,
and RPI recorded slightly low prediction errors compared to the rolling window case.
Colley, Keener, WP, and RPI tended to predict better using the expanding window approach
(see Appendix B).

We have also seen that prediction error depends on the rating and ranking stability
of the methods. Stable rating methods tend to record low prediction errors compared to
less stable methods, in agreement with the findings in [24]. Generally, the findings of this
study, in agreement with the related literature, suggest that PageRank is a more stable and
robust rating method in the sport domain compared to the other five methods. PageRank,
which was developed originally in the search engines domain [18], has been applied in
various other domains as well as in sports. Just to mention some related studies, a time-
dependent PageRank was also used for ranking sports tournaments [25,26]. PageRank was
also applied on randomized sports data to rank teams and individual players in sports [27].
Our findings, in general, coincide with the previous ones showing the distinguished
capability and performance of PageRank in rating and ranking compared to most of the
other approaches.

6. Conclusions

This study presents a forward-looking approach to compare and evaluate six basic
rating methods with two different simulation scenarios, namely a rolling window and
an expanding window approach, respectively. Rank–rate comparison indicates that the
PageRank and Massey methods are consistent and robust in rating and ranking teams in
both rolling and expanding forward-looking approaches. Evaluation of ranking stability by
using Kendall tau correlation coefficients shows that PageRank has a high rank correlation
coefficient. This indicates its stability in ranking over time. Similarly, evaluation of rating
stability by the Euclidean distance measure indicates both the PageRank and Massey
methods have only a small change in distance measure in both simulation setups, hence
showing a high rating stability in general. Evaluation of rating error suggests that PageRank
has high predictive power in both rolling and expanding window simulations. In general,
the PageRank and Massey methods performed well in both rolling and expanding window
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tests. Nevertheless, further comparisons may be needed to test their rating stability as well
as their robustness in other applications.
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Appendix A

Appendix A.1. Rank–Rate Comparison of Top-5 Teams by Rolling Window Approach

Table A1 shows the extended results of comparison of rank–rate and the standard
deviation of the top-5 teams by rolling window between 10–60, 20–70,30–80, 40–90, 50–100,
and 60–110 games.

Appendix A.2. Rank–Rate Comparison of Top-5 Teams by Expanding Window Approach

Table A2 shows the extended results of comparison of the rank–rate and the standard
deviation of the top-5 teams by expanding window after 50, 60, 70, 80, 90, and 100 games.

https://github.com/peter26jumaochieng
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Table A1. Detailed comparison of top-5 teams rate–rank by rolling window approach.

10–60 Games 20–70 Games 30–80 Games 40–90 Games 50–100 Games 60-110 Games
Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings

PageRank

‘Man. City’ 1 0.0696 ‘Man. City’ 1 0.0894 ‘Man. City’ 1 0.0895 ‘Man. City’ 1 0.0894 ‘Man. City’ 1 0.0944 ‘Man. City’ 1 0.0002
‘Man. United’ 2 0.0067 ‘Arsenal’ 2 0.0815 ‘Arsenal’ 2 0.083 ‘Arsenal’ 2 0.0805 ‘Arsenal’ 2 0.0820 ‘Man. United’ 2 0.0000
‘Arsenal’ 3 0.1564 ‘Man. United’ 3 0.0671 ‘Man. United’ 3 0.068 ‘Man. United’ 3 0.0683 ‘Man. United’ 3 0.0716 ‘Arsenal’ 3 0.0004
‘Tottenham’ 4 0.0544 ‘Newcastle’ 4 0.0612 ‘Newcastle’ 4 0.0655 ‘Newcastle’ 4 0.0644 ‘Newcastle’ 4 0.0661 ‘Tottenham’ 4 0.0002
‘Chelsea ’ 5 0.1344 ‘Tottenham’ 5 0.0635 ‘Tottenham’ 5 0.0639 ‘Tottenham’ 5 0.0625 ‘Tottenham’ 5 0.0651 ‘Chelsea’ 5 0.0004

sd ± 0.0522 sd ± 0.0116 sd ± 0.0125 sd ± 0.0122 sd ± 0.0251 sd ± 0.0185

Colley

‘Man. City’ 1 0.1923 ‘Man. United’ 1 −0.042 ‘Arsenal’ 1 −0.0368 ‘Tottenham’ 1 −0.0198 ‘Tottenham’ 1 −0.0187 ‘Man. City’ 1 0.1847
‘Man. United’ 2 −0.0138 ‘Man. City’ 2 −0.0579 ‘Man. City’ 2 0.057 ‘Man. City’ 2 0.0489 ‘Man. City’ 2 0.0472 ‘Man. United’ 2 -0.0291
‘Arsenal’ 3 −0.1511 ‘Newcastle’ 3 0.1823 ‘Tottenham’ 3 0.2564 ‘Man. United’ 3 0.2119 ‘Man. United’ 3 0.2121 ‘Arsenal’ 3 −0.1408
‘Tottenham’ 4 −0.0149 ‘Arsenal’ 4 0.0206 ‘Man. United’ 4 −0.1074 ‘Arsenal’ 4 −0.0829 ‘Arsenal’ 4 −0.0811 ‘Tottenham’ 4 −0.0114
‘Newcastle’ 5 0.061 ‘Tottenham’ 5 −0.0821 ‘Newcastle’ 5 0.1348 ‘Newcastle’ 5 0.1111 ‘Newcastle’ 5 0.1131 ‘Newcastle’ 5 −0.0030

sd ± 0.1104 sd ± 0.1267 sd ± 0.1333 sd ± 0.1303 sd ± 0.1135 sd± 0.0797

Massey

‘Man. City’ 1 −0.0696 ‘Man. City’ 1 −0.1379 ‘Man. City’ 1 −0.1053 ‘Man. City’ 1 −0.0961 ‘Man. City’ 1 −0.0002 ‘Man. City’ 1 −0.0961
‘Man. United’ 2 −0.0067 ‘Man. United’ 2 −0.0599 ‘Man. United’ 2 −0.2243 ‘Tottenham’ 2 0.0494 ‘Man. United’ 2 0.0000 ‘Tottenham’ 2 0.0494
‘Arsenal’ 3 −0.1564 ‘Arsenal’ 3 0.7011 ‘Arsenal’ 3 0.8573 ‘Man. United’ 3 0.4733 ‘Tottenham’ 4 −0.0002 ‘Arsenal’ 3 −0.0004
‘Tottenham’ 4 −0.0544 ‘Tottenham’ 4 −0.3316 ‘Tottenham’ 4 −0.314 ‘Arsenal’ 4 −0.2376 ‘Arsenal’ 5 0.4678 ‘Man. United’ 3 0.4733
‘Newcastle’ 5 0.1344 ‘Newcastle’ 5 0.4368 ‘Chelsea’ 5 0.4633 ‘Chelsea’ 5 0.4678 ‘Newcastle’ 5 0.0004 ‘Fulham’ 4 −0.2376

sd ± 0.0333 sd ± 0.0409 sd ± 0.0418 sd ± 0.0427 sd ± 0.0412 sd ± 0.05328

Keener

‘Man. City’ 1 0.1843 ‘Man. City’ 1 0.1612 ‘Man. City’ 1 0.1617 ‘Man. City’ 1 0.1589 ‘Man. City’ 1 0.1589 ‘Man. City’ 1 0.2211
‘Man. United’ 2 0.2164 ‘Man. United’ 2 0.2157 ‘Man. United’ 2 0.2145 ‘Man. United’ 2 0.2164 ‘Man. United’ 2 0.2164 ‘Man. United’ 2 0.2231
‘Arsenal’ 3 0.2415 ‘Tottenham’ 3 0.2238 ‘Tottenham ’ 3 0.2258 ‘Tottenham’ 3 0.2237 ‘Everton’ 3 0.2237 ‘Arsenal’ 3 0.2248
‘Tottenham’ 4 0.2348 ‘Arsenal’ 4 0.2496 ‘Arsenal’ 4 0.2465 ‘Arsenal’ 4 0.2347 ‘Arsenal’ 4 0.2347 ‘Tottenham’ 4 0.2244
‘Newcastle’ 5 0.2065 ‘Newcastle’ 5 0.1889 ‘Newcastle’ 5 0.1759 ‘Newcastle’ 5 0.1768 ‘Newcastle’ 5 0.1768 ‘Newcastle’ 5 0.2222

sd ± 0.0328 sd ± 0.0434 sd ± 0.0482 sd ± 0.0428 sd ± 0.0306 sd ± 0.0515

WP

‘Man. United’ 1 0.0513 ‘Man. United’ 1 0.0511 ‘Man. United’ 1 0.0509 ‘Man. United’ 1 0.0508 ‘Man. United’ 1 0.0506 ‘Man. City’ 1 0.0487
‘Man. City’ 2 0.0484 ‘Man. City’ 2 0.0485 ‘Man. City’ 2 0.0484 ‘Man. City’ 2 0.0486 ‘Man. City’ 2 0.0485 ‘Man. United’ 2 0.0505
‘Arsenal’ 3 0.0514 ‘Arsenal’ 3 0.0518 ‘Arsenal’ 3 0.0513 ‘Arsenal’ 3 0.0520 ‘Arsenal’ 3 0.0519 ‘Arsenal’ 3 0.0518
‘Tottenham’ 4 0.0509 ‘Tottenham’ 4 0.0502 ‘Tottenham’ 4 0.0508 ‘Tottenham ’ 4 0.0512 ‘Tottenham’ 4 0.0511 ‘Tottenham’ 4 0.0512
‘Newcastle’ 5 0.0531 ‘Newcastle’ 5 0.0519 ‘Newcastle’ 5 0.0515 ‘Swansea City’ 5 0.0504 ‘Swansea City’ 5 0.0505 ‘Chelsea’ 5 0.0488

sd ± 0.2418 sd ± 0.2256 sd ± 0.02097 sd ± 0.1941 sd ± 0.2024 sd ± 0.2668

RPI

‘Man. City’ 1 0.0489 ‘Man. City’ 1 0.0484 ‘Man. City’ 1 0.0483 ‘Man. City’ 1 0.0485 ‘Man. United’ 1 0.0508 ‘Tottenham’ 1 0.0515
‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0510 ‘Man. United’ 2 0.0514 ‘Tottenham’ 2 0.0515 ‘Man. City’ 2 0.0486 ‘Man. City’ 2 0.0486
‘Arsenal’ 3 0.0526 ‘Arsenal’ 3 0.0510 ‘Arsenal’ 3 0.0521 ‘Man. United’ 3 0.0510 ‘Newcastle’ 3 0.0523 ‘Man. United’ 3 0.0508
‘Tottenham’ 4 0.0482 ‘Tottenham’ 4 0.0514 ‘Tottenham’ 4 0.0508 ‘Arsenal’ 4 0.0512 ‘Arsenal’ 4 0.0523 ‘Arsenal’ 4 0.0523
‘Newcastle’ 5 0.0523 ‘Newcastle’ 5 0.0533 ‘Chelsea’ 5 0.0491 ‘Chelsea’ 5 0.0492 ‘Tottenham’ 5 0.0515 ‘Newcastle’ 5 0.0523

sd ± 0.2122 sd ± 0.2819 sd ± 0.3418 sd ± 0.3435 sd ± 0.1752 sd ± 0.1769
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Table A2. Detailed comparison of top-5 teams rate–rank by expanding window approach.

50 Games Afer 60 Games After 70 Games After 80 Games After 90 Games After 100
Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings Teams Ranks Ratings

PageRank

‘Man. City’ 1 0.1217 ‘Man. City’ 1 0.1226 ‘Man. City’ 1 0.1237 ‘Man. City’ 1 0.1249 ‘Man. City’ 1 0.1263 ‘Man. City’ 1 0.1566
‘Chelsea’ 2 0.0889 ‘Chelsea’ 2 0.0898 ‘Chelsea’ 2 0.0907 ‘Chelsea’ 2 0.0919 ‘Chelsea’ 2 0.0932 ‘Chelsea’ 2 0.1211
‘Man. United’ 3 0.0757 ‘Man. United’ 3 0.0758 ‘Man. United’ 3 0.0759 ‘Man. United’ 3 0.0759 ‘Man. United’ 3 0.0760 ‘Man. United’ 3 0.0781
‘Newcastle’ 4 0.0670 ‘Arsenal’ 4 0.0668 ‘Arsenal’ 4 0.0666 ‘Arsenal’ 4 0.0663 ‘Arsenal’ 4 0.0659 ‘Arsenal’ 4 0.0706
‘Tottenham’ 5 0.0640 ‘Tottenham’ 5 0.0641 ‘Tottenham’ 5 0.0643 ‘Tottenham’ 5 0.0646 ‘Tottenham’ 5 0.0648 ‘Tottenham’ 5 0.0669

sd ± 0.0165 sd ± 0.0174 sd ± 0.0176 sd ± 0.0179 sd ± 0.0213 sd ± 0.0244

Colley

‘Arsenal’ 1 0.1923 ‘Arsenal’ 1 0.1815 ‘Arsenal’ 1 0.1846 ‘Arsenal’ 1 0.1848 ‘Arsenal’ 1 0.1847 ‘Arsenal’ 1 0.1847
‘Man. City’ 2 −0.0138 ‘Man. City’ 2 −0.0205 ‘Man. City’ 2 −0.0290 ‘Man. City’ 2 −0.0291 ‘Man. City’ 2 −0.0292 ‘Man. City’ 2 −0.0291
‘Man. United’ 3 −0.1511 ‘Man. United’ 3 −0.1462 ‘Man. United’ 3 −0.1436 ‘Man. United’ 3 −0.1408 ‘Man. United’ 3 −0.1437 ‘Man. United’ 3 −0.1408
‘Tottenham’ 4 −0.0149 ‘Tottenham’ 4 −0.0085 ‘Tottenham’ 4 −0.0113 ‘Tottenham’ 4 −0.0113 ‘Tottenham’ 4 −0.0114 ‘Tottenham’ 4 −0.0114
‘Newcastle’ 5 0.0610 ‘Chelsea’ 5 0.0030 ‘Chelsea’ 5 0.0001 ‘Chelsea’ 5 −0.0029 ‘Chelsea’ 5 −0.0030 ‘Newcastle’ 5 −0.0030

sd ± 0.0773 sd ± 0.0754 sd ± 0.0775 sd ± 0.0747 sd ± 0.0783 sd ± 0.0778

Massey

‘Man. City’ 1 −0.0696 ‘Man. City’ 1 −0.0569 ‘Man. United’ 1 0.1560 ‘Man. City’ 1 −0.0380 ‘Man. City’ 1 −0.0310 ‘Man. City’ 1 −0.0002
‘Arsenal’ 2 −0.0067 ‘Man. United’ 2 −0.0055 ‘Man. City’ 2 −0.0509 ‘Man. United’ 2 −0.0037 ‘Man. United’ 2 −0.0030 ‘Man. United’ 2 0.0000
‘Man. United’ 3 −0.1564 ‘Arsenal’ 3 −0.1278 ‘Arsenal’ 3 −0.1044 ‘Arsenal’ 3 −0.0853 ‘Arsenal’ 3 −0.0697 ‘Arsenal’ 3 −0.0004
‘Tottenham’ 4 −0.0544 ‘Tottenham’ 4 −0.0444 ‘Newcastle’ 4 0.0121 ‘Tottenham’ 4 −0.0297 ‘Tottenham’ 4 −0.0242 ‘Tottenham’ 4 −0.0002
‘Newcastle’ 5 0.1344 ‘Newcastle’ 5 0.1098 ‘Chelsea’ 5 0.0464 ‘Newcastle’ 5 0.0733 ‘Newcastle’ 5 0.0599 ‘Newcastle’ 5 0.0004

sd ± 0.0242 sd ± 0.0226 sd ± 0.0210 sd ± 0.0518 sd ± 0.0337 sd ± 0.0296

Keener

‘Man. United’ 1 0.1843 ‘Man. United’ 1 0.1870 ‘Man. United’ 1 0.1897 ‘Man. United’ 1 0.1923 ‘Man. United’ 1 0.1948 ‘Man. United’ 1 0.2211
‘Man. City’ 2 0.2164 ‘Man. City’ 2 0.2169 ‘Man. City’ 2 0.2173 ‘Man. City’ 2 0.2178 ‘Man. City’ 2 0.2183 ‘Man. City’ 2 0.2231
‘Arsenal’ 3 0.2415 ‘Arsenal’ 3 0.2403 ‘Arsenal’ 3 0.2391 ‘Arsenal’ 3 0.2380 ‘Arsenal’ 3 0.2369 ‘Arsenal’ 3 0.2248
‘Tottenham’ 4 0.2348 ‘Tottenham’ 4 0.2341 ‘Tottenham’ 4 0.2333 ‘Tottenham’ 4 0.2326 ‘Tottenham’ 4 0.2319 ‘Tottenham’ 4 0.2244
‘Newcastle’ 5 0.2065 ‘Newcastle’ 5 0.2073 ‘Newcastle’ 5 0.2081 ‘Swansea City’ 5 0.2090 ‘Swansea City’ 5 0.2098 ‘Newcastle’ 5 0.2222

sd ± 0.0326 sd ± 0.0408 sd ± 0.0418 sd ± 0.0394 sd ± 0.0314 sd ± 0.0416

WP

‘Man. City’ 1 0.0555 ‘Man. City’ 1 0.0553 ‘Man. City’ 1 0.0550 ‘Man. City’ 1 0.0486 ‘Man. City’ 1 0.0487 ‘Arsenal’ 1 0.0511
‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0490 ‘Man. United’ 2 0.0511 ‘Man. United’ 2 0.0510 ‘Man. City’ 2 0.0488
‘Arsenal’ 3 0.0483 ‘Tottenham’ 3 0.0497 ‘Tottenham’ 3 0.0497 ‘Tottenham’ 3 0.0508 ‘Everton’ 3 0.0504 ‘Man. United’ 3 0.0509
‘Tottenham’ 4 0.0497 ‘Arsenal’ 4 0.0483 ‘Arsenal’ 4 0.0484 ‘Arsenal’ 4 0.0512 ‘Arsenal’ 4 0.0511 ‘Tottenham’ 4 0.0507
‘Newcastle ’ 5 0.0502 ‘Newcastle’ 5 0.0501 ‘Newcastle’ 5 0.0501 ‘Newcastle’ 5 0.0526 ‘Newcastle’ 5 0.0525 ‘Chelsea’ 5 0.0489

sd ± 0.0971 sd ± 0.0865 sd ± 0.0737 sd ± 0.0626 sd ± 0.0885 sd ± 0.0571

RPI

‘Man. City’ 1 0.0573 ‘Man. United’ 1 0.0497 ‘Man. United’ 1 0.0497 ‘Arsenal’ 1 0.0491 ‘Arsenal’ 1 0.0491 ‘Arsenal’ 1 0.0508
‘Man. United’ 2 0.0497 ‘Man. City’ 2 0.0570 ‘Man. City’ 2 0.0567 ‘Man. City’ 2 0.0563 ‘Man. City’ 2 0.0559 ‘Man. City’ 2 0.0487
‘Arsenal’ 3 0.0490 ‘Arsenal’ 3 0.0490 ‘Arsenal’ 3 0.0490 ‘Man. United’ 3 0.0497 ‘Man. United’ 3 0.0497 ‘Man. United’ 3 0.0508
‘Tottenham’ 4 0.0494 ‘Newcastle’ 4 0.0499 ‘Tottenham’ 4 0.0495 ‘Tottenham’ 4 0.0495 ‘Tottenham’ 4 0.0496 ‘Tottenham’ 4 0.0511
‘Newcastle’ 5 0.0499 ‘Chelsea’ 5 0.0479 ‘Swansea City’ 5 0.0503 ‘Chelsea’ 5 0.0481 ‘Chelsea’ 5 0.0482 ‘Chelsea’ 5 0.0487

sd ± 0.0506 sd ± 0.0831 sd ± 0.0843 sd ± 0.0662 sd ± 0.0706 sd ± 0.0805
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Appendix B

Below is a supplementary detailed illustration of rating errors for different tests.
Samples were obtained from rolling and expanding window approaches.

Figure A1. Rating error at different window times for PageRank, Colley, Massey, Keener, WP, and
RPI methods by rolling window approach. Eφ(t) measures the spread of the team rating. A lower
Eφ(t) indicates high prediction power and better rating performance, while larger Eφ(t) indicates
low prediction power and hence low rating performance.

Figure A2. Rating error at different window times for PageRank, Colley, Massey, Keener, WP, and
RPI methods by the expanding window approach. A lower Eφ(t) indicates high prediction power
and better rating performance, while larger Eφ(t) indicates low prediction power and hence low
rating performance.
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