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Mass timber construction systems, incorporating engineered wood products as structural
elements, are gaining acceptance as a sustainable alternative to multi-story concrete or
steel-frame structures. The relative novelty of these systems brings uncertainties on
whether these buildings perform long-term as expected. Consequently, several
structural health monitoring (SHM) projects have recently emerged to document their
behavior. A wide and systematic use of this data by the mass timber industry is currently
hindered by limitations of SHM programs. These limitations include scalability, difficulty of
data integration, diverse strategies for data collection, scarcity of relevant data, complexity
of data analysis, and limited usability of predictive tools. This perspective paper envisions
the use of avatars as a Web-based layer on top of sensing devices to support SHM data
and protocol interoperability, analysis, and reasoning capability and to improve life cycle
management of mass timber buildings. The proposed approach supports robustness,
high level and large-scale interoperability and data processing by leveraging the Web
protocol stack, overcoming many limitations of conventional centralized SHM systems.
The design of avatars is applied in an exemplary scenario of hygrothermal data
reconstruction, and use of this data to compare different mold growth prediction
models. The proposed approach demonstrates the ability of avatars to efficiently filter
and enrich data from heterogeneous sensors, thus overcoming problems due to data gaps
or insufficient spatial distribution of sensors. In addition, the designed avatars can provide
prediction or reasoning capability about the building, thus acting as a digital twin solution to
support building lifecycle management.

Keywords: mass timber buildings, hygrothermal monitoring, avatars, microclimate data, mold risk models

1 INTRODUCTION

This perspective paper briefly introduces current advances and existing challenges of SHM to
support service life management of timber buildings and to control conditions conducive to
biodegradation (Section 1). In section 2, a novel approach is presented, based on decentralized
systems (i.e., avatars) for data analysis and performance prediction. The approach is exemplified in
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an application to 1) reconstruct moisture content and
microclimate data, and 2) iteratively fit data into existing mold
risk models.

1.1 Problem Statement
The timber construction industry has changed over the recent
years due to engineering developments and evolution of wood-
based materials. Mass timber construction has elevated the
prospects of utilizing wood in the form of engineered wood
products as the primary structural material in mid- and high-
rise structures. Because this approach to building is relatively
novel, there are still some uncertainties on whether these
structures perform long-term as expected. One critical area of
concern is the intersection of durability and hygrothermal
performance (i.e., response to heat, air and moisture transfer
phenomena) of such systems. Specifically, exposure to moisture
through in-service leaks or ambient high humidity poses a
potential risk of triggering biotic attack by mold or fungi.
Moisture control is particularly crucial in mass timber
buildings. Mass timber elements, differently than light-frame
construction, have the capacity to store large volumes of water
and exhibit much slower wetting and drying behavior through
their thickness (Schmidt et al., 2019). To address these concerns,
hygrothermal monitoring has been gaining popularity to
document and control the behavior of mass timber buildings
during their service life. Several SHM projects have been
successfully implemented (Riggio and Dilmaghani, 2020; Baas
et al., 2021), also with the scope of developing reliable predictive
models of the long-term performance of these materials. While
there is a huge potential in the broad adoption of SHM and data
exchange, a wide and systematic use of available data collected in
mass timber buildings is currently hindered by certain limitations
of SHM programs, such as 1) scalability; 2) difficulty of data
integration within and between projects; 3) scarcity of relevant
data (spatial resolution and data gaps); 4) low efficiency for data
post-processing; 5) limited usability of predictive tools.

The objective of this perspective paper is to propose a
methodological framework that relies on the concept of
avatars, decentralized computing agents based on Web
languages and protocols, to overcome interoperability issues
and integrate data from a diversity of sensors within and
between buildings.

1.2 Emerging Approaches to SHM and Their
Relevance for Service Life Management of
Timber Structures
Datamining (DM) is a rapidly emerging approach also in the field
of SHM. A review by (Gordan et al., 2022) found that most DM
applications are in structural dynamics for damage detection and
system identification. Artificial Neural Network (ANN)
techniques were found to be the most suitable DM technique
in these applications, because of their high flexibility, scalability
and learning capability. To account for uncertainty of
deterioration processes in timber structures, statistical methods
are often used. Srikanth and Arockiasamy (2020) applied
deterministic, stochastic and ANN-based deterioration models

using National Bridge Inventory data to predict remaining useful
life of timber bridges. Visual inspection data were used for
Markov models by (Ranjith et al., 2013) to predict
deterioration of timber bridges. Tran et al. (2020) used a
dynamic Bayesian Network framework with a simplified
deterioration model by (Wang et al., 2008), to spatially model
decay occurrence in timber members and assess members’
reliability. Other authors have used non-destructive techniques
to model biodegradation in timber (e.g., Sousa et al., 2013; Sandak
et al., 2015a) reviewed DM for characterization and prediction of
biodegradation in timber structures; the authors reported use of
DM to analyze infrared spectra for clustering and classification
tasks (e.g., assess the type of degrading agents and mechanisms)
and to build predictionmodels (e.g., in Zanetti et al., 2005; Sandak
A et al., 2015; Sandak et al., 2015b).

DM for SHM has been mainly exploited using conventional
computing systems, where data is stored and processed in a
centralized way (i.e., a cloud database), leading to limitations such
as single point of failure, low fault tolerance, high latency,
network bandwidth consumption and big data problems.
These limitations are increasingly impactful when there is a
need to perform SHM data mining tasks across different
projects managed by different organizations and in various
geographical locations.

Existing strategies to address these problems rely on large-
scale replication and attempt to locate cloud servers as close as
possible to the data origin. However, these solutions are costly
and create problems for data integration, synchronization, and
exchange between cloud servers. Dang et al. (2022) proposed a
solution using a layer of fog computing prior to the cloud layer to
reduce the computational demand of DM tasks in SHM.
Alternative solutions can be osmotic (Villari et al., 2016) and/
or edge computing (Garcia Lopez et al., 2015). In that case, the
data are partially (osmotic) or fully (edge) processed and
managed directly on the sensor. Only the relevant
information, instead of the original raw data, is uploaded to
the cloud after pre-processing. More computationally demanding
tasks are performed afterwards on the cloud server, in the case of
osmotic computing.

A few decentralized frameworks have been proposed to
support SHM in different ways (Sim and Spencer, 2009;
Hackmann et al., 2012; Liu et al., 2013; Swartz, 2013; Jiang
et al., 2021). (Swartz, 2013) highlighted the relevance of
decentralized computing approaches to SHM to facilitate data
integration, improve its usage, and reduce communication costs.
However, the vision of decentralized computing is limited to
resource-constrained devices, specific protocol stacks, and bound
to drivers/devices, operating systems, programming languages, or
frameworks. Jiang et al. (2021) proposed deep auto-encoder and
manifold learning as a decentralized unsupervised framework to
identify, locate, and quantify structural damage using
unprocessed vibration data. However, the decentralized
approach concerns the different sensors that capture the data,
and not the software that supports storage and processing, which
instead follows a typical centralized approach. Hackmann et al.
(2012) proposed a decentralized approach for damage
localization by computing data directly onto the sensors. Their
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work demonstrated above 60% gain in latency and energy
consumption when compared to a centralized approach. In
(Liu et al., 2013) a modal analysis algorithm through
overlapping data subsets is distributed to all sensors for
computation and reconstitution of the global mode shape.
While existing work shows the interest of decentralized
computing to analyze sensor data, it does not address the
interoperability problems that occur when a variety of sensors
are used in different places. This perspective paper addresses this
problem proposing a Web-based approach.

Sim and Spencer (2009) reviewed different approaches for
decentralized data aggregation. The report shows how to apply
well-known strategies to a concrete use case and provides
concrete development and configuration aspects to implement
different algorithms over resource-constrained devices. Despite
the success of such implementations, the bigger vision of an
interoperable ecosystem is still missing. Savaglio and Fortino
(2021) presented an edge-computing methodology for Internet-
of-Thing (IoT) data mining, enabling descriptive and predictive
tasks. While promising, the approach has not been tested in a
real-case scenario nor applied having a specific industry in mind.
Also in this case, the opportunity for high level and large-scale
interoperability and data processing, which the Web protocol
stack is designed to support, is not addressed.

1.3 State-Of-The-Art Approach to Wood
Hygrothermal Monitoring and Service Life
Management
Wood moisture content (MC), relative humidity (RH) and air
temperature (T) data can be used to analyze and predict different
phenomena affecting the durability and serviceability of timber
structures. Resistance-type moisture meters are commonly used
to monitor MC in timber structures (Dietsch et al., 2015). One of
the advantages of this technique is the possibility to measure MC in
different plies/depths of a mass timber panel, thus allowing to
capture moisture gradients. On the other hand, high variability of
hygrothermal conditions in a timber structure limits representation
of complex MC distributions through resistance readings (Riggio
et al., 2019; Schmidt and Riggio, 2019). Some critical events or areas
of concern may not be captured when spatial distribution of sensors
is insufficient. RH and T data in the proximity of the area of concern
may be used to predict wood MC variations (Autengruber et al.,
2020). Assuming normal use conditions, the wood will respond to
the ambient following so-called sorption isotherms, which indicate
variations of equilibrium moisture content values between 0 and
100% RH at varying temperatures and for a given species (Glass and
Zelinka, 2021). While these correlations are not perfect and not
always applicable, they can be used for missing data reconstruction.

Long data series can support predictive analysis. Several
approaches for modeling service life of timber structures are
summarized by (van Niekerk et al., 2021). Most of those
approaches rely on dose-response models, which confront the
time-wise integrated deterioration dose with the intrinsic
material resistance (Hukka and Viitanen, 1999; Thelandersson
and Isaksson, 2013). The “critical dose” is reached when the
exposure of the material equals or exceeds its resistance. The

exposure dose is determined according to the historical variation
of MC and T, identifying all time periods promoting the growth
of microorganisms. The exposure dose can be computed using
data from sensors monitoring intensity, duration, and frequency
of pertinent climate events.

Most available dose-response models have been developed and
validated only for some selected wood species (Thelandersson
et al., 2011). Considering that the mass timber industry expands
geographically and explores local resources (Ahmed and Arocho,
2020), there is a need to calibrate prediction models for more
species and different mass timber products (Anderson et al.,
2021). This high variability suggests the need of an iterative,
systematic, and incremental approach to improve detection and
prediction tools and make them applicable to different scenarios,
building types and mass timber products.

2 AVATAR-ASSISTED HYGROTHERMAL
MONITORING AND ASSESSMENT OF
TIMBER STRUCTURES

2.1 Multi-Level Decentralized Networks
for SHM
This section provides a definition of the avatar concept, and a
description of the communication framework to support SHM
data integration and enhance data analysis and data mining tasks.
Avatars are software entities that provide a virtual abstraction to
extend sensors on the Web and support the digital representation
of buildings and their elements (Mrissa et al., 2015). They support
proactive behavior and prediction of building conditions thanks to
reasoning or machine learning mechanisms, better interoperability
through data enrichment with semantic annotations and the use of
Web languages and protocols, such as REST architectural style
(Fielding, 2000), HTTP protocol (Fielding, 2014), and JSON/XML
data format (Bray, 2014). Thus, they provide a digital twin
implementation (Mi et al., 2021), in a way similar to the
servient defined by the W3C (Kovatsch et al., 2020).

Avatars are designed to build communities in which everyone
autonomously contributes to the common objectives. Each avatar
embeds the set of necessary algorithms to drive its behavior to
proactively act on a detected situation.

The avatar community as a decentralized system forms a
multilayer data processing and computation model. Multiple levels
of sensor and IoT systems are organized as a multilayer network
(Kivelä et al., 2014), where the network of a particular building and the
network of different buildings are distinct. Both data processing and
computational solutions of this architecture need different approaches
for optimization of the network design and routing protocols.

To reduce the complexity of design and operation (Arcaute
et al., 2021), these networks are organized in two levels: Sensor
nodes and gateways. Each sensor is arranged to a gateway node
through a path determined by the routing. All the collected data
are shared among the gateway nodes. Gateway nodes in this way
have, on one hand, a central role in one single routing layer, and,
on the other hand, serve as connection among the layers. A
promising approach can be to design the layers with an optimal
distributed gateway placement. On this level, data processing and
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data fusion are executed toward the gateways with the
assumption of a fixed family of protocols. The aggregated
computation in a fully connected system of gateways can be
organized in a second phase using the same family of protocols.

The so-called gossip protocols (Jelasity, 2011) are proposed
here as a reliable solution for decentralized computation of
aggregated values. They replicate the rumor spreading in social
networks. In addition to their data processing efficiency (Robin
et al., 2021), they have high computational power in aggregated
mathematical calculations (Kempe et al., 2003). Recent studies
proved that gossip-based machine learning is competitive with
federated learning (Hegedűs et al., 2021).

2.2 Peer-To-Peer Knowledge Base for
Service Life Management of Mass Timber
Buildings: Exemplary Applications and
Preliminary Results
Figure 1 illustrates SHM tasks, systems, inputs, and outputs along
with resulting actions, exemplified for the case of hygrothermal
monitoring of wooden structures. The use of avatars as an additional
layer on top of sensing devices allows to create a “common software
ground”, bypassing hardware differences and inconsistencies.

In this approach, an avatar locally computes the relevant
information about the physical object, i.e., it preprocesses the
sensor data using associated contextual information about both
the monitoring system (the sensors) and the monitored system
(the building, the materials). In this phase, avatars can provide a
suitable platform for advanced data analytics in a sensor network,
as they allow sensors to dynamically make the best decision
depending on the available information. Dynamic improvement
of the up-to-date algorithms used for data analytics can take place
by communicating and comparing local results with other
avatars. It is particularly useful in the case of building
monitoring, as, for instance, increased humidity, leaks, and
condensation detected by a single sensor may be confronted
with readings of other surrounding sensors in the close vicinity.
In this case, an avatar issues a request to neighbor avatars to check
if their data mismatches, correlates or extends their own. The next
avatar can in turn further forward relevant data to others.
Triggering proactive data sharing activates other actions
within the network, such as filling data gaps using the data
from neighbor avatars or validating measurements considering
additional sensor readings.

An example of information sharing between functionally
heterogeneous sensors is when heterogeneous sensors are used to

FIGURE 1 | Functional schema for implementation of hygrothermal monitoring tasks with the avatar approach.
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fill data gaps, deriving one missing parameter from other correlated
ones. The decentralized computation is supported by a dynamic
routing to the gateway nodes. This process is exemplified in Figure 2,
which shows hygrothermal monitoring data from a mass timber
building. “Avatar 1” was used to reconstruct RH values in one
location 2 where only MC data was available, using sorption-
isotherms (assuming similar T in both locations). The approach
of data recovery in this example is different from regression tasks
performed, especially in the field of static monitoring, to correlate
measurements of same types of sensors (see for instance a Bayesian
dynamic regression model developed by Zhang et al., 2022, and a
deep learning-based recoverymethod for temperature data proposed
by Liu et al., 2020). However, the proposed framework does not
exclude the use of alternative methods to rebuild missing data.

Prediction tasks can benefit from avatars by integrating
monitoring data over time into one or many mathematical
models. Preliminary findings show the effectiveness of avatars in
using different hygrothermal parameters to apply alternative mold
growth prediction models. As shown in Figure 2, reconstructed RH
data were used by Avatars 2 and 3 to apply models developed by
(Hukka and Viitanen, 1999; Viitanen et al., 2000; and Thelandersson
et al., 2011). At the same time, “Avatar 4” used MC values from
location 2 formold risk prediction according to the serviceability limit
state (SLS) model (Lepage et al., 2022). The SLS model is the only
method applicable, if exclusively MC data are available. While all the
three avatars predicted onset of mold, the one using the SLS model
did not predict decrease of risk when suboptimal conditions for mold
growth were present (Figure 2). Given the dynamic nature of
hygrothermal conditions in timber buildings, the possibility to

compare predictions from different datasets and models is key, to
evaluate risk scenarios for mold growth and make informed
decisions.

Avatar can calculate models for prediction initially from single
location data, enriched with contextual information. Information
on architectural details and materials can be integrated to define
the “critical dose” or structure “resistance”. The safety status of
the structure or risk of its unconformity is then determined by
confronting the resistance with the exposure dose. Based on their
individually calculated risk indexes, avatars can collaborate to
realize complex tasks at the building level or among multiple
buildings such as data correlation as described above, or
continuous improvement of detection sensitivity to reduce the
number of false alerts and undetected problems. Similar
circumstances, in the same building or in different buildings,
can be compared by avatars in a synergistic approach to enhance
predictability of certain risks.

Decision-making processes, such as predictive maintenance
(PdM), can be supported by avatars as well. This is concretely
implemented through mathematical modeling, such as linear
regression techniques applied on the data coming from the
sensors, combined with thresholds, that will predict critical
conditions, and a set of rules that provide knowledge about
appropriate mitigation measures (Bouabdallaoui et al., 2021).
Use of a decentralized approach for PdM is beneficial has it
addresses some of the PdM challenges highlighted by (Compare
et al., 2019), such as the need to update and adjust PdM model
using the knowledge and data incrementally available throughout
the service life of a building, or even, from different buildings.

FIGURE 2 | Hygrothermal data reconstruction and alternative mold risk prediction scenarios provided by an avatar network.
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3 CONCLUDING REMARKS

In this paper, we present a vision based on avatars to support
SHM. Avatars rely on Web languages and protocols to overcome
integration problems that arise when gathering data from
multiple sensors, within and between buildings. They also
provide data analysis and reasoning capacity through semantic
enrichment. They enable data exploitation as they form an
abstraction layer on top of the sensor network.

One of themost critical aspects and bigger benefits of an avatar-
based approach to SHM is the possibility to generate a ripple effect
in the interested community, in this case the mass timber industry.
This ripple effect amplifies with each new building and new
monitoring data added in the network, as well as with the
duration of a monitoring project. In our vision, the “big data”
generated from SHM projects is an advantage, and not a problem,
as each avatar is a knowledge base that contributes to refining other
avatars’ knowledge base and to devising common models that
become more and more accurate as their number grows.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article, further inquiries can be directed to the corresponding
author.

AUTHOR CONTRIBUTIONS

MR and MM contributed to conception of this perspective paper.
MR, JV, AS, and JS contributed to define the application context
and requirements. MM and MK defined the proposed
technological solutions. All authors contributed to manuscript
draft and revision. All authors read and approved the submitted
version.

FUNDING

ForestValue has received funding from the European Union’s
Horizon 2020 research and innovation program. The authors
gratefully acknowledge the European Commission for funding
the InnoRenew project (Grant Agreement \#739574) under the
Horizon2020 Widespread-Teaming program and the Republic of
Slovenia (Investment funding of the Republic of Slovenia and the
European Regional Development Fund). They also acknowledge
the Slovenian Research Agency ARRS for funding the project J2-
2504, BI-US/22-24-153, BI/US-20-054 and CLICK DESIGN,
“Delivering fingertip knowledge to enable service life
performance specification of wood”, (No. 773324) supported
under the umbrella of ERA-NET Cofund ForestValue by the
Ministry of Education, Science and Sport of the Republic of
Slovenia.

REFERENCES

Ahmed, S., and Arocho, I. (2020). Mass Timber Building Material in the U.S.
Construction Industry: Determining the Existing Awareness Level,
Construction-Related Challenges, and Recommendations to Increase its
Current Acceptance Level. Clean. Eng. Technol. 1, 100007. doi:10.1016/j.clet.
2020.100007

Anderson, R., Dawson, E., Muszyński, L., Beck, B., Hammond, H., Kaiser, B., et al.
(2021). 2021 International Mass Timber Report. Missoula, Montana: FBN. 2021.
ISBN: 978-1-7337546-4-4.

Arcaute, E., Barthelemym, M., Batty, M., Caldarelli, G., Gershenson, G., Helbing,
D., et al. (2021). Future Cities: Why Digital Twins Need to Take Complexity
Science on Board. unpublished manuscript. Available at: https://www.
researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_
Need_to_Take_Complexity_Science_on_Board (Accessed February 1, 2022).

Autengruber, M., Lukacevic, M., and Füssl, J. (2020). Finite-element-based
Moisture Transport Model for Wood Including Free Water above the Fiber
Saturation Point. Int. J. Heat Mass Transf. 161, 120228. doi:10.1016/j.
ijheatmasstransfer.2020.120228

Baas, E. J., Riggio, M., and Barbosa, A. R. (2021). A Methodological Approach for
Structural Health Monitoring of Mass-Timber Buildings under Construction.
Constr. Build. Mater. 268, 121153. doi:10.1016/j.conbuildmat.2020.121153

Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., and Bennadji, B. (2021).
Predictive Maintenance in Building Facilities: A Machine Learning-Based
Approach. Sensors 21 (4), 1044. doi:10.3390/s21041044

Bray, T. (2014). The Javascript Object Notation (Json) Data Interchange Format.
RFC 7158, 1–16.

Compare, M., Baraldi, P., and Zio, E. (2019). Challenges to IoT-Enabled Predictive
Maintenance for Industry 4.0. IEEE Internet Things J. 7 (5), 4585–4597. doi:10.
1109/JIOT.2019.2957029

Dang, H. V., Tatipamula, M., and Nguyen, H. X. (2021). Cloud-Based Digital
Twinning for Structural Health Monitoring Using Deep Learning. IEEE
Transac. Indus. Informat.

Dietsch, P., Franke, S., Franke, B., Gamper, A., and Winter, S. (2015). Methods to
Determine Wood Moisture Content and Their Applicability in Monitoring
Concepts. J. Civ. Struct. Health Monit. 5 (2), 115–127. doi:10.1007/s13349-014-
0082-7

R. Fielding and J. Reschke (Editors) (2014). RFC 7230: Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. Internet Engineering Task Force
(IETF). Available at: http://www.rfc-editor.org/info/rfc7230. doi:10.17487/
RFC7230

Fielding, R. T. (2000). Architectural Styles and the Design of Network-Based
Software architectures. PhD Dissertation. Irvine: University of
California.

Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A.,
et al. (2015). Edge-centric Computing: Vision and Challenges. SIGCOMM
Comput. Commun. Rev. 45 (5), 37–42. doi:10.1145/2831347.2831354

Glass, S., and Zelinka, S. (2021). Moisture Relations and Physical Properties of
Wood. Madison, WI: Forest Products Laboratory, 4–1. Chapter 4 in FPL-
GTR-282.

Gordan, M., Sabbagh-Yazdi, S.-R., Ismail, Z., Ghaedi, K., Carroll, P., McCrum, D.,
et al. (2022). State-of-the-art Review on Advancements of Data Mining in
Structural Health Monitoring. Measurement 193, 110939. doi:10.1016/j.
measurement.2022.110939

Hackmann, G., Sun, F., Castaneda, N., Lu, C., and Dyke, S. (2012). A Holistic
Approach to Decentralized Structural Damage Localization Using Wireless
Sensor Networks. Comput. Commun. 36 (1), 29–41. doi:10.1016/j.comcom.
2012.01.010

Hegedűs, I., Danner, G., and Jelasity, M. (2021). Decentralized LearningWorks: An
Empirical Comparison of Gossip Learning and Federated Learning. J. Parallel
Distributed Comput. 148, 109–124. doi:10.1016/j.jpdc.2020.10.006

Hukka, A., and Viitanen, H. A. (1999). A Mathematical Model of Mould Growth
on Wooden Material. Wood Sci. Technol. 33 (6), 475–485. doi:10.1007/
s002260050131

Jelasity, M. (2011). “Gossip,” in Self-Organising Software. Editors
G. Di Marzo Serugendo, M. P. Gleizes, and A. Karageorgos (Berlin
Heidelberg: Springer), 139–162. doi:10.1007/978-3-642-17348-6_7

Frontiers in Built Environment | www.frontiersin.org June 2022 | Volume 8 | Article 8875936

Riggio et al. Avatar-Assisted SHM

https://doi.org/10.1016/j.clet.2020.100007
https://doi.org/10.1016/j.clet.2020.100007
https://www.researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board
https://www.researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board
https://www.researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120228
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120228
https://doi.org/10.1016/j.conbuildmat.2020.121153
https://doi.org/10.3390/s21041044
https://doi.org/10.1109/JIOT.2019.2957029
https://doi.org/10.1109/JIOT.2019.2957029
https://doi.org/10.1007/s13349-014-0082-7
https://doi.org/10.1007/s13349-014-0082-7
http://www.rfc-editor.org/info/rfc7230
https://doi.org/10.17487/RFC7230
https://doi.org/10.17487/RFC7230
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1016/j.measurement.2022.110939
https://doi.org/10.1016/j.measurement.2022.110939
https://doi.org/10.1016/j.comcom.2012.01.010
https://doi.org/10.1016/j.comcom.2012.01.010
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/10.1007/s002260050131
https://doi.org/10.1007/s002260050131
https://doi.org/10.1007/978-3-642-17348-6_7
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Jiang, K., Han, Q., Du, X., and Ni, P. (2021). A Decentralized Unsupervised
Structural Condition Diagnosis Approach Using Deep Auto-encoders.
Computer-Aided Civ. Infrastructure Eng. 36 (6), 711–732. doi:10.1111/mice.
12641

Kempe, D., Dobra, A., and Gehrke, J. (2003). “October. Gossip-Based Computation
of Aggregate Information,” in 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003 (Cambridge, MA: IEEE), 482–491.

Kivelä, M., Arenas, A., Barthelemy,M., Gleeson, J. P., Moreno, Y., and Porter, M. A.
(2014). Multilayer Networks. J. complex Netw. 2 (3), 203–271. doi:10.1093/
comnet/cnu016

Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., and
Kajimoto, K. (2020). Web of Things (WoT) Architecture. W3C
Recommendation. World Wide Web Consortium (W3C), W3C
Recommendation. Available at: https://www.w3.org/TR/wot-architecture/.

Lepage, R., Glass, S. V., Bastide, P. d. l., and Mukhopadhyaya, P. (2022).
Serviceability Limit State Model for Fungal Growth on Wood Materials in
the Built Environment. J. Build. Eng. 50, 104085. doi:10.1016/j.jobe.2022.
104085

Liu, H., Ding, Y. L., Zhao, H. W., Wang, M. Y., and Geng, F. F. (2020). Deep
Learning-Based Recovery Method for Missing Structural Temperature Data
Using LSTM Network. Struct. Monit. Maintenance 7 (2), 109–124. doi:10.
12989/smm.2020.7.2.109

Liu, X., Tang, S., and Xiaohua, X. (2012). “Smart Wireless Sensor Nodes for
Structural Health Monitoring,– in Intelligent Sensor Networks The Integration
of Sensor Networks, Signal Processing and Machine Learning. Editor B. Hu and
Q. Hao Edn. 1. Boca Raton, 77–91.

Mi, S., Feng, Y., Zheng, H., Wang, Y., Gao, Y., and Tan, J. (2021). Prediction
Maintenance Integrated Decision-Making Approach Supported by Digital
Twin-Driven Cooperative Awareness and Interconnection Framework.
J. Manuf. Syst. 58, 329–345. doi:10.1016/j.jmsy.2020.08.001

Mrissa, M., Médini, L., Jamont, J.-P., Le Sommer, N., and Laplace, J. (2015). An
Avatar Architecture for the Web of Things. IEEE Internet Comput. 19 (2),
30–38. doi:10.1109/mic.2015.19

Ranjith, S., Setunge, S., Gravina, R., and Venkatesan, S. (2013). Deterioration
Prediction of Timber Bridge Elements Using the Markov Chain. J. Perform.
Constr. Facil. 27 (3), 319–325. doi:10.1061/(asce)cf.1943-5509.0000311

Riggio, M., and Dilmaghani, M. (2020). Structural Health Monitoring of Timber
Buildings: A Literature Survey. Build. Res. Inf. 48 (8), 817–837. doi:10.1080/
09613218.2019.1681253

Riggio, M., Schmidt, E., and Mustapha, G. (2019). Moisture Monitoring Data of
Mass Timber Elements during Prolonged Construction Exposure: The Case of
the Forest Science Complex (Peavy Hall) at Oregon State University. Front.
Built Environ. 5, 98. doi:10.3389/fbuil.2019.00098

Robin, F., Sericola, B., Anceaume, E., and Mocquard, Y. (2021). Stochastic Analysis
of Rumor Spreading with Multiple Pull Operations. Methodol. Comput. Appl.
Probab., 1–17. doi:10.1007/s11009-021-09911-4

Sandak, A., Sandak, J., and Riggio, M. (2015). Estimation of Physical and
Mechanical Properties of Timber Members in Service by Means of Infrared
Spectroscopy. Constr. Build. Mater. 101, 1197–1205. doi:10.1016/j.
conbuildmat.2015.06.063

Sandak, J., Sandak, A., and Riggio, M. (2015b). Characterization and Monitoring of
Surface Weathering on Exposed Timber Structures with a Multi-Sensor
Approach. Int. J. Archit. Herit. 9 (6), 674–688. doi:10.1080/15583058.2015.
1041190

Sandak, J., Sandak, A., and Riggio, M. (2015a). Multivariate Analysis of Multi-
Sensor Data for Assessment of Timber Structures: Principles and
Applications. Constr. Build. Mater. 101, 1172–1180. doi:10.1016/j.
conbuildmat.2015.06.062

Savaglio, C., and Fortino, G. (2021). A Simulation-Driven Methodology for IoT
Data Mining Based on Edge Computing. ACM Trans. Internet Technol. 21 (2),
1–22. doi:10.1145/3402444

Schmidt, E. L., Riggio, M., Barbosa, A. R., and Mugabo, I. (2019). Environmental
Response of a CLT Floor Panel: Lessons for Moisture Management and
Monitoring of Mass Timber Buildings. Build. Environ. 148, 609–622. doi:10.
1016/j.buildenv.2018.11.038

Schmidt, E., and Riggio, M. (2019). Monitoring Moisture Performance of Cross-
Laminated Timber Building Elements during Construction. Buildings 9 (6),
144. doi:10.3390/buildings9060144

Sim, S. H., and Spencer, B. F., Jr. (2009). Decentralized Strategies for Monitoring
Structures Using Wireless Smart Sensor Networks. NSEL Report Series. Report
No. NSEL-019. Department of Civil and Environmental Engineering,
University of Illinois at Urbana-Champaign.

Sousa, H. S., Sørensen, J. D., Kirkegaard, P. H., Branco, J. M., and Lourenço, P. B.
(2013). On the Use of NDT Data for Reliability-Based Assessment of Existing
Timber Structures. Eng. Struct. 56, 298–311. doi:10.1016/j.engstruct.2013.
05.014

Srikanth, I., and Arockiasamy, M. (2020). Deterioration Models for Prediction of
Remaining Useful Life of Timber and Concrete Bridges: A Review. J. Traffic
Transp. Eng. Engl. Ed. 7 (2), 152–173. doi:10.1016/j.jtte.2019.09.005

Swartz, R. A. (2013). “DecentralizedAlgorithms for SHMoverWireless andDistributed
Smart Sensor Networks,” in Earthquakes and Health Monitoring of Civil Structures
(Dordrecht: Springer), 109–131. doi:10.1007/978-94-007-5182-8_4

Thelandersson, S., Isaksson, T., Frühwald, E., Toratti, T., Viitanen, H., Grüll, G.,
et al. (2011). Service Life of Wood in Outdoor above Ground Applications
Engineering Design Guideline. Lund, Sweden: Lund University, 29.

Thelandersson, S., and Isaksson, T. (2013). Mould Resistance Design (MRD)
Model for Evaluation of Risk for Microbial Growth under Varying Climate
Conditions. Build. Environ. 65, 18–25. doi:10.1016/j.buildenv.2013.03.016

Tran, T.-B., Bastidas-Arteaga, E., and Aoues, Y. (2020). A Dynamic Bayesian
Network Framework for Spatial Deterioration Modelling and Reliability
Updating of Timber Structures Subjected to Decay. Eng. Struct. 209, 110301.
doi:10.1016/j.engstruct.2020.110301

van Niekerk, P. B., Brischke, C., and Niklewski, J. (2021). Estimating the Service
Life of Timber Structures Concerning Risk and Influence of Fungal Decay-A
Review of Existing Theory and Modelling Approaches. Forests 12 (5), 588.
doi:10.3390/f12050588

Viitanen, H., Hanhijärvi, A., Hukka, A., and Koskela, K. (2000). “Modelling Mould
Growth and Decay Damages,” in Healthy Buildings 2000, Espoo, 6-10 August
2000 (FISIAQ).3, 341–346.

Villari, M., Fazio, M., Dustdar, S., Rana, O., and Ranjan, R. (2016). Osmotic
Computing: A New Paradigm for Edge/cloud Integration. IEEE Cloud Comput.
3 (6), 76–83. doi:10.1109/mcc.2016.124

Wang, C.-h., Leicester, R. H., and Nguyen, M. (2008). Probabilistic Procedure for
Design of Untreated Timber Poles In-Ground under Attack of Decay Fungi.
Reliab. Eng. Syst. Saf. 93 (3), 476–481. doi:10.1016/j.ress.2006.12.007

Zanetti, M., Rials, T. G., and Rammer, D. (2005). “NIR-monitoring of In-Service
Wood Structures,” in Metropolis and Beyond: Proceedings of the 2005
Structures Congress and the 2005 Forensic Engineering Symposium, New
York, NY, April 20–24, 2005, 1–9. doi:10.1061/40753(171)40

Zhang, Y. M.,Wang, H., Bai, Y., Mao, J. X., and Xu, Y. C. (2022). Bayesian Dynamic
Regression for Reconstructing Missing Data in Structural Health Monitoring.
Struct. Health Monit. doi:10.1177/14759217211053779

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Riggio, Mrissa, Krész, Včelák, Sandak and Sandak. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Built Environment | www.frontiersin.org June 2022 | Volume 8 | Article 8875937

Riggio et al. Avatar-Assisted SHM

https://doi.org/10.1111/mice.12641
https://doi.org/10.1111/mice.12641
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://www.w3.org/TR/wot-architecture/
https://doi.org/10.1016/j.jobe.2022.104085
https://doi.org/10.1016/j.jobe.2022.104085
https://doi.org/10.12989/smm.2020.7.2.109
https://doi.org/10.12989/smm.2020.7.2.109
https://doi.org/10.1016/j.jmsy.2020.08.001
https://doi.org/10.1109/mic.2015.19
https://doi.org/10.1061/(asce)cf.1943-5509.0000311
https://doi.org/10.1080/09613218.2019.1681253
https://doi.org/10.1080/09613218.2019.1681253
https://doi.org/10.3389/fbuil.2019.00098
https://doi.org/10.1007/s11009-021-09911-4
https://doi.org/10.1016/j.conbuildmat.2015.06.063
https://doi.org/10.1016/j.conbuildmat.2015.06.063
https://doi.org/10.1080/15583058.2015.1041190
https://doi.org/10.1080/15583058.2015.1041190
https://doi.org/10.1016/j.conbuildmat.2015.06.062
https://doi.org/10.1016/j.conbuildmat.2015.06.062
https://doi.org/10.1145/3402444
https://doi.org/10.1016/j.buildenv.2018.11.038
https://doi.org/10.1016/j.buildenv.2018.11.038
https://doi.org/10.3390/buildings9060144
https://doi.org/10.1016/j.engstruct.2013.05.014
https://doi.org/10.1016/j.engstruct.2013.05.014
https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1007/978-94-007-5182-8_4
https://doi.org/10.1016/j.buildenv.2013.03.016
https://doi.org/10.1016/j.engstruct.2020.110301
https://doi.org/10.3390/f12050588
https://doi.org/10.1109/mcc.2016.124
https://doi.org/10.1016/j.ress.2006.12.007
https://doi.org/10.1061/40753(171)40
https://doi.org/10.1177/14759217211053779
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Leveraging Structural Health Monitoring Data Through Avatars to Extend the Service Life of Mass Timber Buildings
	1 Introduction
	1.1 Problem Statement
	1.2 Emerging Approaches to SHM and Their Relevance for Service Life Management of Timber Structures
	1.3 State-Of-The-Art Approach to Wood Hygrothermal Monitoring and Service Life Management

	2 Avatar-Assisted Hygrothermal Monitoring and Assessment of Timber Structures
	2.1 Multi-Level Decentralized Networks for SHM
	2.2 Peer-To-Peer Knowledge Base for Service Life Management of Mass Timber Buildings: Exemplary Applications and Preliminar ...

	3 Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References


