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József Dombi
University of Szeged

Hungary
e-mail: dombi@inf.u-szeged.hu

Abstract

Here our starting point is a study of connection with Dombi aggregative operators,
uninorms, strict t-norms and t-conorms. We present a new representation theorem of
strong negations that explicitly contains the neutral value. Then the relationships for ag-
gregative operators and strong negations are verified as well as those for the t-norm and
t-conorm using the Pan operator concept. We introduce the multiplicative pliant con-
cept and give the necessary and sufficient conditions for it. We study a certain class of
weighted aggregative operators (representable uninorms) which build a self-DeMorgan
class wih infinitely many negations. We provide the necessary and sufficient conditions
for these operators.
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1 Introduction

The term uninorm was first introduced by Yager and Rybalov [37] in 1996. Uninorms are
generalization of t-norms and t-conorms by relaxing the constraint on the identity element
from {0, 1} to the unit interval. Since then many articles have focused on uninorms, both
from a theoretical [7, 17, 21, 22, 24, 28] and a practical point of view [36]. The paper of Fodor,
Yager and Rybalov [12] is important since it defined a new subclass of uninorms called rep-
resentable uninorms. This characterization is similar to the representation theorem of strict
t-norms and t-conorms, in the sense that both originate from the solution of the associativity
functional equation given by Aczél [1].

The aggregative operators were introduced in the paper [9] by selecting a set of minimal
concepts which must be fulfilled by an evaluation like operator.

As mentioned in [12], there is a close relationship between Dombi’s aggregative operators
and uninorms.

We shall distinguish between logical operators (strict, continuous t-norms and t-conorms)
and aggregative operators, where the former means strict, continuous operators.

The first goal is to show the close correspondence between strong negations, aggregative
and logical operators. The second goal is to introduce and characterize multiplicative pliant
operator systems.

The reader may recall that the field of uninorm, t-norm, t-conorm and its application were
discussed in recent Information Science issues. For example see articles [2, 4, 6, 14–16, 20, 23,
25, 29, 35, 38].

This paper is organized as follows. First we give some basic definitions. We emphasis
the role of the neutral value in Section 2. Section 3 describes the correspondence between
strong negations, aggregative and logical operators. Lastly, we present and give a charac-
terization the so-called multiplicative pliant systems using examples in Section 4. We study
a certain class of weighted aggregative operators (representable uninorms) which build a
self-DeMorgan class wih infinitely many negations. We provide the necessary and sufficient
conditions for these operators.
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1.1 Basic definition and known results

In 1982 Dombi [9] defined the aggregative operator in the following way:

Definition 1. An aggregative operator is a function a : [0, 1]2 → [0, 1] with the properties:

1. Continuous on [0, 1]2\{(0, 1), (1, 0)}

2. a(x, y) < a(x, y′) if y < y′, x 6= 0, x 6= 1
a(x, y) < a(x′, y) if x < x′, y 6= 0, y 6= 1

3. a(0, 0) = 0 and a(1, 1) = 1 (boundary conditions)

4. a(x, a(y, z)) = a(a(x, y), z) (associativity)

5. There exists a strong negation η such that a(x, y) = η(a(η(x), η(y))) (self DeMorgan identity)
if {x, y} 6= {0, 1} or {x, y} 6= {1, 0}

6. a(1, 0) = a(0, 1) = 0 or a(1, 0) = a(0, 1) = 1

We note that the original definition of aggregative operators has the condition of correct clus-
ter formation instead of the self DeMorgan identity (see [9]), which later proved to be equiv-
alent.

For the sake of completeness, strong negation will be defined by the following:

Definition 2. η(x) is strong negation iff η : [0, 1] → [0, 1] satisfies the following conditions:

1. η(x) is continuous

2. η(0) = 1, η(1) = 0 (boundary conditions)

3. η(x) < η(y) for x > y (monotonicity)

4. η(η(x)) = x (involution)

The definition of uninorms, originally given by Yager and Rybalov [37] in 1996, is the follow-
ing:

Definition 3. A uninorm U is a mapping U : [0, 1]2 → [0, 1] having the following properties:

• U(x, y) = U(y, x) (commutativity)

• U(x1, y1) ≥ U(x2, y2) if x1 ≥ x2 and y1 ≥ y2 (monotonicity)

• U(x, U(y, z)) = U(U(x, y), z) (associativity)

• ∃ν∗ ∈ [0, 1] ∀x ∈ [0, 1] U(x, ν∗) = x (neutral element)

A uninorm is a generalization of t-norms and t-conorms. By adjusting its neutral element, a
uninorm is a t-norm if ν∗ = 1 and a t-conorm if ν∗ = 0. The following representation theorem
of strict, continuous on [0, 1]× [0, 1] \ ({0, 1}, {1, 0}) uninorms (or representable uninorms) was
given by Fodor et al. [12] (see also Klement et al. [18]).

Theorem 1. Let U : [0, 1] → [0, 1] be a function and ν∗ ∈]0, 1[. The following are equivalent:

1. U is a uninorm with neutral element ν∗ which is strictly monotone on ]0, 1[2 and continuous on
[0, 1]2\{(0, 1), (1, 0)}.
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2. There exists a strictly increasing bijection gu : [0, 1] → [−∞,∞] with gu(ν∗) = 0 such that for
all (x, y) ∈ [0, 1]2 we have

U(x, y) = g−1
u (gu(x) + gu(y)) , (1)

where, in the case of a conjunctive uninorm U , we use the convention ∞+(−∞) = −∞, while,
in the disjunctive case, we use ∞+ (−∞) = ∞.

If Eq.(1) holds, the function gu is uniquely determined by U up to a positive multiplicative constant,
and it is called an additive generator of the uninorm U .

Strong negation plays an important role. Besides Trillas’ representation theorem, we intro-
duced another form of negation [9]. In the following theorem which is well-known, we show
that this representation is universal.

Theorem 2. Let η : [0, 1] → [0, 1] be a continuous function, then the following are equivalent:

1. η is a strong negation.

2. There exists a continuous and strictly monotone function g : [0, 1] → [−∞,∞] with g(ν∗) = 0,
ν∗ ∈]0, 1[ such that for all x ∈ [0, 1]

η(x) = g−1(−g(x)). (2)

If Eq.(2) holds, then ν∗ is called the neutral value of the strong negation, i.e. for which η(ν∗) = ν∗.

Sketch of the proof. The representation theorem of Trillas [33] states that all strong nega-
tions can be written as

η(x) = ϕ−1 (1− ϕ(x)) , (3)

where ϕ is an automorphism of the unit interval. Let

g(x) = ln

(

1

ϕ(x)
− 1

)

. (4)

It is easy to see that the Theorem 2 is valid for this function.

�

2 The neutral value

Theorem 2 tells us that all strong negations have the form g−1(−g(x)) for a suitable g gener-
ator function. In this formula the neutral value of the strong negation is implicitly present
the generator function. The following representation theorem of strong negations explicitly
contains the neutral value.

Theorem 3 (Additive form of strong negations). Let η : [0, 1] → [0, 1] be a continuous function,
then the following are equivalent:

1. η is a strong negation with neutral value ν∗.

2. There exists a continuous and strictly monotone function g : [0, 1] → [−∞,∞] and ν∗ ∈]0, 1[
such that for all x ∈ [0, 1]

η(x) = g−1(2g(ν∗)− g(x)). (5)
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Proof. A similar proof can be found in Dombi [9].
Suppose η(x) = g−1(2g(ν∗)− g(x)), then it is not hard to check that η is a strong negation

with neutral value ν∗.
Suppose η∗ is a strong negation. By Theorem 2 there exists a generator function g∗ for

which η∗(x) = g−1
∗ (−g∗(x)) and ν∗ = g∗(0). Let g : [0, 1] → [−∞,∞] be a continuous, strictly

monotone function such that g∗(x) = g(x)− g(ν∗), i.e. g−1
∗ (x) = g−1(x+ g(ν∗)). Then

η∗(x) = g−1
∗ (−g∗(x)) = g−1(2g(ν∗)− g(x)). (6)

�

Similar to strong negations, the representation theorem of aggregative operators (Theorem 1)
does not explicitly contain the neutral value of the aggregative operator. With the help of the
following lemma, a new representation can be given.

Lemma 1 (Dombi [9]). If g is the additive generator function of an aggregative operator a, then the
function displaced by d ∈ R, g∗(x) = g(x) + d is also a generator function of an aggregative operator
with neutral value ν∗ = g−1(−d).

Proof. It follows from g∗(x) that g−1
∗ (x) = g−1(x− d). Then

a∗(x, y) = g−1
∗ (g∗(x) + g∗(y)) =

= g−1 (g(x) + g(y) + d) .
(7)

Substituting x = y = ν∗ and using the fact that g(ν∗) = −d,

ν∗ = a∗(ν∗, ν∗) =

= g−1 (g(ν∗) + g(ν∗) + d) = g−1(−d).
(8)

�

Theorem 4 (Dombi [9]). Let a : [0, 1]n → [0, 1] be a function and let a be an aggregative n-valued
operator with additive generator g. The neutral value of the aggregative operator is ν∗ if and only if
x ∈ [0, 1]n, ∀x. It has the following form:

a(x) = g−1

(

n
∑

i=1

g(xi)− (n− 1)g(ν∗)

)

, or (9)

aν∗(x) = g−1

(

g(ν∗) +
n
∑

i=1

(g(xi)− g(ν∗))

)

.

Proof. The proposition follows from Theorem 1, Lemma 1 and the associativity of the
aggregative operator.

�

According to this, one can construct an aggregative operator from any given generator func-
tion that has the desired neutral value.

There are infinitely many possible neutral values, and with each different neutral value, a
different aggregative operator can be given.

Definition 4. Let af and ag be aggregative operators, with the additive generator functions f and g,
respectively. The functions af and ag belong to the same family if f(x) = g(x) + d, for all x ∈ [0, 1]
and a suitable d ∈ R. Note that af and ag do not necessarily have the same neutral value.
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The following theorem shows that there is a one-to-one correspondence between aggregative
operators and strong negations. (see [9] as well)

Theorem 5. Let a be an aggregative operator with generator function g and neutral value ν∗. The
only strong negation satisfies the self DeMorgan identity is

η(x) = g−1 (2g(ν∗)− g(x)) . (10)

Proof. (Existence) By Theorem 4,

η(a(η(x), η(y))) = g−1(g(x) + g(y)− g(ν∗)) =

= g−1(2g(ν∗)− 2g(ν∗) + g(x)− 2g(ν∗) + g(y) + g(ν∗)) =

= a(x, y).

(11)

(Unicity) The functions for which

a∗(x) = g−1

(

n
∑

i=1

g(xi)− (n− 1)g(ν∗)

)

=

= g−1
∗

(

n
∑

i=1

g∗(xi)

) (12)

fulfils the self DeMorgan identity are

η∗(x) = g−1
∗ (cg∗(x)), (13)

where c ∈ R. The involution of η∗ means that

η∗(η∗(x)) = g−1
∗ (cg∗(g

−1
∗ (cg∗(x)))) =

= g−1
∗ (c2g∗(x)) = x,

(14)

which can only be true if c = ±1. For c = 1 η∗(x) is the identity function, and for c = −1 η∗(x)
is strong negation. Using the substitutions g∗(x) = g(x) − g(ν) and g−1

∗ (x) = g−1(x + g(ν)),
we get

η∗(x) = g−1 (2g(ν∗)− g(x)) . (15)

�

Definition 5. Let a be an aggregative operator with the additive generator function g and neutral
value ν∗. Let us call the strong negation η(x) = g−1 (2g(ν∗)− g(x)) the corresponding strong nega-
tion of the aggregative operator.

By Theorem 5 every aggregative operator has exactly one corresponding strong negation,
which is a strong negation that fulfils the self DeMorgan identity. Conversely, every strong
negation has exactly one corresponding aggregative operator.

Definition 6. The neutral element ν∗ of the aggregative operator has the property

a(x, ν∗) = x. (16)
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strict t-norm the corresponding aggregative operator

Dombi
1

1 + 1−x
x

1−y

y

Frank logs

(

1 + (s− 1) exp
[

− ln sx−1
s−1

ln sy−1
s−1

])

Hamacher α
(

α− 1 + exp
[

ln
(

α+(1−α)x
x

)

ln
(

α+(1−α)y
y

)])

−1

Aczél-Alsina exp [− ln(x) ln(y)]

strict t-conorm the corresponding aggregative operator

Dombi
1

1 + 1−x
x

1−y

y

Frank 1− logs

(

1 + (s− 1) exp
[

− ln s1−x
−1

s−1
ln s1−y

−1
s−1

])

Hamacher
exp

[

ln
(

1+βx

1−x

)

ln
(

1+βy

1−y

)]

− 1

exp
[

ln
(

1+βx

1−x

)

ln
(

1+βy

1−y

)]

− β

Aczél-Alsina 1− exp [− ln(1− x) ln(1− y)]

Table 1: The corresponding aggregative operators of the principal strict t-norm or t-conorm

strict t-norm the corresponding negation

Dombi
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

Frank logs

(

1 + (s− 1) exp

[

ln2
sν
∗
−1

s−1

(

ln sx−1
s−1

)

−1
])

Hamacher
1

1 + 1
α

(

exp
[

ln2
(

1 + α 1−ν∗
ν∗

)

(

ln
(

1 + α 1−x
x

))

−1
]

− 1
)

Aczél-Alsina exp
[

ln2 ν∗
ln x

]

strict t-conorm the corresponding negation

Dombi
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

Frank 1− logs

(

1 + (s− 1) exp

[

ln2 s1−ν∗
−1

s−1

(

ln s1−x
−1

s−1

)

−1
])

Hamacher
1

1 + β

(

exp

[

ln2
(

1 + β ν∗
1−ν∗

)(

ln
(

1 + β x
1−x

))

−1
]

− 1

)

−1

Aczél-Alsina 1− exp
[

ln2(1−ν∗)
ln(1−x)

]

Table 2: The corresponding negations of the principal strict t-norm or t-conorm
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3 On additive and multiplicative representations of the operators

Let
c(x, y) = f−1

c (fc(x) + fc(y)) d(x, y) = f−1
d (fd(x) + fd(y)) ,

where fc and fd are the generator functions of the operators. The shape of these function can
be seen in Figure 1.

Figure 1: The generator function of the con-
junctive and disjunctive operators (additive
representation)

Figure 2: The generator function of the con-
junctive and disjunctive operators (multi-
plicative representation)

Let
gc(x) = e−fc(x) gd(x) = e−fd(x) (17)

Then
fc(x) = − ln(gc(x)) fd(x) = − ln(gd(x)). (18)

So
c(x, y) = f−1

c (− ln(gc(x))− ln(gc(y))) = g−1
c

(

e−(− ln(gc(x))−ln(gc(y)))
)

f (x)-1

y

f(x)

x

Figure 3: The generator function of the ag-
gregative operator in additive representation
case

Figure 4: The generator function of the ag-
gregative operator in multiplicative represen-
tation case

3.1 The multiplicative form of the aggregative operator

We will use the transformation defined in (17) and (18) to get the multiplicative operator

aν∗(x) = f−1

(

f(ν∗)
n
∏

i=1

f(xi)

f(ν∗)

)

= f−1

(

f1−n(ν∗)
n
∏

i=1

f(xi)

)

(19)
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In the Dombi operator case, we get

aν∗(x) =
1

1 +
(

ν∗
1−qnu∗

)n−1

n
∏

i=1

1− xi
xi

=

(1− ν∗)
n−1

n
∏

i=1
xi

(1− ν∗)n−1
n
∏

i=1
xi + νn−1

∗

n
∏

i=1
(1− xi)

(20)

aν∗(x) =
1

1 + 1−ν∗
ν∗

n
∏

i=1

(

1−xi

xi

ν∗
1−ν∗

)

(21)

If ν∗ =
1
2 , then we get

a 1
2
(x) =

n
∏

i=1
xi

n
∏

i=1
xi +

n
∏

i=1
(1− xi)

. (22)

Figure 5: ν∗ is the neutral element of the aggregative operator

(22) is called 3 Π operator, i.e. it consists of three product operators [9].

3.2 Determining the ν∗ value in the aggregative operator case

Given x1, x2, . . . , xn and also z, its aggregative value, we can express z in terms of the xi
variables like so:

z = f−1

(

f1−n(ν∗)
n
∏

i=1

f(xi)

)

. (23)

For ν∗, we have

ν∗ = f−1



















f(z)
n
∏

i=1
f(xi)









1
1−n











= f−1



















n
∏

i=1
f(xi)

f(z)









1
n−1











(24)

In the Dombi operator case

ν∗ =
1

1 +

(

z
1−z

n
∏

i=1

1−xi

xi

) 1
n−1

(25)
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4 Aggregative operator and negation

4.1 The negation of the aggregative operator

The basic identity of the aggregative operator is the self-De Morgan identity:

η(aν∗(x, y)) = aν∗(η(x), η(y)). (26)

Let y = η(x). Then
η(aν∗(x, η(x))) = aν∗(η(x), x).

Because aν∗(x, y) = aν∗(y, x), we get

aν∗(x, η(x)) = ν∗.

Using the multiplicative form of the aggregative operator

f−1

(

f(x)f(η(x))

f(ν∗)

)

= ν∗. (27)

Expressing η(x), we have

ην∗(x) = f−1

(

f2(ν∗)

f(x)

)

. (28)

4.2 The Self-De Morgan identity with two different negation operators

Let us suppose that the following identity holds:

aν (ην1(x), ην1(y)) = ην2(aν(x, y)), (29)

in analogy to (26), where

ην(x) = f−1

(

f2(ν)

f(x)

)

. (30)

Theorem 6. (29) is valid if and only if
ν = ην1(ν2). (31)

Proof. (29) has the form:

f−1





f2(ν1)
f(x)

f2(ν1)
f(y)

f(ν)



 = f−1





f2(ν2)
f(x)f(y)

f(ν)



 ,

or, in terms of ν, we have

ν = f−1

(

f2(ν1)

f(ν2)

)

= ην1(ν2).

4.3 Infinitely many negation when the self-De Morgan identity holds

The general form of the weighted operator in the additive representation case is

a(w, x) = f−1

(

n
∑

i=1

wif(xi)

)

. (32)

We will derive the weighted aggregative operators when ν∗ is given.
First, we use the construction

f1(x) = fa(x)− fa(ν∗) f−1
1 (x) = fa(x+ f(ν∗)),
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where ν∗ ∈ (0, 1).

aν∗(w, x) = f−1
1

(

n
∑

i=1

wif1(xi)

)

=

= f−1
a

(

n
∑

i=1

wi(fa(xi)− fa(ν∗)) + fa(ν∗)

)

= f−1
a

(

n
∑

i=1

wifa(xi) + f(ν∗)

(

1−
n
∑

i=1

wi

))

(33)

To get the multiplicative form of the aggregative operator, we will use (18)

aν∗(w, x) = f−1

(

f(ν∗)

n
∏

i=1

(

f(x)

f(ν∗)

)wi

)

= f−1

(

f
1−

n
∑

i=1
wi

(ν∗)

n
∏

i=1

fwi(xi)

)

(34)

From (4.3) if
n
∑

i=1
wi = 1, then aν∗(w, x) is independent of ν∗ and

a(w, x) = f−1

(

n
∏

i=1

fwi(xi)

)

. (35)

In the Dombi operator case:

aν∗(w, x) =
1

1 + 1−ν∗
ν∗

n
∏

i=1

(

1−xi

xi

ν∗
1−ν∗

)

(36)

aν∗(w, x) =

ν∗(1− ν∗)

n
∑

i=1
wi n
∏

i=1
xwi

i

ν∗(1− ν∗)

n
∑

i=1
wi n
∏

i=1
xwi

i + (1− ν∗)ν

n
∏

i=1
wi

∗

n
∏

i=1
(1− xi)wi

(37)

If
n
∑

i=1
wi = 1, then

a(w, x) =

n
∏

i=1
xwi

i

n
∏

i=1
xwi

i +
n
∏

i=1
(1− xi)wi

. (38)

For the next theorem we have to proof the following lemma:

Lemma 2. The general solutions of the functional equation

n
∏

i=1

F ai(xi) = F (
n
∏

i=1

xaii ) ai 6= 0 (39)

is

F (x) = αxβ if

n
∑

i=1

ai = 1 (40)

F (x) = xβ if
n
∑

i=1

ai 6= 1 (41)
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Proof. Let for all i xj = (
∏n

i=1 x̂j
aj )

1∑n
j=1

aj =
∏n

j=1 x̂j
pj

∑n
j=1 pj = 1 (39) has the

form

n
∏

i=1

F ai



(
n
∏

j=1

x
aj
j )

1∑n
j=1

aj



 = F







n
∏

i=1





n
∏

j=1

x
aj
j )





1∑n
j=1

aj







ai

,

F
∑n

i=1 ai





n
∏

j=1

x̂j
pj



 = F





n
∏

j=1

x̂j
aj





(42)

If
∑n

i=1 ai = 0 then F (x) = 1. Let us suppose that
∑n

i=1 ai 6= 0 and let us substitute x̂j by
x.
Using (39) and (42), we get

F
∑n

i=1 ai

(

n
∏

i=1

xpii

)

= F

(

n
∏

i=1

xaii

)

= F ai

(

n
∏

i=1

(xi)

)

(43)

So

F

(

n
∏

i=1

xpii

)

=

n
∏

i=1

F pi(xi) (44)

Let xi = u
1
pi

i , xj = 1 j 6= i and F (1) = γ, then we get

F

(

n
∏

i=1

xpii

)

= F (ui) = F pi(u
1
pi

i )
n
∏

j=1,i 6=j

F pj (1) = F pi(u
1
pi

i )γ1−pi

so:

F pi

(

u
1
pi

i

)

=
F (ui)

γ1−pi
(45)

Let xi = u
1
pi

i i = 1, . . . n. Then we get from (44)

F

(

n
∏

i=1

ui

)

=
n
∏

i=1

F pi

(

u
1
pi

i

)

(46)

From (45), (46) we can infer:

F

(

n
∏

i=1

ui

)

=
1

γn−1

n
∏

i=1

F (ui) (47)

From (45),(46) γ 6= 0.
Let G(u) = 1

γF (u). Then (47) has the form

G

(

n
∏

i=1

ui

)

=
n
∏

i=1

G(ui) (48)

The solution of (48) is [1].

G(u) = uβ , and therefore F (u) = αuβ , (49)

where α = 1
γ .

11



Now let us check this solution. Substituting solution (49) into (39), we find that

n
∏

i=1

(

αxβi

)ai
= α

(

n
∏

i=1

xaii

)β

α
∑n

i=1 ai = α

From this either α = 1 or
∑n

i=1 ai = 1.

�

Definition 7. The self-De Morgan identity is

a(w1, η(x1); . . . ;wn, η(xn)) = η(a(w, x)).

Theorem 7. The self-De Morgan identity (7) is valid if and only if

a)
n
∑

i=1
wi 6= 1, then η(x) = f−1

(

1

f(x)

)

b)
n
∑

i=1
wi = 1, then η(x) = f−1

(

α

f(x)

)

= f−1

(

f(ν0)
f(ν)

f(x)

)

= f−1
(

f2(ν∗)
f(x)

)

Remark 1. In case b) infinitely many negations fulfills the self-DeMorgan identity.

Sufficiency:

If
n
∑

i=1
wi = 1, then for a(w, x) the self-De Morgan identity hold for all ν∗, i.e. a(x, y) is

independent of the ν∗ value.
The self-De Morgan identity is

a(w, ην∗(x)) = ην∗(a(w, x)). (50)

Therefore

f−1









n
∏

i=1

(fwi(ν∗))
2

n
∏

i=1
fwi(xi)









= f−1









f2(ν∗)
n
∏

i=1
fwi(xi)









and because
n
∏

i=1

(fwi(ν∗))
2 =

n
∏

i=1

(

f2(ν∗)
)wi =

(

f2(ν∗)
)

n
∑

i=1
wi

= f2(ν∗),

we get (50). Similar way we can show the case a), when
∑n

i=1wi 6= 1.

Necessity:

Using the multiplicative representation, we have

f−1

(

n
∏

i=1

fwi(η(xi))

)

= η

(

f−1

(

n
∏

i=1

fwi(xi)

))

. (51)

Now let F (x) denote f(η(f−1(x))), then (51) has the form

n
∏

i=1

Fwi(xi) = F

(

n
∏

i=1

xwi

i

)

. (52)

12



A general solution of this function equation is

F (x) = xβ if
n
∑

i=1

wi 6= 1

F (x) = αxβ if
n
∑

i=1

wi = 1

α, β ∈ R

See Lemma 2.

Using the definition of F (x), we have

f(η(f−1(x))) = xβ or

f(η(f−1(x))) = αxβ

In terms of η(x),
η(x) = f−1(fβ(x)) or (53)

η(x) = f−1(αfβ(x)) (54)

Because η(x) is involutive using (53) we get

x = η(η(x)) = f−1
(

fβ
(

f−1
(

fβ(x)
)))

. (55)

Now let f(x) = eg(x), then f−1(x) = g−1(ln(x)), so f−1(fβ(x)) = g−1(βg(x)). Therefore

x = g−1(β2g(x))

This means that β = ±1 and (53)

η(x) = f−1

(

1

f(x)

)

or η(x) = x.

η(x) = x is not a negation, so we get 7(a). After we will show that 7(b) is also true.
Because η(x) is involutive, using (54) we get

x = η(η(x)) = f−1(αfβ(f−1(αfβ(x)))) (56)

Now let f(x) = eg(x), then f−1(x) = g−1(ln(x)), so

f−1(αfβ(x)) = g−1(ln(αeβg(x))) = g−1(lnα+ βg(x)).

(56) can be written in the following way:

x = g−1(lnα+ βg(g−1(lnα+ βg(x)))) = g−1((1 + β) lnα+ β2g(x)).

From this we get:
g(x)(1− β2) = (1 + β)) lnα.

If β 6= ±1 then g(x) is a constant, so β = −1.
Then we get the result 7(b).

13



5 Strict t-norms, t-conorms and aggregative operators

From an application point of view, the strict monotonously increasing operators are useful.
They have many applications. This is the reason why in this article we will focus on strictly
monotonously increasing operators.

T-norms are commutative, associative and monotone operations on the real unit interval
with 1 as the unit element. t-conorms are in some sense dual to t-norms. A t-conorm is a
commutative, associative and monotone operation with 0 as the unit element [18]. In this
section, besides the min/max and the drastic operators, we shall be concerned with strict
t-norms and t-conorms, that is,

c(x, y) < c(x′, y) if x < x′ x, y ∈ (0, 1]

d(x, y) < d(x′, y) if x < x′ x, y ∈ [0, 1)

We will call the elements of pliant logic conjunctive, disjunctive and negation operators
denote them by c(x, y) and d(x, y) respectively. Those familier with fuzzy logic theory will
find that the terminology used here is slightly different from that used in standard texts [3, 5,
8, 13, 18, 27].
The so-called pan operator concept were introduced by Mesiar and Rybárik [26]. The next
theorem is based on this result.
In the following we will show that from any strict continuous t-norm or t-conorm we can
derive an aggregative operator by changing addition to multiplication in their additive gen-
erator functional forms.

The following theorem can be found in Klement, Mesiar and Pap’s paper [19].

Theorem 8. The following are equivalent:

1. o(x, y) = f−1 (f(x) + f(y)) is a strict t-norm or t-conorm.

2. a(x, y) = f−1 (f(x)f(y)) is an aggregative operator.

where f is the generator function of the strict t-norm or t-conorm.

Sketch of the proof. Suppose o : [0, 1]2 → [0, 1] is a strict t-norm or t-conorm with ad-
ditive generator function f(x). Let g(x) = logs f(x), g

−1(x) = f−1(sx). Then g(x) fulfils the
conditions of Theorem 1 i.e.

a(x, y) = g−1 (g(x) + g(y)) = f−1 (f(x)f(y)) (57)

is an aggregative operator.
Similarly, let a : [0, 1]2 → [0, 1] be an aggregative operator with additive generator func-

tion g, and let f(x) = sg(x). It is easy to see that f : [0, 1] → [0,∞] is strictly monotone,
continuous and either f(0) = 0 or f(1) = 0.

�

Definition 8. Let f be the additive generator of a strict t-norm or t-conorm. Then the corresponding
aggregative operator is a(x, y) = f−1 (f(x)f(y)).

We note that pan-operators, introduced by Wang and Klir [34], with a non-idempotent unit
element (see [26] and [32]) have properties not unlike to a corresponding pair of strict t-norm
or t-conorm and aggregative operators.
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Corollary 1. A strict t-norm or t-conorm is distributive with its corresponding aggregative operator,
i.e.

a(x, c(y, z)) = c(a(x, y), a(x, z)),

a(x, d(y, z)) = d(a(x, y), a(x, z)).
(58)

We can find this and some other similar results in the paper by Ruiz and Torrens [30].
The following statement shows the relationship between the set of strict t-norm or t-conorm
and the set of aggregative operators.

Corollary 2. Let f(x) be the additive generator of a strict t-norm or t-conorm. The aggregative
operators gene-rated by f(x) and f∗(x) = cf(x) (c > 0) are the same.

Corollary 3. Let f(x) be a generator function of a strict t-norm or t-conorm and let fα(x) = (f(x))α

(α > 0). Then its corresponding aggregative operator is independent of α.

Proof.

aα(x, y) = f−1
α (fα(x)fα(y)) =

= f−1
(

((f(x))α(f(y))α)1/α
)

=

= f−1 (f(x)f(y)) .

(59)

�

By Theorem 8 and Corollaries 2 and 3, every strict t-norm or t-conorm has infinitely many
corresponding aggregative operators because its generator function is determined up to a
multiplicative constant. Conversely, every aggregative operator has infinitely many corre-
sponding strict t-norm or t-conorm because a generator function on different powers gener-
ates different strict t-norm or t-conorm and identical aggregative operators.

A direct consequence of Theorem 3 and Theorem 8 is the following representation theo-
rem of strong negations.

Corollary 4 (Multiplicative form of strong negations). The function η : [0, 1] → [0, 1] is a strong
negation with neutral value ν∗ if and only if

η(x) = f−1

(

f2(ν∗)

f(x)

)

, (60)

where f is a generator function of a strict t-norm or t-conorm.

Summarizing the above statements, there is a well-defined correspondence between strict
t-norm or t-conorm, aggregative operators and strong negations. Every strict t-norm or t-
conorm has corresponding aggregative operators, and corresponding strong negations as
well. Table 1 lists the corresponding aggregative operators and Table 2 gives the correspond-
ing strong negations of the chief strict t-norm or t-conorm. Note that the Dombi operators
have the same corresponding aggregative operator and strong negation.

The next theorem gives a necessary and sufficient condition for a pair of strict t-norm and
strict t-conorm to have identical corresponding aggregative operators.

Theorem 9. Let fc be an additive generator function of a strict t-norm, and fd be an additive generator
function of a strict t-conorm. Their corresponding aggregative operators ac and ad are equivalent on
[0, 1]2\{(0, 1), (1, 0)} if and only if fd(x) = fk

c (x), where k ∈ R
−.
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Proof. The equivalence means that

f−1
c (fc(x)fc(y)) = f−1

d (fd(x)fd(y)) (61)

This equation can be transformed to

fd
(

f−1
c (x′y′)

)

= fd(f
−1
c (x′))fd(f

−1
c (y′)), (62)

by substituting ξ′ = fc(ξ), ξ ∈ {x, y}, and multiplying fd to both sides. Substituting h(x) =
fd(f

−1
c (x))

h(x′y′) = h(x′)h(y′). (63)

This is the well-known power-law Cauchy equation, which has a solution of h(x) = xk, where
k is a constant, thus

h(x′) = fd(f
−1
c (x′)) = (x′)k (64)

fd(x) = fk
c (x). (65)

Note that if k ≥ 0 then fk
c (x) is also a conjunctive generator function, and if k < 0 then fd is

indeed a disjunctive generator function.

�

Corollary 5. Let c and d be a strict t-norm and a strict t-conorm with additive generator functions
fc and fd. Let ac and ad be their corresponding aggregative operators, and let ηc and ηd be their
corresponding strong negations. The strong negations ηc and ηd are equivalent if and only if fd(x) =
fk
c (x), k ∈ R

−.

6 Pliant operators

If the condition fd(x) = fk
c (x) with k < 0 is fulfilled then the strict t-norm or t-conorm have

a common aggregative operator and strong negation. This set of strict t-norm or t-conorm is
still general. DeMorgan’s law is a condition which must be fulfilled by a “good” triplet of
connectives. Persanding that they satisfy of DeMorgan’s law further restricts the given set of
strict t-norm or t-conorm.

Theorem 10. Let c and d be a strict t-norm and a strict t-conorm with additive generator functions
fc and fd. Suppose their corresponding strong negations are equivalent (i.e. fd(x) = fk

c (x), k < 0),
denoted by η (η(ν∗) = ν∗). The three connectives c, d and n form a DeMorgan triplet if and only if
k = −1.

Proof. DeMorgan’s law is the following:

c(x, y) = η(d(η(x), η(y))). (66)

Using the generator functions of the operators the equation becomes:

f−1
c (fc(x) + fc(y)) =

= η

(

f−1
c

(

(

fk
c (η(x)) + fk

c (η(y))
)1/k

))

.
(67)

According to Corollary 4,

η(x) = f−1
c

(

f2
c (ν∗)

fc(x)

)

= f−1
d

(

f2
d (ν∗)

fd(x)

)

, (68)
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hence

η

(

f−1
c

(

(

fk
c (η(x)) + fk

c (η(y))
)1/k

))

=

= f−1
c



f2
c (ν∗)

(

(

f2
c (ν∗)

fc(x)

)k

+

(

f2
c (ν∗)

fc(y)

)k
)−1/k



 =

= f−1
c

(

(

f−k
c (x) + f−k

c (y)
)−1/k

)

.

(69)

So Eq.(67) can be written as

fc(x) + fc(y) =
(

(fc(x))
−k + (fc(y))

−k
)−1/k

. (70)

Let x′ = fc(x) and y′ = fc(y). Then we have

(x′ + y′)−k = x′−k + y′−k. (71)

Let x′ = y′ = 1/2, then the only solution is k = −1. It is straightforward to see that k = −1
fullfils Eq. (70), so c, d and η form a DeMorgan triplet if and only if k = −1.

�

Definition 9. A system of strict t-norm or t-conorm which have the property fc(x)fd(x) = 1 is called
a multiplicative pliant system.

In multiplicative pliant systems the corresponding aggregative operators of the strict t-norm
and strict t-conorm are equivalent, and DeMorgan’s law is obeyed with the (common) corre-
sponding strong negation of the strict t-norm or t-conorm.

We can summarize the properties of multiplicative pliant system like so

c(x) = f−1

(

n
∑

i=1

f(xi)

)

c(w, x) = f−1

(

n
∑

i=1

wif(xi)

)

(72)

d(x) = f−1









1
n
∑

i=1

1
f(xi)









d(w, x) = f−1









1
n
∑

i=1

wi

f(xi)









(73)

aν∗(x) = f−1

(

f(ν∗)
n
∏

i=1

f(xi)

f(ν∗)

)

aν∗(w, x) = f−1

(

f(ν∗)
n
∏

i=1

(

f(xi)

f(ν∗)

)wi

)

(74)

a(x) = f−1

(

n
∏

i=1

f(xi)

)

a(w, x) = f−1

(

n
∏

i=1

fwi(xi)

)

(75)

η(x) = f−1

(

f2(ν∗)

f(x)

)

(76)

where f(x) is the generator function of the strict t-norm.

It was shown in [11] that the multiplicative pliant system fulfils the DeMorgan identity and
the correct strong negation is defined by Eq.(76).

For example, let fc(x) = − lnx, the additive generator of the product operator. Assuming
we have a pliant system, fd(x) = (− lnx)−1 is a valid generator of a strict t-conorm. Their
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corresponding strong negations are the same as ηc(x) = ηd(x) = η(x) = exp[ (ln(ν∗))
2

lnx ], so that
η(1) = limx→1 η(x), for which c(x, y) = xy and

d(x, y) = exp

[

lnx ln y

lnxy

]

(77)

form a DeMorgan triplet.

6.1 The Dombi operator system

In another example, the Dombi operators form a pliant system. The operators are

c(x) =
1

1 +

(

n
∑

i=1

(

1−xi

xi

)α
)1/α

c(x) =
1

1 +

(

n
∑

i=1
wi

(

1−xi

xi

)α
)1/α

(78)

d(x) =
1

1 +

(

n
∑

i=1

(

1−xi

xi

)−α
)−1/α

d(x) =
1

1 +

(

n
∑

i=1
wi

(

1−xi

xi

)−α
)−1/α

(79)

aν∗(x) =
1

1 + 1−ν∗
ν∗

∏n
i=1

(

1−xi

xi
− ν∗

1−ν∗

) aν∗(x) =
1

1 +
(

1−ν∗
ν∗

)

∏n
i=1

(

1−xi

xi
− 1−ν∗

ν∗

)wi
(80)

η(x) =
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

(81)

where ν∗ ∈]0, 1[, with generator functions

fc(x) =

(

1− x

x

)α

fd(x) =

(

1− x

x

)−α

(82)

where α > 0. The operators c, d and n fulfil the DeMorgan identity for all ν, a and n fulfil the
self DeMorgan identity for all ν and the aggregative operator is distributive with the strict
t-norm or t-conorm.

Eqs.(78), (79), (80), (81) can be found in various articles of Dombi. Eq.(78) and (79) can be
found in [10], Eq.(80) in [9] and Eq.(81) can be found in [11].

Eq.(80) called 3Π operator because it can be written in the following form:

a(x) =

n
∏

i=1
xi

n
∏

i=1
xi +

n
∏

i=1
(1− xi)

(83)

7 Conclusions

In this paper we demonstrated the equivalence of the class of representable uninorms and
the class of uninorms that are also aggregative operators. In addition, three new represen-
tation theorems of strong negations were given with two explicitly containing the neutral
value. After, the relationships for strict, continuous operators, aggregative operators and
strong negations were clarified, showing the correspondence between the elements of the
three classes. We study a certain class of weighted aggregative operators (representable uni-
norms) which build a self-DeMorgan class wih infinitely many negations. Lastly, the concept
of multiplicative pliant systems was presented, and characterized by necessary and sufficient
conditions.
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