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We give a new representation theorem of negation based on the generator function of the
strict operator. We study a certain class of strict monotone operators which build the
DeMorgan class with infinitely many negations. We show that the necessary and sufficient
condition for this operator class is fc(x)fd(x) = 1, where fc(x) and fd(x) are the generator func-
tions of the strict t-norm and strict t-conorm.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction and some elementary considerations

When studying continuous-valued logical operators, one of the most important questions is how to choose an element in
a consistent way (i.e. the DeMorgan law is valid). One of the most important Boolean identities is the DeMorgan class. Several
authors have studied this identity. The first article appeared in 1983 [8]. Esteva in 1984 [11] made a study on some repre-
sentable DeMorgan algebras. One of the most important studies was done by Garcia and Valverde [13], where they focused
on isomorphism between DeMorgan triplets. In this article the authors deal with the main types of fuzzy t-norm and t-con-
orms, i.e. with the min and max operators, the nilpotent operator and with strict monotonously increasing operators. The
main equivalence classes of DeMorgan triplets are extensively studied. The next important step was done by Gehrke, Walker
and Walker [14]. They used an algebraic approach that is general and very extensive. We have to mention the book of Ngu-
yen and Walker [24]. Here we can find a summary of the results on the existence of DeMorgan triplets.

In this article we shall focus on the DeMorgan systems which correspond to infinitely many negations. These types of
operators are important because the fix point of the negation (see Eq. (4) later) can be varied, this value can be interpreted
as a decision level and this kind of logic is very flexible. Such logic is very important. Cintula, Klement, Mesiar and Pap focus
on fuzzy logic with an additional involutive negation operator [7], but in our case we have infinitely many.

This general characterisation makes it possible for us to construct a new type of operator system.
In the introductory part we give an elementary discussion for readers not familiar with this topic. In the Section 2 we

extend the operators with weights and then we describe the relation between strict t-norm, strict t-conorm generator func-
tion and negation. This result is a reformulation of the known results. We show that the involutive properties of the negation
(given fc(x) and fd(x)) ensure that k(x) is a function (see Fig. 1). We give the general form of the negation by using k(x). We
show that all involutive negation operators can be represented in this form and we will give some examples. The main result
. All rights reserved.
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Fig. 1. The shape of the generator function of the strict t-norm and t-conorm. Here it fc(x) =�ln (x) and fd(x) =�ln (1 � x) (dash).
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of the article can be found in Section 3. We show that a DeMorgan triplet is valid with an infinitely many negations if and
only if fc(x)fd(x) = 1 (i.e. kðxÞ ¼ 1

x). We call such a system a pliant system. In Section 4 we characterize the pliant operators.
From an application point of view, the strict monotonously increasing operators are useful. They have many applications.

This is the reason why in this article we will focus on strictly monotonously increasing operators.

1.1. Triangular norms and conorms

Here we summarize the necessary notations and some previous results which will be used in the sequel.
For the basic properties of triangular norms (t-norms for short) and triangular conorms (t-conorms) Klement, Mesiar and

Pap [18–20] refer to [17–26]. By definition, a t-norm c(x,y) and a t-conorm d(x,y) turn [0,1] into an abelian, fully ordered
semigroup with neutral element 1 and 0, respectively. In this paper Klement, Mesiar and Pap [18–20] shall restrict their
selves to continuous t-norms and t-conorms. Let us only recall that a continuous t-norm c(x,y) is Archimedean if it satisfies
c(x,x) < x for all x 2 ]0,1[. A continuous Archimedean t-norm is called strict if 0 6 x < y 6 1 and 0 < z 6 1 implies c(x,y) < c(y,z).
Non-strict continuous Archimedean t-norms are called nilpotent. The basic result can be found in the book of Aczél [1].

From [21,23] Klement, Mesiar and Pap [18–20] state that a t-norm c(x,y) is continuous Archimedean if and only if it has a
continuous additive generator, i.e.,there is a continuous, strictly decreasing function t: [0,1] ? [0,1] satisfying t(1) = 0 such
that for all (x,y) 2 [0,1]2
Please
Inform
cðx; yÞ ¼ tð�1ÞðtðxÞ þ tðyÞÞ; ð1Þ
where the pseudo-inverse t(�1): [0,1] ? [0,1] of t in this special context is given by t(�1)(x) = t�1(min(t(x), t(0))). Observe that
the additive generator of a continuous Archimedean t-norm is unique up to a positive multiplicative constant. The case
t(0) =1 occurs if and only if c(x,y) is strict (in which case the pseudo-inverse in Eq. (1) is an ordinary inverse).

In this section, besides the min/max and the drastic operators, we shall be concerned with strict t-norms, that is
cðx; yÞ < cðx0; yÞ if x < x0 x; y 2 ð0;1�
and t-conorms, that is
dðx; yÞ < dðx0; yÞ if x < x0 x; y 2 ½0;1Þ:
Later on we shall look for the general form of c(x,y) and d(x,y). We assume that the following conditions are satisfied:

1. Continuity:
c : ½0;1� � ½0;1� ! ½0;1� d : ½0;1� � ½0;1� ! ½0;1�:
2. Strict monotonous increasing:
cðx; yÞ < cðx; y0Þ if y < y0 x – 0 dðx; yÞ < dðx; y0Þ if y < y0 x – 0:
cite this article in press as: J. Dombi, DeMorgan systems with an infinitely many negations in the strict monotone operator case,
. Sci. (2011), doi:10.1016/j.ins.2010.11.038
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3. Compatibility with two-valued logic:
Please
Inform
cð0;0Þ ¼ 0 cð1;1Þ ¼ 1 dð0;0Þ ¼ 0 dð1;1Þ ¼ 1
cð0;1Þ ¼ 0 cð1;0Þ ¼ 0 dð0;1Þ ¼ 1 dð1;0Þ ¼ 1:
4. Associativity:
cðx; cðy; zÞÞ ¼ cðcðx; yÞ; zÞ dðx; dðy; zÞÞ ¼ dðdðx; yÞ; zÞ:
5. Archimedean:
cðx; xÞ < x; x 2 ð0;1Þ dðx; xÞ > x; x 2 ð0;1Þ:
So
cðx; yÞ ¼ f�1
c ðfcðxÞ þ fcðyÞÞ: ð2Þ
Similarly, the strict t-conorm on (0,1] � (0,1] has the form:
dðx; yÞ ¼ f�1
d ðfdðxÞ þ fdðyÞÞ: ð3Þ
Here fc(x): [0,1] ? [0,1] (fd(x): [0,1] ? [0,1]) are continuous and strictly increasing (decreasing) monotone functions and
they are the generator functions of the strict t-norms and strict t-conorms (see Fig. 1).

In our case.

� we do not use the pseudo inverse and ordinal sum to construct a general t-norm and t-conorm.
� we do not use the commutativity axiom of the t-norm and t-conorm because it is always valid for the strict t-norm.
� we do not use the boundary condition of the t-norm and t-conorm, just the compatibility condition with binary logic. (The

boundary condition can be proved by using associativity.) [17]
� we will call the elements of pliant logic conjunctive, disjunctive and negation operators.

Those familiar with fuzzy logic theory will find that the terminology used here is slightly different from that used in standard
texts [17,5,2,4,22,15].

I would like to emphasise that only three changes have been made in pliant logic, namely.

� conjunctive operator = strict monotonously increasing t-norms,
� disjunctive operator = strict monotonously increasing t-conorms,
� negation = strong negation.

Consistent many-valued (fuzzy) operators have to satisfy of certain Boole identities. The most important one is the
DeMorgan law. Esteva [11] and Dombi [8] were the first two researchers who carefully analysed the DeMorgan identity.
It corresponds to the conjunction, disjunction and negation operators.

In order to analyse the DeMorgan identity we first need a good definition of negation. Strong negations are order revers-
ing automorphisms of the unit interval. Because here we deal only with strong negations we shall refer to them as negation.

The usual requirements for such a negation (g) are the following.

Definition 1. We say that g(x) is a negation if g: [0,1] ? [0,1] satisfies the following conditions:
C1:
cite this
. Sci. (20
g: [0,1] ? [0,1] is continuous
article in press as: J. Dombi, DeMorgan sys
11), doi:10.1016/j.ins.2010.11.038
(Continuity)

C2:
 g(0) = 1, g(1) = 0
 (Boundary conditions)

C3:
 g(x) < g(y) for x > y
 (Monotonicity)

C4:
 g(g(x)) = x
 (Involution)
From C1 and C3 it follows that there exists a fix point m⁄ 2 [0,1] of the negation where
gðm�Þ ¼ m�: ð4Þ
Since this value and its negated form are the same, it may be termed a neutral value. Furthermore, since the negation of val-
ues smaller than the neutral value gives values larger than the neutral value, and vice versa, the neutral value naturally di-
vides the evaluation interval into two parts. The values larger than m⁄ may be interpreted as the positive or acceptable
evaluation range, and those smaller than m⁄ as the negative evaluation range; m⁄ is thus a threshold value, and can be inter-
preted as an expectation value.

Threshold logic has many applications. In this concept there is a previously fixed m0 value, which is the threshold.
tems with an infinitely many negations in the strict monotone operator case,
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Fig. 2. The two interpretation of the parameter of the negation.
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So another possible characterization of negation, is when we assign a so-called decision value m for a given m0, i.e. one can
specify a point (m,m0) that the curve must intersect. This tells us something about how strong the negation operator is.
Please
Inform
gðmÞ ¼ m0: ð5Þ
For the interpretation of the two concepts, see Fig. 2.
If g(x) has a fix point m⁄, we use the notation gm� ðxÞ and if the decision value is m, then we use the notation gm(x). If g(x) is

used without a suffix for then the parameter has no importance in the proof. Later on we will characterize the negation by
the m⁄, m0 and mparameters.

In the following, we will examine the relations between fc, fd and g, to see whether c, d and g satisfy the DeMorgan law.
The m⁄ value has several terminologies. It is called the fixpoint eigenvalue, or equilibrium point. In the article of De Baets

and Fodor [3] the negations are induced by the uninorm. Here m⁄ is called the neutral element. In multicriteria decision mak-
ing ’expectation value’ has a meaning and the pliant logic can be applied in this area.

2. DeMorgan law and general form of negation

We will use the generalized operator based on strict t-norms and strict t-conorms introduced by the authors. Calvo [6]
and Yager [28].

Definition 2. Generalized operators based on strict t-norms and t-conorms which are
cðw;xÞ ¼ cðw1; x1; w2; x2; . . . ; wn; xnÞ ¼ f�1
c

Xn

i¼1

wifcðxiÞ
 !

; ð6Þ

dðw; xÞ ¼ dðw1; x1; w2; x2; . . . wn; xnÞ ¼ f�1
d

Xn

i¼1

wifdðxiÞ
 !

; ð7Þ
where wi P 0.
If wi = 1 we get the t-norm and t-conorm. If wi ¼ 1

n, then we get mean operators. If
Pn

i¼1wi ¼ 1, then we get weighted
operators.

Definition 3. The DeMorgan law holds for the generalized operator based strict t-norms and strict t-conorms and for
negation if and only if the following equation holds.
cðw1;gðx1Þ; w2;gðx2Þ; . . . ; wn;gðxnÞÞ ¼ gðdðw1; x1; w2; x2; . . . ; wn; xnÞÞ: ð8Þ
We call Eq. (8) later on generalized DeMorgan law.
Theorem 1 (DeMorgan Law). If g(x) and fd(x) are given, then c(x,y), d(x,y) and g(x) form a DeMorgan triplet iff
f�1
c ðxÞ ¼ gðf�1

d ðaxÞÞ; ð9Þ
where a – 0.
Eq. (9) can be written in other form, see later (Eq. (17)).
cite this article in press as: J. Dombi, DeMorgan systems with an infinitely many negations in the strict monotone operator case,
. Sci. (2011), doi:10.1016/j.ins.2010.11.038
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Remark 1. It is well-known that based on Eq. (9) from a generator function of a strict t-norm (or strict t-conorm) operator
using negation we can get a generator function os the strict t-conorm (or strict t-norm), see [4].
Proof. We exploit the fact that g is an automorphism on the unit interval. In the proof we shall use the solution of the
Cauchy functional equality, i.e.
Please
Inform
hðxþ yÞ ¼ hðxÞ þ hðyÞ; ð10Þ
where h is continuous. The solution of this equation is
hðxÞ ¼ ax; a – 0: ð11Þ
A description of the DeMorgan law using the generator function is
f�1
c

Xn

i¼1

wifcðgðxiÞÞ
 !

¼ g f�1
d

Xn

i¼1

wifdðxiÞ
 ! !

: ð12Þ
Substituting x�i ¼ fdðxiÞ and xi ¼ f�1
d ðx�i Þ, into this equation, we get
f�1
c

Xn

i¼1

wifc g f�1
d ðx�i Þ
� �� � !

¼ g f�1
d

Xn

i¼1

wix�i

 ! !
: ð13Þ
Let us apply fc on both sides of the equation and introduce the following notation:
hðx�i Þ ¼ fc g f�1
d ðx�i Þ
� �� �

: ð14Þ
Then we have
Xn

i¼1

wihðx�i Þ ¼ h
Xn

i¼1

wix�i

 !
: ð15Þ
This is the Cauchy equation. Using Eq. (11), we get
ax� ¼ fc g f�1
d ðx�Þ
� �� �

: ð16Þ
Substituting x: = ax⁄ and applying f�1
c on both sides, we get the desired result. h
Remark 2. On the basis of Theorem 1 and given fc(x) and g(x), fd(x) can be determined, so that c,d and g is a DeMorgan triple.
Similar to the above-mentioned consideration, with a given fd(x) and g(x), fc(x) can be determined.
2.1. Form of negations

Here the following question naturally arises. If fc and fd are given, what kind of condition ensures that g is a negation (i.e.
fulfils C1–C4)? From Theorem 1 we know that the necessary and sufficient condition of the DeMorgan Law is Eq. (9). Substi-
tuting the x :¼ f�1

d ðaxÞ, we have
gðxÞ ¼ f�1
c

1
a

fdðxÞ
� �

; a – 0: ð17Þ
Let us give a parametric form of negation.

Theorem 2. If fc(x) and fd(x) are given, then c(x,y), d(x,y) and g(x) form a DeMorgan triplet iff
gm� ðxÞ ¼ f�1
d

fdðm�Þ
fcðm�Þ

fcðxÞ
� �

; ð18Þ

gm� ðxÞ ¼ f�1
c

fcðm�Þ
fdðm�Þ

fdðxÞ
� �

: ð19Þ
Proof. Based on Eq. (17)
m� ¼ gðm�Þ ¼ f�1
d ðafcðm�ÞÞ: ð20Þ
Expressing a and using Eq. (17), we get Eq. (18). On the basis of the involution of the negation we get Eq. (19).
Because g(m) = m0 from Eq. (20) we get a ¼ fdðmÞ

fcðm0Þ
:

cite this article in press as: J. Dombi, DeMorgan systems with an infinitely many negations in the strict monotone operator case,
. Sci. (2011), doi:10.1016/j.ins.2010.11.038
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Please
Inform
gmðxÞ ¼ f�1
d

fdðmÞ
fcðm0Þ

fcðxÞ
� �

: ð21Þ
In a similar way we can prove that
gmðxÞ ¼ f�1
c

fcðm0Þ
fdðmÞ

fdðxÞ
� �

; ð22Þ
where m and m0 are defined by Eq. (5). h

Negation is not always necessary involutive if it has the form (18) or (19), i.e. if
fcðxÞ ¼ lnðxÞ; f dðxÞ ¼ lnð1� xÞ; i:e: : f�1
c ðxÞ ¼ ex; f�1

d ðxÞ ¼ 1� ex
then
gðxÞ ¼ f�1
d ðKfcðxÞÞ ¼ 1� eKlnx ¼ 1� xK ; ð23Þ

gðxÞ ¼ f�1
c ðKfdðxÞÞ ¼ eKlnð1�xÞ ¼ ð1� xÞK : ð24Þ
If K – 1, then Eqs. (23) and (24) are not involutive.
This negation satisfies (C1–C3). The next important question is whether they obey the involution condition C4:

g(x) = g�1(x).

Theorem 3. Let g be given by (17). Then g(x) is involutive if and only if
fcðxÞ ¼
1
a

kðfdðxÞÞ or kðxÞ ¼ afc f�1
d ðxÞ
� �

; a – 0; ð25Þ
where k: [0,1] ? [0,1] is a strictly decreasing, continuous function and
k�1ðxÞ ¼ kðxÞ: ð26Þ
Proof. )Assume that fcðxÞ ¼ 1
a kðfdðxÞÞ, where a – 0. Then
f�1
c ¼ f�1

d ðkðaxÞÞ ð27Þ
and substituting (27) into Eq. (17) we get:
gðxÞ ¼ f�1
d ðkðfdðxÞÞÞ ð28Þ
and so g(x) is involutive.
g(0) and g(1) is defined as a limit Eq. (28), i.e. g(0) = 1 and g(1) = 0.
� Involutions mean that: g(x) = g�1(x), so from Eq. (17) we have
f�1
c

1
a

fdðxÞ
� �

¼ f�1
d ðafcðxÞÞ: ð29Þ
Let define h(x) is the following way
hðxÞ ¼ fcðf�1
d ðxÞÞ; ð30Þ
h is continuous strictly decreasing function, h: [0,1] ? [0,1]. So h(x) exists. From Eq. (30) we get
fcðxÞ ¼ hðfdðxÞÞ: ð31Þ
From this
f�1
c ðxÞ ¼ f�1

d ðh
�1ðxÞÞ: ð32Þ
Substituting Eqs. (31) and (32) into (29),
f�1
d h�1 1

a
fdðxÞ

� �� �
¼ f�1

d ðahðfdðxÞÞÞ: ð33Þ
Let us apply fd and use the notation x = fd(x). Then
h�1 1
a

x
� �

¼ ahðxÞ: ð34Þ
Choosing k(x) in the following way:
kðxÞ ¼ ahðxÞ: ð35Þ
cite this article in press as: J. Dombi, DeMorgan systems with an infinitely many negations in the strict monotone operator case,
. Sci. (2011), doi:10.1016/j.ins.2010.11.038
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Then using Eq. (34), we can verify that
Please
Inform
k�1ðxÞ ¼ kðxÞ; ð36Þ
so
fcðxÞ ¼ hðfdðxÞÞ ¼
1
a

kðfdðxÞÞ: �
In Fig. 3 we show the shape of k(x) function.
We can obtain a new representation theorem for the negation using Theorem 3.

Theorem 4 (General form of the negation). We have that c(w,x), d(w,x) and g(x) is a DeMorgan triple if and only if
gðxÞ ¼ f�1ðkðf ðxÞÞÞ; ð37Þ
where f(x) = fc(x) or f(x) = fd(x) and k(x) is a strictly decreasing function with the property
kðxÞ ¼ k�1ðxÞ; ð38Þ
where k: [0,1] ? [0,1].
Proof. Because of Eqs. (31) and (25), fcðxÞ ¼ hðfdðxÞÞ ¼ 1
a kðfdðxÞÞ and, on the basis of Eq. (17), gðxÞ ¼ f�1

d ðafcðxÞÞ, so
gðxÞ ¼ f�1
d ðkðfdðxÞÞÞ: ð39Þ
Note that g(x) can be expressed in terms of fc(x) too, using that k(fd(x)) = a fc(x) and f�1
d ðxÞ ¼ f�1

c ð1a k�1ðxÞÞ ¼ f�1
c ð1a kðxÞÞ. Hence

from Eq. (39) we get
gðxÞ ¼ f�1
c ðkðfcðxÞÞÞ: ð40Þ
Also, it is clear that Eq. (40) follows from Eqs. (25) and (27).
It is easy to check that for g(x), conditions C1–C4 hold. h
Corollary 1. From Eq. (37) it is easy to see that
kðxÞ ¼ f ðgðf�1ðxÞÞÞ; ð41Þ
i.e. if f(x) and g(x) is given, then k(x) is determined by Eq. (41).
2.2. Representation theorem of negation

Another interesting question is whether Eq. (37) is a general representation form of the negation? The following theorem
ensures that all negations can be written in this form.
Fig. 3. The shape of k(x) function

cite this article in press as: J. Dombi, DeMorgan systems with an infinitely many negations in the strict monotone operator case,
. Sci. (2011), doi:10.1016/j.ins.2010.11.038
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While Trillas’ theorem [27] represents negations (from our point of view) for the nilpotent class of t-norms and t-con-
orms, our next result provides a representation theorem for the strict t-norms and t-conorms.

Let kðxÞ ¼ A
x. In the next theorem we show that all negation can be expressed by using this k(x).

Theorem 5 (Representation theorem of negation). For any given g(x) there exists an f(x) such that
Please
Inform
gðxÞ ¼ f�1 A
f ðxÞ

� �
; ð42Þ
where f is the generator function of some strict t-norm, or strict t-conorm and A > 0.
Remark 3. This theorem is similar to what Trillas’ theorem states, i.e. for any given g(x) there exists a f(x) such that g(x) =
f�1(1 � f(x)), where f(x) is the generator function of some non-strict operator. In Theorem 5 the generator function is the gen-
erator function a strict monotonously increasing operator.
Proof. According to Trillas’ result [27], for every g(x) there exists an f⁄(x), such that
gðxÞ ¼ f�1
� ð1� f�ðxÞÞ; ð43Þ
where f⁄: [0,1] ? [0,1] is a continuous, strictly increasing function.
First we give a particular solution of Eq. (42) in the case where g(x) = 1 � x. We will show that if g(x) = 1 � x then there

always exists an fc(x)(orfd(x)) which has the form of Eq. (42) because
1� x ¼ f�1 A
f ðxÞ

� �
: ð44Þ
This can be written in the following form
f ðxÞf ð1� xÞ ¼ A: ð45Þ
If fc(x) has the form
fcðxÞ ¼
ffiffiffi
A
p 1� x

x
; ð46Þ
then fc(x) is a generator function of a t-norm and this is solution of Eq. (45).
If fd(x) has the form
fdðxÞ ¼
ffiffiffi
A
p x

1� x
; ð47Þ
then fd(x) is a generator function of a t-conorm and this is solution of Eq. (45).
Let us denote the solution of Eq. (44) by fi(x) (when g(x) = 1 � x),i = c or d, so
1� x ¼ f�1
i

A
fiðxÞ

� �
: ð48Þ
Based on Trillas’ result, we get
gðxÞ ¼ f�1
� ð1� f�ðxÞÞ ¼ f�1

� f�1
i

A
fiðf�ðxÞÞ

� �� �
: ð49Þ
Let us define f(x) = fi(f⁄(x)), this is also a generator function of a t-norm (or t-conorm), so Eq. (42) is valid for f(x). h
Remark 4. A DeMorgan triple can be built by using one the generator function of just one operator and choosing a k(x). That
is,
gðxÞ ¼ f�1
c kðfcðxÞÞð Þ; ð50Þ

cðw;xÞ ¼ f�1
c

Xn

i¼1

ðwif ðxiÞÞ; ð51Þ

dðw; xÞ ¼ f�1
c k

Xn

i¼1

wikðfcðxiÞÞ
 ! !

; ð52Þ
form a DeMorgan triple, and
fcðxÞ ¼ kðfdðxÞÞ; ð53Þ
so k(x) can be understood as a kind of negation.
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2.3. Examples of DeMorgan systems

Using the above results, we can construct classical systems and also new operator systems.

� If fc(x) =�ln (x) and g(x) = 1 � x, then
Please
Inform
kðxÞ ¼ fcðgðf�1
c ðxÞÞÞ ¼ � lnð1� e�xÞ cðx; yÞ ¼ xy; dðx; yÞ ¼ xþ y� xy:
� If fd(x) =�ln (1 � x) and g(x) = 1 � x, then
kðxÞ ¼ fdðgðf�1
d ðxÞÞÞ ¼ � lnð1� e�xÞ cðx; yÞ ¼ xy; dðx; yÞ ¼ xþ y� xy:
We give a new example of where g(x) can be varied.
If fc(x) =�ln (x) and fdðxÞ ¼ � 1

lnðxÞ, then kðxÞ ¼ 1
x.
cðx; yÞ ¼ xy dðx; yÞ ¼ e
1

1
ln x
þ 1

ln y gðxÞ ¼ e
a

lnðxÞ
where a > 0.
Here d(1,x) = d(x,1) = limy?1d(x,y) = 1 and g(1) = limx?1g(x) = 0 and g(0) = limx?0y(x) = 1.

2.4. Parametric form of the negations

Lemma 1. The parametric form of the negation is
gðxÞ ¼ f�1 f ðm�Þ
kðf ðxÞÞ
kðf ðm�ÞÞ

� �
; ð54Þ

gðxÞ ¼ f�1 f ðm0Þ
kðf ðxÞÞ
kðf ðmÞÞ

� �
: ð55Þ
Proof. We will use the definitions of m⁄,m and m0 (i.e. g(m⁄) = m⁄ and g(m) = m0 are valid). Using Theorem 2 and Eqs. (37) and
(38) and fd(x) = k(fc(x)),
gðxÞ ¼ f�1
d

fdðm�Þ
kðfdðm�ÞÞ

kðfdðxÞÞ
� �

;

gðxÞ ¼ f�1
c

fcðm�Þ
kðfcðm�ÞÞ

kðfcðxÞÞ
� �

;

which is Eq. (54), i.e. here we can drop the index of f. Eq. (55) can be proved in a similar way. Negation does not depend on
the type of operator used (i.e. strict t-conorm or strict t-norm). So we can drop the c and d indexes in Eqs. (54) and (55). h
3. Operators with an infinitely many negations

Now we will characterize the operator class (strict t-norm and strict t-conorm) for which various negations exist and
build a DeMorgan class. The fixpoint m⁄ or the neutral value m can be regarded as decision threshold. Operators with various
negations are useful because the threshold can be varied.

It is straightforward to see that the min and max operators belong to this class, as does the drastic operator. The next
theorem characterizes those strict operator systems that have infinitely many negations and build a DeMorgan system. It
is easy to see that c(x,y) = xy, d(x,y) = x + y � xy and g(x) = 1 � x build a DeMorgan system. There are no other negations
for building a DeMorgan system, as we will see below.

Theorem 6. c(x,y) and d(x,y) build a DeMorgan system for gm� ðxÞ where gm� ðm�Þ ¼ m� for all m⁄ � (0,1) if and only if
fcðxÞfdðxÞ ¼ 1: ð56Þ
Proof. Define
d1ðx; yÞ ¼ gm1
f�1
c fcðgm1

ðxÞÞ þ fcðgm1
ðyÞÞ

� �� �
ð57Þ
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and
Please
Inform
d2ðx; yÞ ¼ gm2
f�1
c fcðgm2

ðxÞÞ þ fcðgm2
ðyÞÞ

� �� �
; ð58Þ
where m1 – m2.
Suppose that
d1ðx; yÞ ¼ d2ðx; yÞ: ð59Þ
This can be written as
fc t f�1
c ðx0 þ y0Þ
� �� �

¼ fc t f�1
c ðx0Þ þ f ðtðf�1

c ðy0ÞÞÞ
� �� �

; ð60Þ
where t(x) = g2(g1(x)).
Since t(x) is strictly monotonously increasing, t(0) = 0, t(1) = 1. We can assume that t(x) – x. If this is not the case, that

g1(g2(x)) = x therefore g1ðxÞ ¼ g�1
2 ðxÞ ¼ g2ðxÞðg2ðxÞis involutiveÞ. This leads to contradiction because m1 – m2. Let
FcðxÞ ¼ fcðtðf�1
c ðxÞÞÞ; ð61Þ
so Eq. (60) has the form
Fcðxþ yÞ ¼ FcðxÞ þ FcðyÞ: ð62Þ
The solution of the functional form of Eq. (62) is
FcðxÞ ¼ acx:
Using Eq. (61) we get
fcðtðf�1
c ðxÞÞÞ ¼ acx;
thus
fcðtðxÞÞ ¼ acfcðxÞ: ð63Þ
Similar considerations give:
fdðtðxÞÞ ¼ adfdðxÞ: ð64Þ
Multiplying Eq. (63) by Eq. (64) and letting fc(x)fd(x) = g(x), where g: [0,1] ? [0,1], we have
gðtðxÞÞ ¼ acadgðxÞ: ð65Þ
Because t(x) is strict monotone, t(x) – x and Eq. (65) is valid for all x 2 [0,1] and ac, ad are constant values, then the solution of
Eq. (65) is g(x) = const and ac ¼ 1

ad
. So we get:
fcðxÞfdðxÞ ¼ const:
Because the generator function is determined up to a multiplicative constant we can get the result Eq. (57) of the
theorem. h
4. Multiplicative Pliant systems

From Dombi’s result [9] we know that if f(x) is a generator function, then fa(x) is a generator function. As we saw earlier
k(x) plays an important role in DeMorgan systems. Let us define the multiplicative pliant system by one of the simplest k(x)
functions.

Definition 4. If k(x) = 1/x, that is
fcðxÞfdðxÞ ¼ 1; ð66Þ
then we call the generated connectives a multiplicative pliant system.

If we have a generator function, then its power is also a generator function. Therefore in the pliant system we can use the
power function of the generator function and define fc(x) by
fcðxÞ ¼ f aðxÞ:
In Fig. 4 we can see a plot of the generator of pliant operator.

Remark 5. A similar operator system was in fact presented by Roychowdhury [25]. Theorem 6 above gives the necessary
and sufficient conditions for a such system.
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Theorem 7. The general form of the multiplicative pliant system is
Please
Inform
oaðx; yÞ ¼ f�1 f aðxÞ þ f aðyÞð Þ1=a
� �

ð67Þ

gmðxÞ ¼ f�1 f ðm0Þ
f ðmÞ
f ðxÞ

� �
or ð68Þ

gm� ðxÞ ¼ f�1 f 2ðm�Þ
f ðxÞ

� �
; ð69Þ
where f(x) is the generator function of the strict t-norm operator and f: [0,1] ? [0,1] continuous and strictly decreasing function.
Depending on the value of a, the operator is
a > 0 oaðx; yÞ ¼ cðx; yÞ;
a < 0 oaðx; yÞ ¼ dðx; yÞ;

ð70Þ
lim
a!1

oaðx; yÞ ¼minðx; yÞ;

lim
a!�1

oaðx; yÞ ¼maxðx; yÞ;
ð71Þ
a ¼ 0þ lim
a!0þ

oaðx; yÞ ¼
x if y ¼ 1
y if x ¼ 1
0 otherwise;

8><
>: ð72Þ
a ¼ 0� lim
a!0�

oaðx; yÞ ¼
x if y ¼ 0
y if x ¼ 0
1 otherwise;

8><
>: ð73Þ
This operator called the drastic operator.
Proof. The a P 0 case can be proved using the fact that f�1
a ðxÞ ¼ f ðx1=aÞ. From the involution of g(x) we have
fcðxÞ ¼
1
a

1
f ðxÞ ; f�1

c ðxÞ ¼ f�1
d

a
x

� �
Fig. 4. The pliant generator function fcðxÞ ¼ 1
fd ðxÞ

. Here fcðxÞ ¼ ð1�x
x Þ

2 and fdðxÞ ¼ ð x
1�x Þ

2.
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and so
Please
Inform
dðx; yÞ ¼ f�1
d fdðxÞ þ fdðyÞð Þ

¼ f�1
c

1
fcðxÞ

þ 1
fcðyÞ

� ��1

¼ f�1 f�aðxÞ þ f�aðyÞð Þ�1=a
:

The form of negation comes from Eqs. (54) and (55).
If gm� ðxÞ has the same form as that in Eq. (54) and kðxÞ ¼ 1

x, we get:
gm� ðxÞ ¼ f�1 f 2ðm�Þ
f ðxÞ

� �
: ð74Þ
Let fc be a generator function of a strict t-norm operator c, and a > 0. Then, since fc(1) = 0 implies f a
c ð1Þ ¼ 0 and since positive

powers do not affect monotonicity, f a
c is also a generator function of a strict t-norm operator denoted by ca. Let x < y then
caðx; yÞ ¼ f�1
c f a

c ðxÞ þ f a
c ðyÞ

� �1=a
� �

¼ f�1
c fcðxÞ 1þ f a

c ðyÞ
f a
c ðxÞ

� �1=a
� �

:
ð75Þ
Because A ¼ f a
c ðyÞ=f a

c ðxÞ < 1 and
lim
a!1

1þ Aa� �1=a ¼ 1 0 < A < 1;
it follows that
lim
a!1

caðx; yÞ ¼ x ¼ minðx; yÞ:
For the drastic operator it is not hard to see that
caðx;1Þ ¼ 1; daðx;0Þ ¼ x; ð76Þ
i.e. the boundary conditions are satisfied.
In the conjunction case we have to prove that
lim
x!0

f aðxÞ þ f aðyÞð Þ
1
a ¼ 1; ð77Þ
which is self-evident. h
Remark 6. In the multiplicative pliant system it is vital that negation be independent of the value and the sign of a. (In other
words, it does not depend on whether the generator function belongs to the strict t-norm or strict t-conorm.)
Remark 7. The limit values of the pliant operators (min, max and drastic) also have the property that the DeMorgan triplet is
valid for infinitely many negations.
Theorem 8. If g(x) = fa(x) is the generator function, negation does not change in the pliant system.
Proof.
gm;m0
ðxÞ ¼ g�1 gðm0Þ

gðmÞ
gðxÞ

� �
¼ f�1 f aðm0Þ

f aðmÞ
f aðxÞ

� �1=a
 !

¼ f�1 f ðm0Þ
f ðmÞ
f ðxÞ

� �
: �
Theorem 9. Let cðx; yÞ ¼ f�1ðf ðxÞ þ f ðyÞÞ; dðx; yÞ ¼ f�1 1
1

f ðxÞþ
1

f ðyÞ

� �
and gðxÞ ¼ f�1 f ðm0Þ f ðmÞ

f ðxÞ

� �
, then c(x,y), d(x,y) and g(x) form a

DeMorgan triplet.
Proof. The proof of this is straightforward.
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5. Summary

We can summarize the elements of the multiplicative pliant system (operators and their weighted form) like so:
Please
Inform
cðxÞ ¼ f�1
Xn

i¼1

f ðxiÞ
 !

cðw;wÞ ¼ f�1
Xn

i¼1

wif ðxiÞ
 !

; ð78Þ

dðxÞ ¼ f�1 1Pn
i¼1

1
f ðxiÞ

 !
dðw; xÞ ¼ f�1 1Pn

i¼1
wi

f ðxiÞ

 !
; ð79Þ

aðxÞ ¼ f�1
Yn

i¼1

f ðxiÞ
 !

aðw; xÞ ¼ f�1
Yn

i¼1

f wi ðxiÞ
 !

; ð80Þ

gðxÞ ¼ f�1 f 2ðm�Þ
f ðxÞ

� �
; ð81Þ
where f(x) is the generator function of the strict t-norm operator and in (80) a(x) is the aggregative operator (i.e. represent-
able uninorms, see [9,12,16]).

5.0.1. The operator system of Dombi

The Dombi operators form a pliant system and the operators are:
cðxÞ ¼ 1

1þ
Pn

i¼1
1�xi

xi

� �a� �1=a cðw; xÞ ¼ 1

1þ
Pn

i¼1wi
1�xi

xi

� �a� �1=a ; ð82Þ

dðxÞ ¼ 1

1þ
Pn

i¼1
1�xi

xi

� ��a� ��1=a dðw;xÞ ¼ 1

1þ
Pn

i¼1wi
1�xi

xi

� ��a� ��1=a ; ð83Þ

aðxÞ ¼ 1
1þ

Qn
i¼1

1�xi
xi

aðw;xÞ ¼ 1

1þ
Qn

i¼1
1�xi

xi

� �wi
; ð84Þ

gðxÞ ¼ 1

1þ 1�m�
m�

� �2
x

1�x

; ð85Þ
where m⁄2]0,1[, with generator functions
fcðxÞ ¼
1� x

x

� �a

f dðxÞ ¼
1� x

x

� ��a

ð86Þ
where a > 0. The operators c, d and g fulfil the DeMorgan identity for all m, a and g fulfil the self DeMorgan identity for all m
and the aggregative operator is distributive with the logical operators.

Eqs. (82)–(85) can be found in different articles by Dombi. Eqs. (82) and (83) can be found in [8], (84) in [9] and Eq. (85)
can be found in [10]. These are all previous results by Dombi.

Eq. (84) is called 3p operator because it can be written in the following form:
aðxÞ ¼
Qn

i¼1xiQn
i¼1xi þ

Qn
i¼1ð1� xiÞ

: ð87Þ
The main results of this article can be summarized in the following way.
Given a strict t-norm c and a strict t-conorm d with generators fc, fd the paper determines the conditions for which a

strong negation g exists such that c, d, g form a DeMorgan triple. To this end, a helper negation function k:
[0,1] ? [0,1] is required. For one particular kðxÞ ¼ 1

x the conditions on fc, fd are given such that c, d, g form a DeMorgan tri-
ple, where g was obtained using k.

� We employ weighted operators. See Eqs. (6) and (7).
� We provide an involutive negation operator given fc(x) and fd(x). See in Eq. (25).
� We give the general form of the DeMorgan triplet using the k(x) function. See Eqs. (50)–(52).
� We give the parametric form of the negation operator. See Eqs. (54) and (55).
� We show that the DeMorgan triplet has infinitely many negation operators if and only if fc(x)fd(x) = 1 (the main result) and

such a system is called a pliant system. This condition is the same if the representable uninorm (aggregative operator)
corresponds to the strict t-norms and strict t-conorms.
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� We give the general form of the pliant operators. See Eqs. (78)–(81).
� We show that consistent aggregation can be achieved.
� The special case of the pliant system is the Dombi operator class.
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