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Abstract
As environmental awareness is becoming increasingly important, alternatives are needed for
the traditional forward product flows of supply chains. The field of reverse logistics covers
activities that aim to recover resources from their final destination, and acts as the foundation
of the efficient backward flow of these materials. Designing the appropriate reverse logistics
network for a given field is a crucial problem, as this provides the basis for all operations
connected to the resource flow. This paper focuses on design questions in the supply net-
work of waste wood, dealing with its collection and transportation to designated processing
facilities. The facility location problem is studied for this use-case, and mathematical models
are developed that consider economies of scale and the robustness of the problem. A novel
approach based on bilevel optimization is used for computing the exact solutions of the robust
problem on smaller instances. A local search and a tabu search method is also introduced for
solving problems of realistic sizes. The developed models and methods are tested both on
real-life and artificial instance sets in order to assess their performance.
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1 Introduction andmotivation

With the recent increase in the importance of environmental awareness, more stress is being
put to on the end-of-life recovery and reuse of resources in supply chains. Activities that
aim to recover resources from their final destination are integrated by the field of reverse
logistics (Dekker et al., 2004). The goal of the reverse logistics is to use these end-of-life
resources either to produce further value or to dispose of them properly, usually through a
complex recovery process consisting of the stages of repair, reuse, refurbish, remanufacture,
retrieve, recycle, incinerate and landfill. Reverse logistics methods can also be integrated into
the conventional process of supply chains, forming so-called closed-loop supply chains that
account for both forward and reverse flows of resources (Kazemi et al., 2019).

Wood is an extremely versatile raw material with application fields ranging from paper
production and packaging to the building industry.Moreover, wooden products can be reused
and recycled after their original function becomes obsolete. According to data collected by the
Horizon 2020 BioReg Project (Cocchi et al., 2019), the EU countries collectively produced
between 40-60 million tonnes of yearly wood waste in the past ten years. Recovery rates of
this depend on both the country and the type of wood waste, but it can be seen that there is
room for improving the current amounts (Garcia & Hora, 2017).

The amount of research dealing with the management of waste wood has increased over
the past years. As an example, the interest can be seen in the furnishing sector, where several
studies have been conducted. The paper by de Carvalho Araújo et al. (2019) assesses the
literature of circular economy in wood panel production. They conclude that while circular
economy as a concept is being investigated with regard to waste production in this sector,
mainly LCA (life cycle assessment) studies were carried out (Hossain & Poon, 2018; Kim
& Song, 2014). Daian and Ozarska (2009) studied a sample group of six SMEs in the wood
furniture sector of Australia and collected data about the current state of their wood waste
and its reuse, recycle and disposal. Based on this, they formulated suggestions on woodwaste
management. Evaluating the availability of wood waste (and wood biomass in general) is
also becoming more and more important, which can be seen from the multiple recent studies
that have dealt with this question. Research by Verkerk et al. (2019) and Borzecki et al.
(2018) assessed the potential availability of forest biomass from European forests and its
spatial distribution, focusing on the hotspots of biomass. Studies comparing waste wood
management in selected European countries were also conducted by Garcia and Hora (2017)
and the BioReg Project (Cocchi et al., 2019).

Although similar studies have becomemore widespread over the past years, the number of
papers dealing with the mathematical modelling and optimization of processes in the waste
wood supply chain is still scarce. Network design and planning is one of the most studied
problem classes in logistics (Govindan et al., 2015).While there have been recent studies into
the combined design of the network nodes and their possible links (Rahmaniani & Ghaderi,
2013), it is usually safe to assume for transport problems that the underlying road network
already exists. In this case, the most important problem to solve is facility location. The goal
of this problem is to find an optimal placement of facilities on a network in order to minimize
arising costs, which usually include transportation and opening facilities. This problem is
relevant not only for the forward and reverse supply chains, but also for service industries
(Turkoglu & Genevois, 2020).

Mathematical models of facility location are extensively studied, see e.g., Chapter 4 in
Dekker et al. (2004). Further variations of the facility location problem (not specific to reverse
logistics networks) can be found in Simchi-Levi et al. (2014). Solution approaches includes
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reformulating the problem as a tree partitioning (Shaw, 1999) and different metaheuristics,
such as tabu search (Al-Sultan & Al-Fawzan, 1999).

Stochastic variations of the problem can be found in Verter and Dincer (1992), which also
considers capacity planning as theCapacity Expansion Problemonce the facility locations are
established. Dasci and Laporte study facility location and capacity acquisition by segmenting
a market on the infinite continuous plain with uncertain demand (Dasci & Laporte, 2005).
In a recent manuscript, Ahmadi-Javid et al. study a combined facility location and capacity
planning problem, where the facilities should serve customers with demand modeled as
Poisson processes, which results in a nonlinear model (Ahmadi-Javid et al., 2018). Solution
methods for facility location with economies of scales are studied in Bucci (2009) and Lu
(2010).

Facility location problems usually consider two types of uncertainties; namely, stochastic
parameters and disruptions (Peng et al., 2017). An example for the former one is the stochastic
demand or cost parameters, see e.g., Carrizosa and Nickel (2003). Robust models, on the
other hand considers possible changes in the network structure, e.g., expected consequences
of random disruptions or targeted attacks by malevolent attackers (Daskin, 2013). Robust
facility location is studied in Cheng et al. (2021).

While general solutions designed for backward biomass streams have been studied in the
past [e.g. Nunes et al. (2020), Sharma et al. (2013)], we only found a handful of papers that
focus entirely onwaste wood. The reverse logistics network redesign problem for waste wood
from the construction industry is investigated in Trochu et al. (2018), and a MILP (mixed
integer linear programming model) was proposed for its solution. A use-case on a scenario
from Quebec, Canada, was also presented. Devjak et al. (1994) formulated a mathematical
model for optimizing the transportation of wood waste produced in sawmills, but did not
present any computational experiments to back up its efficiency. Burnard et al. (2015) gave a
reverse logistics model for facility location and transportation for waste wood, and presented
computational results for a use-case in Slovenia.

As it was mentioned before, wood is an extremely versatile rawmaterial, and this property
facilitates a wide range of reuse possibilities. While the individual processes of reverse wood
supply chains and their order may vary because of differences in regional regulations, a waste
wood value chain usually has threemajor steps: production/collection, sorting/processing and
valorization (Cocchi et al., 2019). The origin of waste wood can be manifold, ranging from
construction and demolition sites (usually for bulky solid waste) and woodworking industries
to waste from households and collection centers (Kharazipour &Kües, 2007). Initially, wood
is collected and sorted according to pre-defined quality grades, which will also determine its
future use. Higher quality wood is transported for recycle and reuse at processing facilities,
producing resources that can compete with freshly harvested wood (Burnard et al., 2015).
Waste wood can also be shredded for particle board/wood pellet production, or simply burned
for energy (Cocchi et al., 2019). Decontamination of the wood might be needed in certain
cases before its processing can start. This is usually done at the same facility as sorting.

As the movement of resources is crucial in this reverse logistics network, the processes
connected to collection, transportation and treatment represent a bottleneck in the system
(Garcia & Hora, 2017). The recent events of the COVID-19 pandemic showed that this
bottleneck is indeed critical, as facility level disruptions caused by reduced staff contributed
to the pandemics impact on the supply chain (FAO, 2020). It is pointed out by Ivanov (2020)
that the resistance of a supply chain to disruptions is crucial in the case of such extraordinary
events, and robustness and recovery should be considered.

In this paper, we consider the facility location problem for transporting waste wood from
accumulation centers to processing facilities.Besides transportation,we also study economies

123



166 Annals of Operations Research (2023) 324:163–188

of scale aswell as the robustness of the network in case of the breakdownof facilities. First, we
formulatemathematicalmodels for the problems, including a novel approach based on bilevel
optimization, and propose both a local and tabu search heuristic method for their solution.
Our model is a special case of the general robust facility location, where any number of
facilities can fail. In our special case, simultaneous failure of multiple facilities considered to
be extremely rare. This simplification enables the bilevel model to be converted into a series
of integer programs that can be solved by standard solvers. To the best of our knowledge,
this approach is a novel contribution to the facility location literature. The efficiency of these
methods is shown on test instances generated using a real-life dataset as well as different
artificial and real-world benchmark datasets from the literature. The conference proceedings
article (Egri et al., 2020) presents a preliminary version of this study.

2 Problem definition

In the following subsections we formulate the uncapacitated facility location problem and
its extensions.

2.1 Uncapacitated facility location problem

Let I denote the set of fixed accumulation point locations and J the set of potential facility
locations. Let f j denote the cost of opening facility j and ci j denote the transportation
cost from point i to facility j per m3. Let ui denote the annual yield of waste wood from
accumulation point i ∈ I (in m3).

The formulation uses two types of binary variables: Y j is the indicator of opening facility
j ∈ J , while Xi j indicates product flow from accumulation point i to facility j . Note that
due to uncapacitated facilities, an optimal solution always transports the whole amount of
wood from each accumulation point to the closest open facility. The optimization problem
is then the following binary integer problem:

min
∑

j∈J
f j Y j +

∑

i∈I

∑

j∈J
ui ci j Xi j (1)

subject to
∑

j∈J
Xi j = 1 ∀i ∈ I (2)

Xi j ≤ Y j ∀i ∈ I, j ∈ J (3)

Y j ∈ { 0, 1 } ∀ j ∈ J (4)

Xi j ∈ { 0, 1 } ∀i ∈ I, j ∈ J (5)

The objective function (1) minimizes the total opening and transportation cost, (2) ensures
that the wood is transported from each accumulation point, while (3) states that all wood is
transported to an open facility. Constraints (4) and (5) state that the variables are binary.

2.2 Economies of scale problem

It is often realistic to assume that the higher the capacity of a facility, the lower its production
cost due to the economies of scale (Garcia & Hora, 2017). We consider the following pro-
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duction cost at facility j [based on Bucci (2009)]: Sbj p j , where S j > 0 is the total quantity
processed at facility j , p j is the unit production cost at facility j and b is a scale factor, typi-
cally−0.35 for manufacturing facilities and between−0.56 and−0.47 in the paper industry.
With this modification the objective function of the program becomes non-linear as follows:

min
∑

j∈J
f j Y j +

∑

i∈I

∑

j∈J
ui ci j Xi j +

∑

j∈J
Sbj p j S j (6)

The constraints are the same as (2)–(5) with the following additional constraint defining
the variable S j :

∑

i∈I
Xi j ui = S j ∀ j ∈ J (7)

We still consider solutions where wood from each accumulation point is transported to
only one facility, since there exist an optimal solution with this property, see Dupont (2008).
However, it is no longer true that allwood should necessarily be transported to the closest open
facility, for each set of open facilities an assignment problem should be solved to determine
the optimal transportation.

2.3 Robust optimization problem

Robust optimization can be modeled as a multi-objective optimization problem, where one
objective is minimizing the cost in case of no disruptions, the other is minimizing the cost in
case of a disruption. However, we consider only minimizing the cost in case of a disruption
instead. More specifically, we consider a solution optimal, if any facility breaks down—i.e.,
all accumulation points connected with this facility must transport to another facilities—then
the resulting cost in the worst case is minimal.

We model this problem as a bilevel optimization: the leader determines which facilities to
open, while the follower determines which accumulation point is connected to which facility.
The follower’s problem assumes a given set of open and undisrupted facilities ({ j | Y ′

j = 1 })
and assign the accumulation points to these facilities minimizing the transportation costs:

min
∑

i∈I

∑

j∈J
ui ci j Xi j (8)

subject to
∑

j∈J
Xi j = 1 ∀i ∈ I (9)

∑

i∈I
Xi j ≤ Y ′

j ∀ j ∈ J (10)

Xi j ∈ { 0, 1 } ∀i ∈ I, j ∈ J (11)

Note that the follower’s problem can be easily solved by transporting all the wood to
the closest open facility. Let G(Y ′) denote the optimal objective value for the follower’s
assignment problem on the input vector Y ′.

Then the leader’s problem is to determine the set of facilities to open with the minimal
opening cost together with the transportation cost in case of the disruption of exactly one
facility:
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min
Y

⎧
⎨

⎩
∑

j∈J
f j Y j + max

Y ′

⎧
⎨

⎩G(Y ′) :
∑

j∈J
Y ′
j + 1 =

∑

j∈J
Y j&Y ′

j ≤ Y j (∀ j ∈ J )

⎫
⎬

⎭

⎫
⎬

⎭ (12)

This expresses that facilities { j | Y j = 1 } are opened, but then one of them cannot be
used because of a disruption, therefore the transportation has to be determined not using the
disrupted facility. The worst case is considered, i.e., when the disrupted facility causes the
highest transportation costs. This corresponds to a pessimistic bilevel program.

3 Solution approaches

Solving facility location problems in realistic sizes (i.e., several thousands of accumulation
points and possible facility locations) is computationally intractable evenwithout considering
economies of scale or robustness. Therefore, similarly to other works in this field, we used
metaheuristic algorithms to find quasi-optimal solutions.

3.1 Determining the worst case cost effectively

If economies of scale are disregarded, the optimal solution always transports the wood to
the closest open facility. We use this observation to efficiently compute the cost in case of
disturbances. Let πi denote a permutation of the facilities for each i such that ciπi1 < · · · <

ciπin , where n = |J | is the number of facilities. If Y denote the status of the facilities with
at least two open facilities, then let Fi (Y ) = min

k
{Yπik = 1} denote the closest open facility

to point i , and let Bi (Y ) = min
k

{Yπik = 1 ∧ k �= Fi (Y )} denote the second closest one.

If there is a disruption at facility Fi (Y ), then the wood from point i should be transported
to facility Bi (Y ) instead, which means (ci Bi (Y ) − ci Fi (Y ))ui additional transportation cost.
Therefore in case of a disruption at an open facility j , the additional cost is CoDj (Y ) =∑
i :Fi (Y )= j

(ci Bi (Y ) − ci Fi (Y ))ui . Then the cost increase of disruption in the worst case is simply

max
j :Y j=1

CoDj .

Therefore by maintaining the F , B and CoD vectors when the search heuristics open or
close a facility, the value of the objective function can be determined efficiently.

3.2 Local search heuristic

We use the neighborhood defined by Korupolu et al. (2000), which represents the solution
only with the set of open facilities. Let S = { j | Y j = 1 } denote the set of open facilities,
then the neighborhood of S is { T : |S \ T | ≤ 1 ∧ |T \ S| ≤ 1 }. From a solution S one
can apply three operations to reach a neighbor: (i) open a new facility, (ii) close a facility (in
case |S > 1|), and (iii) change the status of an open and a closed facility. This neighborhood
contains O(|J |2) solutions, where J is the set of potential facilities.

If one intends to solve the robust facility location problem, then instead of the cost defined
by (1), the worst case cost should be considered.
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Fig. 1 Piecewise linear approximation of the production cost

3.3 Adaptation of the local search to economies of scale

Considering the economies of scale makes the objective function nonlinear and instead of
transporting the wood to the closest open facility, a complex assignment problem has to be
solved after determining the set of open facilities. Instead of this, the usual approach is to
approximate the objective function with piecewise linear functions. In this section, the basic
idea of the linearization and its application for the robust problem is presented.

Figure 1 illustrates a possible linearization of the concave production cost function. The
solid line is the p j S

b+1
j production cost (see Sect. 2.2) and the three dashed lines are the

tangents at three different points, which provide upper bounds on the production cost. The
piecewise linear approximation is then the lower envelope of the tangents. The formula for
the tangent touching the concave function at point sk is

p j (b + 1)sbk x − p jbs
b+1
k . (13)

With this linearization, the problem can be reduced to the linear model as follows. Instead
of facility j , a dummy facility is introduced for each tangent. For the dummy facility repre-
senting tangent at sk , the production cost will be the slope of the tangent, i.e., p j (b + 1)sbk .
Furthermore, the opening cost of that dummy facility has to be increased with the amount,
where the tangent crosses the y-axis, i.e., the new opening cost will be f j − p jbs

b+1
k . The

location of the dummies will be the same as of the real facility, thus the linearization does
not affect the transportation costs.

When robustness is not considered, then in an optimal solution only one dummy related to
the real factory can be selected at most. Indeed, if multiple dummies are open, then the cost
can be decreased by keeping only the one with the smallest production cost open, closing
the other dummies and re-assigning their quantities to the remaining open dummy facility.
This decreases both the production and the opening costs, while it does not change the
transportation cost.

However, this is not automatically true for the robust problem any more. Since a robust
solution requires at least two open facilities, a problemwith high opening costsmight result in
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a solution with two open dummies, both representing the same facility. In order to avoid this
undesired result, the solver has to be modified to explicitly avoid opening more dummies at
the same location. In case of the local search heuristic, this means the followingmodifications
of neighborhood: (i) a dummy facility can be opened only if no other dummy facilities are
open at the same location, (ii) no modification for the closing operation, and (iii) the status of
an open and closed facility can be exchanged only if either these two are at the same location
or no open facility exists at the same location as the closed one.

3.4 Tabu search heuristic

We have implemented the tabu search based on the approach described in Sun (2006) with
some modifications. In addition to seeking the minimal cost in case of a disruption, we
applied a different medium term memory process as well as different approach for updating
the lengths of the tabu lists.

The short term memory process is the following. Let k denote the number of moves since
the start of the search and Δzkj the cost change by altering facility j’s status, i.e., closing if
it is open and open if it is closed. The integer vector t is used to store the last time when the
status of the facilities changed, i.e., t j is the value of k when facility j changed its status last.
Let z0 denote the best objective value in the current search cycle and k0 denote the time when
z0 was last updated. Let z00 denote the best objective value in the whole search procedure.
Let l0 (lc) denote the tabu list sizes for the open (closed) facilities, i.e., they cannot change
status twice during this time interval unless the aspiration criterion is satisfied. The aspiration
criterion is z + Δzkj < z0, where z represents the cost of the current solution. This expresses
that the status of a facility can be changed if this change results in lower cost than the best
objective value of the current cycle. The tabu list sizes are bound by lower limit l1o (l1c ) and
upper limit l2o (l2c ).

Each move is changing the status of a facility. We choose facility j̄ , where Δzk
j̄

=
min{Δzkj | facility j is not flagged }. A facility j̄ is flagged, if the following tabu condi-
tion holds: k − t j̄ ≤ lc if Y j̄ = 0 or k − t j̄ ≤ l0 if Y j̄ = 1, but does not hold the aspiration
criterion. The short term process ends when the solution could not be improved for a specified
time, i.e., when k − k0 > α1n, where α1 is a parameter of the search.

After each step the lengths of the tabu lists are updated: if the current solution improved
the objective value, then l0 (lc) is increased by one, otherwise it is decreased by one to extend
the search space.

In the medium term, we changed the frequency based memory process described by Sun
(2006) and use a wider neighborhood instead. We seek for an open and a closed facility such
that if we change their statuses, the total cost decreases the most. Sun states that considering
this operation is costly, but our algorithm only use it when the short term process fails to
improve the solution, thus providing a trade-off between computation time and solution
quality. We have found that this approach performs better on the tested instances.

If the solution can be improved, the search continues with the short term process. The
medium term process ends when no improvement can be found.

Finally, the long term process is invoked C times and when invoking the cth time, c
moves are made changing the status of facility j̄ according to the following criterion: t j̄ =
min{ t j | j = 1, . . . , n }.

Let S̄ = { j | Y j = 0 } and S = { j | Y j = 1 } denote the indices of the open and closed
facilities, respectively. The following is a step-by-step description of the procedure, based on
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Sun (2006). Note that the main differences are in steps 5–7 that describe the medium term
process.

Initialization

Step 0. Find a local optimal solution with a greedy method. Let z represent the objective
value of the current solution. Let z0 ← z and z00 ← z. Select values for l1c , l

2
c , l

1
o and l2o

and determine the initial tabu sizes lc and lo such that l1c ≤ lc ≤ l2c and l1o ≤ lo ≤ l2o . Let
t j ← −lc for all j ∈ S̄ and t j ← −lo for all j ∈ S to initialize the vector t. Select values
for α1, α2 and C . Let k ← 1, k0 ← 1, c1 ← 1 and c ← 1. Compute the Δz1j values.

Short term process steps

Step 1. Select a facility j̄ , where Δzk
j̄
= min{Δzkj | facility j is not flagged }. Check the

tabu status of the selected move. If tabu, go to Step 2; otherwise, go to Step 3.
Step 2. Check the aspiration criterion of the selected move. If satisfied, go to Step 3;
otherwise, mark facility j̄ as flagged and go to Step 1.
Step 3. Let y j̄ ← 1 − y j̄ , z ← z + Δzk

j̄
, t j̄ ← k and k ← k + 1. If z < z0, let z0 ← z

and k0 ← k. If z < z00, let z00 ← z. If Δzk
j̄

< 0, i.e., the change improved the cost,

increase the length of the tabu list by one (lc or lo, depending on whether an opening or
a closing operation has been performed), otherwise decrease the length by one.
Step 4. Update Δzkj . Mark each facility j as unflagged. If k − k0 ≤ α1n, go to Step 1; if
k − k0 ≤ (α1 + α2)n, continue to Step 5; otherwise, go to Step 8.

Medium term process steps

Step 5. Select j̄1 ∈ S̄ and j̄2 ∈ S, such that simultaneously opening j̄1 and closing j̄2
results in the minimal cost. If this cost is not less than the cost of the current solution, go
to Step 8.
Step 6. Open facility j̄1 and close facility j̄2. Let t j̄1 ← k, t j̄2 ← k and k ← k + 1.
Compute the z objective value.
Step 7. If z < z0, let z0 ← z and k0 ← k. If z < z00, let z00 ← z. Go to Step 4.

Long term process steps

Step 8. If a local optimal solution has not been found, select a facility j̄ , where Δzk
j̄

=
min{Δzkj | facility j is not flagged } and go to Step 3.
Step 9. If c > C , Stop. If c0 > c go to Step 11.
Step 10. Let c0 ← c0 + 1. Select a facility j̄ , where t j̄ = min{ t j | j = 1, . . . , n } and go
to Step 3.
Step 11. Let c0 ← 1, c ← c + 1, z0 ← z, and k0 ← k. Reset the value of lc and lo such
that l1c ≤ lc ≤ l2c and l1o ≤ lo ≤ l2o and go to Step 4.

3.5 Bilevel integer program formulation

Considering the formulation of Sect. 2.3, it can be observed that once the Y ′ variables are
fixed, the X variables are easy to determine to minimize the transportation costs by assigning
each accumulation point to the closest open facility. This suggests that a solution of the
following constraints determines an optimal assignment.

Xiπi1 ≥ Y ′
πi1

∀i ∈ I (14)

Xiπik ≥ Y ′
πik

−
k−1∑

t=1

Y ′
πi t

∀i ∈ I, k = 2, . . . , n (15)

123



172 Annals of Operations Research (2023) 324:163–188

∑

j∈J
Xi j = 1 ∀i ∈ I (16)

Xi j ∈ { 0, 1 } ∀i ∈ I, j ∈ J (17)

Then, the inner maximization problem of (12) takes the form

max
∑

i∈I

∑

j∈J
ui ci j Xi j (18)

subject to (14)–(17) and the constraints
∑

j∈J
Y ′
j + 1 =

∑

j∈J
Y j (19)

Y ′
j ≤ Y j ∀ j ∈ J (20)

Note that this formulation does not include non-linearity in contrast to the usual duality-
based formulation [see e.g., Cheng et al. (2021)].

Using this observation, we search for the optimal solution where exactly k facilities (ρ1 <

· · · < ρk) are open:
∑

j∈J Y j = k andYρl = 1 (l ∈ { 1, . . . , k }). LetY l denote the vector that

differs from Y only in its ρl th element and { Xl
i j : i ∈ I, j ∈ J } the optimal transportation

from accumulation point i to facility j using open factories determined by Y l . Then the
optimization problem (12) becomes:

min
∑

j∈J
f j Y j + z (21)

subject to

z ≥
∑

i∈I, j∈J
ui ci j X

l
i j ∀l ∈ { 1, . . . , k } (22)

Xl
iπi1

≥ Y l
πi1

∀i ∈ I, l ∈ { 1, . . . , k } (23)

Xl
iπis

≥ Y l
πis

−
s−1∑

t=1

Y l
πi t

∀i ∈ I, s = 2, . . . , n, l ∈ { 1, . . . , k } (24)

∑

j∈J
Xl
i j = 1 ∀i ∈ I, l ∈ { 1, . . . , k } (25)

∑

j∈J
Y l
j = k − 1 ∀l ∈ { 1, . . . , k } (26)

Y l
j ≤ Y j ∀ j ∈ J , l ∈ { 1, . . . , k } (27)

k∑

l=1

Y l
j = (k − 1)Y j , ∀ j ∈ J (28)

∑

j∈J
Y j = k (29)

Y j ∈ { 0, 1 } ∀ j ∈ J (30)

Y l
j ∈ { 0, 1 } ∀ j ∈ J , l ∈ { 1, . . . , k } (31)

Xl
i j ∈ { 0, 1 } ∀i ∈ I, j ∈ J , l ∈ { 1, . . . , k } (32)
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Constraints (23)–(25) are the constraints of the inner optimization problem. Inequality
(28) says that if Y j = 0, then all Y l

j = 0, whereas if Y j = 1, then exactly k − 1 of the Y l has

a 1 in position j . This, along with (26) and (27) implies that vectors Y l are all different, they
are not bigger than Y (coordinatewise), and they have k − 1 coordinates of value 1, all other
coordinates being 0.

This formulation considers a fixed number of open facilities, therefore it should be solved
for all possible (or realistic) k values.

4 Numerical study

The efficiency of the bilevel formulation as well as of the local and tabu search heuristics
were tested on several instance sets of different structure and origin.While a detailed analysis
was performed on an industrial dataset of Austrian accumulation points, we also examined
benchmark datasets and other real-world dataset found in the literature. The results of these
tests can be seen in the following sections.

The experiments were run on a standard laptop computer with Intel Core i7 processor.
The runtimes of the different algorithms depend on several factors, including the size of the
problem and the cost parameters. For example, the binary integer programming formulation
of a 500 location problemwas solved on average in 15 seconds when the facility opening cost
was 5 million, 8 seconds when the opening cost was set to 500,000, and further decreased
to 3–4s with 50,000 as the opening cost. For the same instances, the local search ran in 10
seconds in the first case, but the runtime went up to several minutes when the opening cost
was decreased to 50,000. The reason for this is the reduction in the size of the search space
of the local search in the case of unrealistically large opening cost, as the optimal solution
opens only a few facilities. Finally, the runtime of the tabu search is the largest, usually over
10 minutes. In this case, the runtime depends mainly on α1, α2 and C , which determine the
length of the search, even if the algorithm finds an optimal or local optimal solution. Since
the robust facility location model with economies of scale presented in this paper differs
from the previous models in the literature, it would not be reasonable to directly compare the
presented algorithms with other approaches in the literature.

4.1 Numerical study of the Austrian network

Based on the industrial dataset of 1839 accumulation points and possible facility locations,
we generated test sets containing 50, 100 and 500 locations, five different test cases for
each set. Then we computed the solutions assuming different facility opening costs from the
realistic 5 million to 1000. The solutions were computed using the local search, the tabu
search, and when possible, the exact solver. For the tabu search we used the same parameters
as Sun (2006): l1c = l1o = 10, l2c = l2o = 20, C = 5 and α1 = 2.5.

Table 1 contains the average results over the five test sets. The non-robust solutions aim
at minimizing the total opening and transportation cost indicated in the cost column, while
robust solutions aim at minimizing the worst case cost (WCC), i.e., the total opening cost
and transportation costs in case of a facility disruption.

We have estimated the production cost for the facility location model with the economies
of scale, however, we have found that for realistic cases (large number of accumulation points,
large facility opening costs, few open facilities) the economies of scale does not influence
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the solution (see Sect. 4.3). Therefore the non-linearity of the problem was not considered
in the results presented below, which resulted in more tractable problems.

The following indicators are included in the table: the cost of disruption (CoD) is the
additional cost in case of a disturbance [(WCC-cost)/cost], the price of robustness (PoR)
is the difference between the robust solution and the non-robust one [(robust cost − non-
robust cost)/non-robust cost] and the benefit of robustness (BoR) is the difference in case
of a disruption [(non-robust WCC − robust WCC)/non-robust WCC]. This latter indicator
cannot be interpreted when the non-robust solution contains only one opened facility, i.e.,
when in case of a disruption the whole network fails.

The rows labelled with “OPT” denote the average costs of the optimal solutions. For the
non-robust problem, it is computed by the the FICO XPRESS Solver using the formulation
in Sect. 2.1, and for the robust problem the optimum is computed by solving the bilevel
programming formulation of Sect. 3.5.

Table 1 contains the results of the solutions considering 50 locations. The following
observations were made:

– For the opening costs between 1 million and 5 million, the exact solutions could be
computed for the non-robust, and the robust variants as well, and both the local search
and the tabu search could find the optimal solution in every case.

– Changing the opening costs in a wide range (above one million) did not change the
solutions. That means that the uncertainty of the exact opening cost does not matter too
much.

– For the 4 largest facility opening costs, the non-robust solutions contain only one opened
facility, therefore they are quite vulnerable for disruptions. Adding one more facility to
improve robustness is quite expensive, increasing the required budget by 36–76%.

– Considering 1000 as the opening cost, the tabu search resulted in better solution both
for robust and non-robust cases in one case out of five, therefore the last two rows are
separate in order to differentiate the two approaches. The robust version of the problem
could not be solved with the exact solver.

– For an extremely low opening cost, large number of facilities are opened and even the
non-robust solution offer some robustness. However, the robustness can be improved
relatively inexpensively (for < 0.4% of the budget) and in case of a disruption this can
result in more than 10% saving in the additional costs.

– In each cases, either the local search or the tabu search could find the optimal solution
for the uncapacitated facility location problem without robustness.

Table 2 contains the results of the solutions considering 100 locations. The following
observations were made:

– For opening costs 5 million and 2.5 million local search and tabu search resulted in the
same results as the exact solver. The non-robust solutions in these cases always contain
only one open facility and adding robustness by opening more facilities are quite costly.

– For opening costs 1.6 and 1 million, the non-robust solutions contain one or two open
facilities. The WCC and BoR values are the averages over the valid values. For these
problems the solution of the local search and the tabu search often differ and it varies
which performs better.

– For opening cost 1000, the tabu search performed better in one case. It can be observed
that increasing robustness in this case is quite inexpensive, but the achieved benefit is
also lower that in the 50 facility case.
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– For only one problem instance neither the local search nor the tabu search heuristics
could find the optimal solution for the uncapacitated facility location problem without
robustness.

Table 3 contains the results of the solutions considering 500 locations. The following obser-
vations were made:

– With this size of solution space the result of the local search and the tabu search often
differ and on average the tabu search performs slightly better.

– Most of the non-robust solutions contain two or more open facilities. Optimizing for
robustness increases the cost usually under 20%, therefore as the problem size growths,
it becomes relatively less expensive to provide robustness. However, in case of disruption,
robust solutions can save at least 10% of the additional cost, when the facility opening
cost is above one million.

– For five problem instances neither the local search, nor the tabu search heuristics could
find the optimal solution for the uncapacitated facility location problem without robust-
ness. Four out of these five cases have a low facility opening cost of 1000.

We conclude that robust solutions may save significant costs (in case of disruptions)
especially when the number of opened facilities are low.

We have also taken the whole dataset of 1839 accumulation points located in Austria
and computed the location of the facilities in a robust network. Figure 2 illustrates the five
open facilities (big black circles), the partitioning of the accumulation points (denoted with
five different colors), as well as the routes used. The cost of operating the robust network
is 45,710,341, which can increase up to 52,384,243 in case of a disruption—this is 14.6%
additional transportation cost.

Figure 3 shows the network in case robustness is not considered. The total cost in this
case is 42,379,212, i.e., the robust solution is 7.86% more expensive. However, in case of a
disruption the cost can grow by 29.65% to 54,943,410, i.e., it is 4.66% more than having a
robust network.

4.2 Numerical study on benchmark sets from the literature

Two different sets of benchmark data were used from the literature to further test our devel-
opedmethods. The first set is a collection of artificial instances from theOR-Library (Beasley,
1990), one of the most widely used benchmark sets for uncapacitated facility location. The
other set contains four real-world instances used by Buzna et al. (2014). They generated two
of these real instances (road network of the Slovak Republic and the road network of six
south-eastern U.S. states) based on available geographical data, while derived two instances
of a Spanish road network from a dataset used in Dìaz and Fernández (2006).

Table 4 contains the results of the facility location for theOR-Library benchmark instances
(the number in the brackets after the name of the instance indicates the number of accumula-
tion points). The table contains only four columns, because for these instances the robust and
non-robust solutions are the same, both using the local search and the tabu search heuristics.
Table 5 contains the results of the remaining benchmarks, where either the robust solution
differs from the non-robust one, or the two heuristics have different results. The exact solver
could not determine the optimal solutions, not even for the small data sets.

Table 6 contains the results of the experiments with the real benchmark data sets. Since
the number of accumulation points is larger in these instances (indicated in brackets), only
the results of the local search heuristic is presented. It can be observed that robust solutions
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Fig. 2 Robust waste wood collection network in Austria

Fig. 3 Non-robust waste wood collection network in Austria

Table 4 Benchmark sets

Data set Open Cost WCC CoD (%)

Cap71 (66) 16 4,004,139,523 4,426,181,538 10.54

Cap72 (66) 16 4,004,214,523 4,426,256,538 10.54

Cap73 (66) 16 4,004,289,523 4,426,331,538 10.54

Cap74 (66) 16 4,004,402,023 4,426,444,038 10.54

Cap101 (75) 25 2,860,332,101 3,092,624,089 8.12

Cap102 (75) 25 2,860,452,101 3,092,744,089 8.12

Cap103 (75) 25 2,860,572,101 3,092,864,089 8.12

Cap104 (75) 25 2,860,752,101 3,093,044,089 8.12

Cap131 (100) 47 2,850,307,905 3,037,867,617 6.58

Capc (1100) 70 227,277,815 233,771,069 2.86
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contain more open facilities than non-robust ones, e.g., in case of the last dataset, the robust
network consists of 6 more open facilities, which is more than 10% increase. However, the
price of robustness is only around 2%, and the benefit is more than 6% in two of the four
cases. It can also be noted that although the number of accumulation points is the largest in
Slovak Republic, the number of suggested open facilities is much larger in the USA. This
is due to the area of the countries: in the USA the points are more scattered, therefore more
facilities are required to decrease the transportation costs.

It is difficult to compare our algorithms with previous results, due to the differences
in the model and in the datasets. However, additional experiments were conducted based
on the facility location dataset provided in Daskin (2013), which is also the dataset used
“with slight modifications” in the experiments of robust facility location by Cheng et al.
(2021). In fact, in this latter paper the authors generated smaller subproblems consisting
of different number of customers and potential facilities, while we used the whole dataset
of 49 locations. Because of the differences in the examined and assumed datasets—huge
demand, but relatively small facility opening costs, which is quite the opposite in the waste
wood supply chain—the original problem could not be solved efficiently using the bilevel
formulation. Instead of decreasing the problem size, we have multiplied the factory opening
costs by 100 to approximate the typical costs of a wood recycling facility. Figure 4 shows
the results of solving the bilevel formulation with assuming differently scaled demands. It
can be seen that with small demands, low number of facilities are sufficient, and the optimal
solution can be computed in approximately 15s. As the demand—and thus the transportation
costs—increases, more open facilities are necessary, and the computation time increases
significantly.

4.3 Numerical study of the economies of scale

In order to investigate the impact of the economies of scale, the test problems of Sect. 4.1
were also studied with different concave production costs using the objective function (6).
Since the optimal number and locations of the facilities are based on the relation between
three cost factors—the opening- the transportation- and the handling costs—, we have fixed
the distance-based transportation cost in the following experiments and let the other two cost
factors vary. Table 7 shows a typical result indicating the number of opened facilities resulted
by different facility opening and production costs.

The specific example is based on a test setwith 50 locations and the scale factor b = −0.35.
When p j = 0, the first row, the objective function is reduced to (1) instead of (6), i.e.,

the economies of scale is not considered. As expected, the number of opened facilities is
inversely proportional with the opening cost. This can be observed in the rows of the table:
with a fixed production cost, decreasing the opening cost results in the same number of open
facilities or more. Similarly, considering a column with fixed opening cost, increasing the
production cost results in fewer opened facilities.

The typical parameters of the waste wood industry (large facility opening cost and small
production cost) can be found near the upper left corner of the table.With such parameters, the
optimal network usually coincides with the optimal network without considering economies
of scale: it is influenced mainly by the balance of the opening and transportation costs,
while the effect of the production cost is negligible. Thus, we conclude that with typical cost
parameters of the investigated industry, considering the economies of scale does not influence
the solution significantly.
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Fig. 4 Solution time in seconds assuming different average demand

Table 7 Number of open facilities with economies of scale

Production cost (p j ) Opening cost ( f j )

5,000,000 500,000 50,000 25,000 16,667 12,500 10,000

0 2 2 8 9 11 14 15

1 2 2 8 9 11 14 15

2 2 2 8 9 11 14 15

5 2 2 8 9 11 14 15

10 2 2 8 9 11 13 15

100 2 2 8 9 9 9 11

200 2 2 7 9 9 9 9

500 2 2 7 8 8 9 9

1000 2 2 5 5 7 8 8

5 Conclusions

In this paper, we studied the facility location problem in the reverse logistics network of
waste wood. This network considered the accumulation centre for waste wood as well as
the processing facilities where they have to be transported. The traditional facility location
was extended with the consideration of economies of scale and robustness against the break-
down of facilities. We formulated mathematical models for these problems including a novel
approach based on bilevel optimization, and also presented a local and tabu search heuristic
method for their solution.

We tested the efficiency of the proposed methods on instances generated using both a real-
life industrial dataset and benchmark instances available in the literature. Different facility
opening costs were considered, and robust and non-robust solutions were examined in every
case. While economies of scale seemed to have no influence on the solutions in the case of
realistic cost parameters, robustness turned out to be significant when the number of opened
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facilities was low. In the case of a larger number of opened facilities (which usually happened
with unrealistically low facility costs) even the non-robust solutions contained some inherent
robustness.

While the heuristic method gave the same solutions for instances with a smaller number
of locations (where they mostly found the optimal solution), the tabu search had a slight
edge over the local search for larger instances. However, we were not able to obtain exact
solutions for these instances with a large number of locations, and working on mathematical
programming methods to help the solution of the model will be part of our future work.

An important limitation of our model compared to other robust facility location models,
is that we limit the possible number of disruptions to one. The reason behind this is that we
are concerned with infrequent and random failures, instead of targeted attacks—which are
not typical in the waste wood logistics. This limitation facilitates the novel bilevel integer
program formulation, which can be solved more efficiently than general methods even for
much larger problem instances, see e.g., (Cheng et al., 2021). However, it still cannot handle
the huge networks typical in case of wood recycling. For these practical problems, we applied
heuristics, and found that the tabu search using wider neighborhood in the medium term
process yields significantly better results in reasonable time than frequency-based processes,
e.g., Sun (2006).

As a future work, we intend to further study the integer program formulation of the bilevel
robust facility location model and use it for computing lower bound on the cost. In addition,
we are going to examine the delivery planning problem in the network designed by the facility
location optimization.
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Appendix A: Code of the tabu search algorithm

void TabuSearch : : run( int lc1 , int lc2 , int lo1 , int lo2 , double alpha1 , double alpha2 , int C) {
step0 :

make_initial ( ) ; / / the greedy procedure
TabuSolution current = best_solution ;
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/ / TabuSolution is the class representing a solution .
/ / best_solution . obj_value is used instead of z00

double z0 = current . obj_value ;
bool ∗flagged = new bool[n] ;
int lc = ( lc1 + lc2 )/2;
int lo = (lo1 + lo2 )/2;
for ( int i = 0; i < n; ++i ) {

flagged[ i ] = false ;
i f ( current . open_facilities . find ( i ) == current . open_facilities .end())

t [ i ] = −lc ; else t [ i ] = −lo ;
}
int k = 1, k0 = 1, c0 = 1, c = 1;

double ∗delta = new double[n] ;
computeDelta(current , delta ) ; / / procedure for computing the "delta z" values

int jBar , jBar1 , jBar2 ;
double dMin; / / variable used in step 5

step1 : / / selecting candidate
jBar = −1;
for ( int i = 0; i < n; ++i ) {

i f (! flagged[ i ] && (−1 == jBar | | delta [ i ] < delta [ jBar ]))
jBar = i ;

}
i f (! isTabu(current , k, jBar , lc , lo )) goto step3 ;

step2 :
i f ( current . obj_value + delta [ jBar] >= z0) {

flagged[jBar] = true ;
goto step1 ;

}

step3 :
i f ( current . open_facilities . find (jBar) == current . open_facilities .end()) {

open(current , jBar ) ; / / procedure opening faci l i ty jBar and updating the solution object
i f ( delta [ jBar] + 0.0001 < 0) {

i f ( lc < lc2) ++lc ;
} else {

i f ( lc > lc1) −−lc ;
}

} else {
close (current , jBar ) ; / / procedure closing faci l i ty jBar and updating the solution object
i f ( delta [ jBar] + 0.0001 < 0) {

i f ( lo < lo2) ++lo ;
} else {

i f ( lo > lo1) −−lo ;
}

}
t [ jBar] = k++;

step3a : / / this part is the same as step 7
i f ( current . obj_value + 0.0001 < z0) {

z0 = current . obj_value ;
k0 = k;

}
i f ( current . obj_value + 0.0001 < best_solution . obj_value)

best_solution = current ;

step4 :
computeDelta(current , delta ) ;
for ( int i = 0; i < n; ++i ) flagged[ i ] = false ;
i f (k − k0 <= alpha1 ∗ n) goto step1 ;
i f (k − k0 <= (alpha1 + alpha2) ∗ n) goto step5 ;
goto step8 ;

step5 :
jBar1 = jBar2 = −1;
dMin = D BL_MAX;
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for ( int i = 0; i < n; ++i ) {
i f ( current . open_facilities . find ( i ) == current . open_facilities .end()) {

/ / Facility i is closed
for ( int j = 0; j < n; ++j ) {

i f ( current . open_facilities . find ( j ) != current . open_facilities .end()) {
/ / Facility j is open
TabuSolution neighbour = current ;
open(neighbour , i ) ;
close (neighbour , j ) ;
double d = neighbour . obj_value − current . obj_value ;
i f (−1 == jBar1 | | d < dMin) {

jBar1 = i ;
jBar2 = j ;
dMin = d;

}
}

}
}

}
if (dMin > −0.001) goto step8 ;

step6 :
open(current , jBar1 ) ;
t [jBar1] = k;
close (current , jBar2 ) ;
t [jBar2] = k++;

step7 :
goto step3a ;

step8 :
jBar = −1;
for ( int i = 0; i < n; ++i ) {

i f (! flagged[ i ] && (−1 == jBar | | delta [ i ] < delta [ jBar ]))
jBar = i ;

}
i f ( jBar >= 0 && delta [ jBar] < 0) goto step3 ;

step9 :
i f (c > C) goto stop ;
i f (c0 > c) goto step11 ;

step10 :
++c0;
jBar = −1;
for ( int i = 0; i < n; ++i ) {

i f (−1 == jBar | | t [ i ] < t [ jBar ])
jBar = i ;

}
goto step3 ;

step11 :
c0 = 1;
++c;
z0 = current . obj_value ;
k0 = k;
lc = ( lc1 + lc2) / 2;
lo = (lo1 + lo2 )/2;
goto step4 ;

stop :
}
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