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Abstract

The equivalence of affinities in fuzzy connectedness (FC) is a novel con-
cept which gives us the ability to study affinity functions and their precise
connection with FC algorithms. Two seminal papers [10, 11] create a strong
theoretical background and provide some useful practical examples. Our in-
tention here is to investigate this concept further, because from a practical
viewpoint, if we are able to determine the equivalence classes for a given set of
affinity functions and narrow it down to a much smaller set of nonequivalent
affinities, then the set can be used more effectively in an optimization frame-
work which searches for the best affinity function or parameters for a special
task. In other words, we can find the best configuration for a set of given
hardware or an image set with special characteristics. From a theoretical per-
spective, we are interested in the complexity of this problem, i.e. determining
equivalence classes. Here, an affinity operator is used which is a function of
a given parameter and maps different parameter values for different affinity
functions. Our first questions, namely how many different meaningful, non-
equivalent affinities there are and how we can enumerate them, led us to a
general problem of how the equivalent affinities partition the parameter’s
domain and how the corresponding equivalence classes can be determined.
We will provide a general algorithm schema to construct special algorithms
which are able to compute the equivalence classes. We will also analyze a
special but very common scenario of when the affinity operator combines two
affinities (e.g. a homogeneity and an object feature based affinity) using an
aggregation operator (e.g. weighted average) and the particular parameter
defines the weights of the affinities. Based on the general algorithm schema,
we propose algorithms for this special case and we determine their complexity
as well. These algorithms are tested on two sets of medical images, namely,
25 digital dermoscopy images 1280× 1024 pixels in size and 3× 25 simulated
brain MRI slices 181 × 217 in size.
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1 Introduction

In general, the goal of image segmentation is to partition the image into meaning-
ful object regions. However, this is one of the most difficult tasks in the image
processing realm with numerous open questions. Many different approaches exist
to handle this problem, one of the most popular being the family of region-based
algorithms [3, 4, 32, 34] where the objects are described by their filled regions.

Fuzzy techniques are also widely used in image processing [5, 6, 7, 19, 26, 33],
due to the fact that they address the problem of ambiguity in digital images (caused
by noise or imprecision, for example). Fuzzy connectedness (FC) [12, 23, 29, 30, 34,
35, 38] is a region-based, fuzzy segmentation framework that has good theoretical
support and has been used successfully in several medical applications [21, 22, 28,
31, 36].

In the FC framework, a global fuzzy relation, called fuzzy connectedness, char-
acterizes how the image elements hang together to build up objects. The strength
of this relation between any two image elements (or spels) c and d, which refers
to the strength of their connectedness, can be determined in the following way.
Consider all the possible paths connecting c and d. Each path is a sequence of
spels, starting from c and ending in d, with the successive spels being nearby. Each
consecutive spel pair constitutes a link and we assign a strength to every path,
which is the strength of the weakest link along the path. The strength of connect-
edness between c and d is the strength of the strongest path between c and d. A
local fuzzy relation, called affinity function, is used to determine the strength of the
consecutive spel pairs (i.e. the strength of links). Generally speaking, the strength
of affinity between any two spels depends on how close the spels are spatially and
how similar their properties (like intensity and colour) are in the image.

FC algorithms are parametric in nature. This means that object feature based
affinities require some a priori knowledge about the object (e.g. expected mean and
standard deviation of the intensities [23]), while object feature-based and homo-
geneity affinities are combined in many scenarios where the aggregation operator
requires some weights [35]. One of the most challenging problems with parametric
algorithms in real applications is to find the optimal parameter values, because a
given solution can only be evaluated by human observation and cannot be auto-
mated. In addition, the parameter domain (i.e. the search space, which may be
large or infinite) and the running time of the particular algorithm can also limit
the speed of testing. Equivalence of affinities [10, 11], which is a novel concept in
the FC framework, gives us the ability to address this problem. Informally, if two
affinities used in the same FC schema are equivalent, they lead to identical segmen-
tations [10]. Accordingly, if we could filter the redundant, equivalent affinities from
our experimental set, it would definitely reduce the search space. Here, we focus on
the theoretical background and algorithmic questions of the former, namely how
many different meaningful, non-equivalent affinities there are and how we can enu-
merate them; or more generally, how the equivalence classes can be characterized.
In our model scenario, we have an affinity operator (Sec. 2.2) that is a function of
a given parameter, so it maps different parameter values for different affinities. For
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example, suppose we have two affinities κ1 and κ2 and we combine them into κw
using the weighted average operator with the parameter w:

κw = wκ1 + (1− w)κ2.

In this study, we propose using a general algorithm schema to create special algo-
rithms which are able to determine the set of equivalence classes based on the pa-
rameter value of the affinity operator. Then, we investigate a very common scenario
where two affinities are combined by means of a weighted quasi-linear mean [18]
(e.g. weighted average as in the example above) and some concrete algorithms are
built based on the general algorithm schema. The complexity of these algorithms
are also considered, and we will show that the structure of equivalence classes is
very simple in this case. Lastly, we test the algorithms on medical image sets where
our goal is to see how many different equivalence classes (i.e. non-redundant affini-
ties) belong to a given image; in other words how big the search space is in the case
of real applications.

2 Equivalence of affinities

Now, we will briefly present some standard concepts and definitions that will be
used throughout, which are well known in fuzzy theory and more detailed descrip-
tions can be found in the literature [10, 34, 35].

2.1 Basic notations and definitions

Let Zn stand for the set of all n-tuples of integers. A binary fuzzy relation α on
Zn (n ≥ 2) is a fuzzy adjacency if α is symmetric and reflexive. The pair 〈Zn, α〉
is called an n-dimensional fuzzy digital space. A scene over a fuzzy digital space
〈Zn, α〉 is a pair C = 〈C, f〉, where C =

∏n
j=1[−bj , bj ] ⊂ Zn, each bj > 0 being an

integer, and f : C → Rk is a scene intensity function (k ≥ 1). If the range of f is a
subset of the interval [0, 1], the scene is called the membership scene.

2.2 Affinity functions

Affinity is a binary fuzzy relation which indicates how two spels hang together
locally in the scene, its strength depending on how close these spels are spatially
and how similar their properties are in the image. It plays a crucial role in the FC
framework because the global fuzzy connectedness of spels is derived by means of
their affinities. The following definition gives a general characterization of affinity
functions [10].

Definition 1. Let � be a linear order relation [13] on a set L and let C be an
arbitrary finite non-empty set. A function κ : C×C → 〈L,�〉 is an affinity function
from C into 〈L,�〉 if κ is symmetric and κ(a, b) � κ(c, c) for every a, b, c ∈ C.
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We say that κ is a standard affinity if it is a function taken from C to 〈[0, 1],≤〉. In
practice, the value of κ(c, d) depends on the adjacency strength α(c, d) of c and d
and on the intensity function f . In our experiments, we use the following two well
known types of affinitiestaken from the literature [11, 30].

Definition 2. Let ψ : C ×C → 〈[0, 1],≤〉 be a standard homogeneity-based affinity
function such that for every c, d ∈ C

ψ(c, d) =


1 if c = d

e−|f(c)−f(d)|
2

if ‖c− d‖ = 1
0 otherwise

(1)

Definition 3. Let φ : C × C → 〈[0, 1],≤〉 denote a standard object feature-based
affinity such that for every c, d ∈ C

φ(c, d) =


1 if c = d

min(e−|f(c)−m|
2/σ2

, e−|f(d)−m|
2/σ2

) ‖c− d‖ = 1
0 otherwise

, (2)

where m and σ are the expected mean and standard deviation values of object in-
tensities.

We should remark that in Def. 3 a family of affinities are defined where affinities
differ in parameter values m and σ (our expectations or a prior knowledge about
the object). These values are usually associated with a given scene and therefore
this association can be treated as an affinity operator

K(C,m, σ) := 〈C,m, σ〉 7→ κm,σ,

which produces affinity functions based on its input parameters.

2.3 Fuzzy connectedness schemas

Next, we will briefly describe the concept of fuzzy connectedness and the algorithm
schemas, but we will avoid any formal definitions and theorems because these can
be found in the literature cited and are not too important in this study (due to the
fact the concept of equivalent affinities is valid in all of these schemas).

Fuzzy connectedness is a binary fuzzy relation which refers to the global hanging
togetherness of the spel pairs in a scene as follows. For a given spel pair c and d, we
consider all possible connecting paths between them and the level of connectedness
is defined by the maximum of the strengths of all paths. The strength of a path is
the minimum of the affinities of consecutive spels along the path [34]. Intuitively,
the higher the level of connectedness between to spels, the higher the probability
that these spels belong to the same object.

There are some well-known and commonly used algorithm schemas (or FC
frameworks) which are able to determine different segmentations for a given scene
based on some affinity functions. These are absolute FC (AFC) [35], relative FC
(RFC) [29], iterative RFC (IRFC) [12], scale-based [30] and vectorial FC [38].
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2.4 Equivalent affinities

Equivalence of affinities [10, 11] is a key notion in our study. Informally, two affinity
functions are equivalent in the FC sense if they lead to identical segmentations when
applied to any scene starting from the same seeds. The following definition [10]
characterizes this concept more formally, which constitutes the basis for our study
here.

Definition 4. The affinities κ1 : C ×C → 〈L1,�1〉 and κ2 : C ×C → 〈L2,�2〉 are
equivalent in the FC sense if for every a, b, c, d ∈ C

κ1(a, b) �1 κ1(c, d) ⇐⇒ κ2(a, b) �2 κ2(c, d). (3)

The statement (i.e. two equivalent affinities, as described in Def. 4 lead to identical
segmentations), is presented and proven in [10] (Theorem 5).

Without loss of generality, we shall restrict our investigation to standard affini-
ties due to the following theorem [10].

Theorem 1. Every affinity function is equivalent in the FC sense to a standard
affinity.

Proof. See proof in [10].

3 General algorithm schema

One of the chief goals of our study is to provide algorithms that are able to deter-
mine equivalence classes for a set of affinities. This is important from a practical
viewpoint because we should avoid the use of equivalent affinities during a real
application. However, from a theoretical perspective, this provides the basis for
investigating equivalence classes, like the number of classes compared to the cardi-
nality of the affinity set. Here, we will present a general algorithm schema (mostly
based on Def. 4), which is the first step towards defining these algorithms.

In our example, we will assume that we have an affinity operator which depends
on a real parameter w, i.e. it provides a set of affinities. We should add that the
operator may also depend on a given scene C and on some additional parameters,
but we view these as fixed parameters due to the affinity equivalence being restricted
to a particular scene. We propose an algorithm schema which takes an affinity
operator and a scene as inputs and determines the set of affinity equivalence classes.
It is an abstract algorithm because it is to be implemented for a particular family
of affinity operators, highlighting the tasks and providing an algorithm template
for more specific algorithms. We will present some actual applications later on.

More formally, assume that a fixed scene C is given and there is an affinity
operator

K(C, w, p) := 〈C, w, p〉 7→ κw,

where w is the given parameter such that

w ∈ [L,U ] ⊆ R
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and p represents all other parameters (which are dependent on C). A certain
affinity function for a given w is referred to as κw because the scene and the other
parameters are fixed (hence the indices can be omitted to).

The following structure (defined in Def. 5) is the key component here because
it provides a formal description of the set of affinity equivalence classes.

Definition 5. Let γ be an equivalence relation on the interval [L,U ] such that

γ = {〈w1, w2〉 ∈ [L,U ]× [L,U ] : κw1 and κw2 are equivalent in FC sense},

and let G denote the set of the equivalence classes induced by γ.

The following definitions are used to construct the algorithm schema which deter-
mines G (Def. 5) based on the definition of equivalent affinities (Def. 4). First,
suppose that a certain 4-tuple of spels 〈a, b, c, d〉 is fixed (a, b, c, d ∈ C).

Definition 6. Let ∆: [L,U ]→ {−1, 0, 1} be a function such that

∆(w) = sgn(κw(a, b)− κw(c, d)),

where sgn denotes the sign function.

Obviously, if ∆(w1) = ∆(w2) then the corresponding κw1
and κw2

define the same
ordering on the spel pairs (a, b) and (c, d).

Definition 7. Let ρ be an equivalence relation on the interval [L,U ] such that

ρ = {〈w1, w2〉 ∈ [L,U ]× [L,U ] : ∆(w1) = ∆(w2)},

and let P = {P (−), P (0), P (+)} denote the set of the equivalence classes belonging
to ρ, where

P (−) = {w ∈ [L,U ] : ∆(w) = −1},
P (0) = {w ∈ [L,U ] : ∆(w) = 0},
P (+) = {w ∈ [L,U ] : ∆(w) = 1}.

Thus, each w in P (−) satisfies κw(a, b) < κw(c, d). The sets G and P are partitions
of [L,U ].

The general algorithm schema which computes G can be seen in Alg. 1. The
procedure starts with an initial partition (step 1) which contains the interval [L,U ]
itself. Then, it iterates over the possible 4-tuples (steps 2 - 9) and determines the
set of equivalence classes P for each 4-tuple (Step 3). In the steps 4-8, the algo-
rithm refines the current partition G with the elements of P , i.e. if Pcurr and an
element Gcurr of G intersect, then the algorithm replaces Gcurr by the intersection
and the difference. The purpose of this step is to merge the different partitions
of the 4-tuples into a global partition which describes γ and G (more formally, in
Prop. 1). The performance of the partition refinement step depends on the general
structure of the different partitions, and many algorithms and data structures used
to implement this step can be found in the literature [24, 16, 27].
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Algorithm 1 General algorithm schema

Input: the operator K, the fixed C, p and the domain [L,U ] ⊆ R of w
Output: G

1: G← {[L,U ]}
2: for all 4-tuple 〈a, b, c, d〉 do
3: determine P = {P (−), P (0), P (+)} (according to ∆)
4: for all Pcurr ∈ P and Gcurr ∈ G do
5: if Pcurr ∩Gcurr 6= ∅ then
6: substitute Gcurr in G by Gcurr ∩ Pcurr and Gcurr \ Pcurr
7: end if
8: end for
9: end for

10: return G

Proposition 1. The Alg. 1 computes G correctly.

Proof. Suppose that the algorithm iterates over all possible 4-tuples in a given
t1, t2, . . . , tk order (where ti = 〈a, b, c, d〉 is a 4-tuple of spels), and let Pi denote
the partition P belonging to ti and G(i) the state of G in the ith iteration. We
would like to prove that in the ith iteration, G(i) consist of the equivalence classes
belonging to the first i 4-tuples (t1, . . . , ti), i.e. γ is correct if its verification is
restricted to these 4-tuples.

In the first step, when i = 1, the initial [L,U ] is partitioned by P1, which
means that G(1) = P1. Now, suppose that the statement is satisfied for i, thus γ is
correct when restricted to t1, . . . , ti. Then the method takes ti+1 and its partition

Pi+1 = {P (−)
i+1 , P

(0)
i+1, P

(+)
i+1}. Because Pi+1 is a partition, each Gcurr ∈ G(i) will be

substituted by P
(−)
i+1 ∩ Gcurr, P

(0)
i+1 ∩ Gcurr and P

(+)
i+1 ∩ Gcurr, where at least one

intersection is not empty.

Next, consider a non-empty intersection like P
(0)
i+1 ∩ Gcurr, and let w ∈ P (0)

i+1 ∩
Gcurr. The affinities belonging to this set are equivalent in the FC sense restricted

to t1, . . . , ti, ti+1, because for each parameter w′ ∈ P (0)
i+1 ∩Gcurr, the corresponding

κw and κw′ define the same ordering on the spel pairs of the 4-tuples t1, . . . , ti, ti+1

due to the definition of Gcurr (t1, . . . , ti) and due to the definition of P
(0)
i+1 (ti+1).

For each w′′ ∈ Gcurr \P (0)
i+1, κw and κw′′ define a different ordering on ti+1, and for

each w′′′ ∈ P (0)
i+1 \ Gcurr, κw and κw′′′ define a different ordering at least once on

the 4-tuples t1, . . . , ti. Thus, P
(0)
i+1 ∩ Gcurr is an equivalence class in the FC sense

restricted to t1, . . . , ti, ti+1. The proof is similar to P
(−)
i+1 ∩Gcurr and P

(+)
i+1 ∩Gcurr.

So the algorithm replaces all the subsets of G(i) by equivalence classes (restricted
to the first i+ 1 4-tuples); and the induction step is satisfied.
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4 Aggregating two affinities by weighted quasi-
linear means

Next, we will investigate a more specific scenario, when a particular affinity com-
bines two other affinities (e.g. homogeneity and object feature-based affinities) by
means of an aggregation operator. These affinity functions are often used in real
applications and as examples in the literature [7, 11, 23, 30, 34, 35]. Thus, in this
example, our affinity operator depends on two affinity functions and an aggregation
operator with a weight parameter w. The authors in [11] discuss the problem of
combining affinities, and they use a weighted arithmetic mean, weighted geometric
mean, and lexicographical order to aggregate affinity functions (other work on this
topic can be found in [25]). Here, we study the first two, more precisely their general
class i.e. quasi linear means, and we investigate the structure of equivalence classes
and introduce several implementations of the general algorithm schema (Alg. 1) for
this particular case.

4.1 The structure of equivalence classes regarding 4-tuple of
spels

A characterization of quasi linear means can be found in Theorem 2 below [18].
We should add that this class of mean operators involves the weighted forms of
arithmetic, geometric, harmonic and root-power means.

Theorem 2. An operator M (m) is a continuous, strictly monotonic, idempotent
and bisymmetrical if and only if M (m) represents a quasi-linear mean, i.e.

M (m)(x1, . . . , xm) = ϕ−1

(∑
i

ωiϕ(xi)

)
, ωi ≥ 0,

∑
ωi = 1,

where ϕ : [0, 1]→ [0, 1] is an increasing continuous function.

Proof. See [2, 1].

Definition 8. Suppose that C = 〈C, f〉 is a scene, a, b ∈ C, ϕ : [0, 1] → [0, 1] is
a continuous increasing function, κ1, κ2 : C × C → 〈[0, 1],≤〉 are standard affinity
functions, and let K be an affinity operator such that

K(w,C, κ1, κ2) := 〈w,C, κ1, κ2〉 7→ κw,

where w ∈ [0, 1] and κw : C × C → 〈[0, 1],≤〉 such that

κw(a, b) = ϕ−1(w · ϕ(κ1(a, b)) + (1− w) · ϕ(κ2(a, b))).

Clearly, κw is a weighted quasi-linear mean of the affinities κ1 and κ2 with the
weights w and 1− w, respectively.
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Next, the function ∆ defined in Def. 6 will have the following form (based on Def. 8):

∆(w) = sgn(κw(a, b)− κw(c, d)) =
= sgn(ϕ−1(w · ϕ(κ1(a, b)) + (1− w) · ϕ(κ2(a, b)))
−ϕ−1(w · ϕ(κ1(c, d)) + (1− w) · ϕ(κ2(c, d)))).

Theorem 3 tells us that the partitions belonging to the 4-tuples have very simple
structures in the case of quasi-linear means and this fact plays a crucial role when
developing specialized algorithms.

Theorem 3. Assume that 〈a, b, c, d〉 is a 4-tuple of spels (a, b, c, d ∈ C), and let
κw be an affinity function, as defined in Def. 8. The partition P defined in Def. 7
(belonging to a, b, c, d) satisfies exactly one of the following statements:

(1) P = {[0, 1]},
(2) P = {{0}, (0, 1]} or P = {[0, 1), {1}},
(3) P = {[0, w∗), {w∗}, (w∗, 1]} for a w∗ ∈ (0, 1)

Proof. Take the following constants:

X := ϕ(κ1(a, b)), Y := ϕ(κ2(a, b)), U := ϕ(κ1(c, d)), V := ϕ(κ2(c, d)).

In this case, ∆ has the form:

∆(w) = sgn(ϕ−1(w ·X + (1− w) · Y )− ϕ−1(w · U + (1− w) · V )).

Let l1 and l2 denote the following terms got from ∆:

l1(w) = w ·X + (1− w) · Y = w · (X − Y ) + Y,
l2(w) = w · U + (1− w) · V = w · (U − V ) + V

which are linear functions of w (actually they are two lines, if we interpret them
on R).
The functions ϕ and ϕ−1 : [0, 1] → [0, 1] are both bijections because they are in-
vertible, and ϕ is increasing by definition; so ϕ and ϕ−1 are strictly increasing
functions. Therefore the following hold for each w ∈ [0, 1]:

(L1) l1(w) < l2(w) ⇒ ϕ−1(l1(w)) < ϕ−1(l2(w)) ⇒ ∆(w) = −1,
(L2) l1(w) = l2(w) ⇒ ϕ−1(l1(w)) = ϕ−1(l2(w)) ⇒ ∆(w) = 0,
(L3) l1(w) > l2(w) ⇒ ϕ−1(l1(w)) > ϕ−1(l2(w)) ⇒ ∆(w) = 1.

In the following, we will show that the statements of the theorem can be derived
from the relative position of the two lines l1 and l2 (which may be easily verified).

(a) If l1 and l2 are identical (i.e. X = U , Y = V ), then ∆(w) = 0 for each
w ∈ [0, 1], hence P = {[0, 1]}.

(b) If l1 and l2 are not identical, but parallel, i.e. X − Y = U − V and Y 6= V ,
then l1(w) < l2(w) or l1(w) > l2(w) on whole R, thus from L1 and L3, ∆(w) = −1
or ∆(w) = 1 for each w ∈ [0, 1], respectively. In this case, P = {[0, 1]} again.
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(c) If l1 and l2 are not parallel, i.e. X−Y 6= U−V , so X−Y −U+V 6= 0, then
they have an intersection in a given point w∗ ∈ (−∞,∞), which can be determine
as follows:

w∗ ·X + (1− w∗) · Y = w∗ · U + (1− w∗) · V,

and from here

w∗ ·X + (1− w∗) · Y = w∗ · U + (1− w∗) · V
w∗ ·X + Y − w∗ · Y = w∗ · U + V − w∗ · V
w∗ ·X − w∗ · Y + w∗ · V − w∗ · U = V − Y

and finally, we can solve it for w∗:

w∗ =
V − Y

X − Y + V − U
.

Because X − Y − U + V 6= 0, w∗ is well-defined. There are three cases:

(c.1) If w∗ 6∈ [0, 1] ⇒ P = {[0, 1]}
(c.2) If w∗ ∈ {0, 1} ⇒ P = {{0}, (0, 1]} or P = {[0, 1), {1}},
(c.3) If w∗ ∈ (0, 1) ⇒ P = {[0, w∗), {w∗}, (w∗, 1]}

In the case (c.1), l1(w) < l2(w) or l1(w) > l2(w) for each w ∈ [0, 1], so ∆(w) = −1
or ∆(w) = 1 are satisfied, as in the parallel case. Thus the whole [0, 1] constitutes
one equivalence class. The case (c.2) differs from (c.1) in that ∆ takes zero value
in 0 or in 1, so there are two equivalence classes (the given endpoint of [0, 1] will be
a class with one element). In (c.3), there are 3 classes: left from w∗, w∗, and right
from w∗ according to the relative position of the lines.

4.2 Algorithms and their complexity

Based on Theorem 3, we can derive new algorithms from Alg. 1 which are specialized
for the affinity operators defined in Def. 8.

Our first remark is that the partition refinement step by the interval [0, 1] is
redundant, because each equivalence class will be replaced by itself (since [0, 1] ∩
Gcurr = Gcurr, [0, 1] \ Gcurr = ∅). Hence, if the cases (a), (b), (c.1) occur, the
partition refinement step can be skipped. We consider that [x, x) = (x, x] = ∅
for each x ∈ R. So we can treat the cases (c.2) and (c.3) together as e.g. P =
{{0}, (0, 1]} is a special case of (c.3) when w∗ = 0 and P = {[0, 0) = ∅, {0}, (0, 1]} =
{{0}, (0, 1]}. Notice that P is clearly defined by the dividing point w∗.

Following the previous statement, we can show that G can be described by
W = 〈w1, w2, . . . , wk〉 which is the ascending ordered set of the dividing points
w∗(1), w

∗
(2), . . . , w

∗
(k) corresponding to the iterations of the Alg. 1 in which the cases

(c.2) and (c.3) are satisfied. In the first iteration G is partitioned by P1, so
G(1) = {[0, w∗(1)), {w

∗
(1)}, (w

∗
(1), 1]}. In the second iteration there are two cases.

If w∗(2) = w∗(1), then G(2) = G(1). If w∗(2) 6= w∗(1), then w∗(2) divides one of the

intervals [0, w∗(1)) and (w∗(1), 1] into three parts. For example, let w∗(2) < w∗(1). Then
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[0, w∗(1)) will be replaced by [0, w∗(2)), {w
∗
(2)}, (w

∗
(2) and w∗(1)). Continuing this, we

find that G = {[0, w1), {w1}, (w1, w2), . . ., {wk}, (wk, 1]}, so we can define G by
W = 〈w1, w2, . . . , wk〉.

The first algorithm specialized for the quasi-linear means can be found in Alg. 2.
which was constructed based on our previous observations and Theorem 3. At the
start, the set W is initialized. Then the method iterates over all of the possible
4-tuples of spels (steps 2-11). For a given 4-tuple, the constants X,Y, U, V are
computed (steps 3-6). In Step 7, the algorithm checks to see whether the cases (a)
or (b) occur (from Theorem 3), which means that any subsequent computations
for that 4-tuple can be skipped (continue means that the iteration continues with
the next 4-tuple). If the conditions are not satisfied, then the dividing point w∗ is
computed, and if W does not contain w∗, then W will be augmented by w∗ (Step
10). Lastly, in Step 12, the algorithm orders the elements of W , and returns with
the dividing points that represent the equivalence classes containing one element,
and with the midpoints of the intervals between two dividing points; so it lists the
class representatives of G.

Algorithm 2 Naive algorithm for quasi-linear means

Input: C, κ1, κ2, ϕ
Output: the class representatives of G

1: W ← ∅
2: for all 4-tuple 〈a, b, c, d〉 do
3: X ← ϕ(κ1(a, b))
4: Y ← ϕ(κ2(a, b))
5: U ← ϕ(κ1(c, d))
6: V ← ϕ(κ2(c, d))
7: if X − Y − U +X = 0 then continue
8: w∗ ← V−Y

X−Y+V−U
9: if w∗ 6∈ [0, 1] then continue

10: if w∗ 6∈W then W ←W ∪ w∗
11: end for
12: 〈w1, w2, . . . , wk〉 ← the ascending ordered set of W
13: return 0+w1

2 , w1,
w1+w2

2 , w2, . . . ,
wk−1+wk

2 , wk,
wk+1

2

We will now examine the complexity of Alg. 2. We will assume that W is a set
implementation where the add and contain methods require a constant time (e.g.
it is a hash set), and the algorithm performs an ordering on the elements of W in
Step 12. The advantage of this approach is twofold: 1) if there are many repetitive
elements, it costs less if we collect the different elements into an unordered set (with
constant adding time) and then we have to sort fewer elements than maintaining
an ordered set, 2) if we require just the number of the equivalence classes, we can
omit the ordering step. Hence, in the following, we will omit Step 12 from our
discussion and we will suppose that it is executed in O(|W | · log(|W |)) or in O(|W |)
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time.
We view one iteration step (Step 3-10) as a constant time operation (O(1))

because the computation of the values X,Y, U, V is always executed and it would
be very difficult and time-consuming compared to the other operations (considering
the constant time add method). Due to the above statements and considerations,
the following holds.

Proposition 2. Regardless the ordering of W , the time complexity of Alg. 2. is
O(|C|4).

It is obvious that this complexity is unfeasible for real algorithms. In the following
we propose two techniques which singificantly improve its performance.

First, we assume that each affinity function κ used by our framework satisfies the
following. If the spels a and b are not neighbouring, then

κ(a, b) = 0.

Hence, it is sufficient if we consider only the neighbouring pixel pairs and avoid the
redundant iterations, so we can modify Alg. 2. (see Alg. 3). The algorithm iterates
over all possible pairs of neighbouring pixel pairs and computes w∗ (Step 4) as in
steps 3-10 in Alg. 2.

Algorithm 3 Algorithm for quasi-linear means - A

Input: C, κ1, κ2, ϕ
Output: the class representatives of G

1: W ← ∅
2: for all neighbouring pixel pair (a, b) do
3: for all neighbouring pixel pair (c, d) do
4: compute w∗ for 〈a, b, c, d〉 and if it is valid then add it to W
5: end for
6: end for
7: 〈w1, w2, . . . , wk〉 ← the ascending ordered set of W
8: return 0+w1

2 , w1,
w1+w2

2 , w2, . . . ,
wk−1+wk

2 , wk,
wk+1

2

Proposition 3. Regardless the ordering of W , the time complexity of Alg. 3. is
O(|C|2).

Proof. Suppose that each spel has a fixed number of neighbours denoted by k. Then
the number of different neighbouring spel pairs is approximately 2k ·|C|, i.e. O(|C|).
Due to the nested for loops, the algorithm executes O(|C|2) iterations.

Note: For the sake of accuracy, if we repeatedly counted the spels which are not
neighbours, the algorithm would execute a lot of redundant steps. Both for loops
should contain a non-neighbouring pixel pair in order to cover this case exactly once.



Computing equivalent affinity classes in a fuzzy connectedness framework 13

Our last approach (Alg. 4.) extends the idea of Alg. 3. If the algorithm computes
the same X,Y values (Alg. 2., steps 3-4) for the spel pairs (a1, b1), (a2, b2), then
the pair (a2, b2) leads to a sequence of redundant iterations. Alg. 4. tries to avoid
this kind of redundancy in such a way that it determines the set of different X,Y
pairs for each neighbouring spel pairs (steps 2-7), and it again iterates over this set
using two nested loops (steps 8-12).

Algorithm 4 Algorithm for quasi-linear means - B

Input: C, κ1, κ2, ϕ
Output: the class representatives of G

1: W ← ∅
2: S ← ∅
3: for all neighbouring pixel pair (a, b) do
4: X ← ϕ(κ1(a, b))
5: Y ← ϕ(κ2(a, b))
6: if (X,Y ) 6∈ S then S ← S ∪ (X,Y )
7: end for
8: for all (X,Y ) ∈ S do
9: for all (U, V ) ∈ S do

10: compute w∗ for 〈X,Y, U, V 〉 and if it is valid then add it to W
11: end for
12: end for
13: 〈w1, w2, . . . , wk〉 ← the ascending ordered set of W
14: return 0+w1

2 , w1,
w1+w2

2 , w2, . . . ,
wk−1+wk

2 , wk,
wk+1

2

Proposition 4. The time complexity of Alg. 4. regardless of the ordering of W is
O(|C|+ |S|2).

Proof. The determination of the set S (steps 3-7) requires O(|C|) time because
one iteration step contains only a few constant time operations and the number
of different neighbouring spel pairs is O(|C|), can be seen in Prop. 3. The nested
loops in steps 8-12 require O(|S|2) iterations, so the statement holds.

Lastly, we should mention that we can make additional improvements by consider-
ing symmetries. E.g. (a, b), (c, d) ≡ (c, d), (a, b) and κ(a, b) = κ(b, a).

5 Experiments

Although our focus is mainly on theoretical results in this study (namely how we
can characterize and determine the equivalence classes belonging to a certain type
of affinity operators), we were also interested in testing the given algorithms on
real images. Our aim here was to determine how many equivalence classes belong
to a particular image and to measure the running times in practice. All the results
shown in the following were measured on a PC with a 2 Ghz Intel Core i7 CPU
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and the algoritms were implemented in the Java programming language. In our
experiments, two medical image sets were used : 1) 25 digital dermoscopy images of
size 1280×1024 pixels, each contains one or more skin lesions, in RGB colour space
(Fig. 1) and 2) 3×25 simulated brain MRI slices of size 181×217 (Fig. 2). Simulated
T1, dual-echo T2, and proton density PD-weighted slices with 3% noise and 20%
inhomogeneity were utilized [15, 14]. As base affinities (κ1 and κ2 in Def. 8), a
standard homogeneity-based and a standard object feature-based functions were
applied [10, 11]. We modelled 3 tests each for both datasets, and the results can be
seen in Table 1. below. In each case, a membership scene was extracted according
to the methodology of the particular domain, and then we applied Alg. 3 and Alg. 4
to determine the number of equivalence classes and measure the running times.

The results got from our test can be seen in Table 2. and Table 3. Along with
the running times and number of iterations, the size of set S (Prop. 4) can be seen
as well, which is the number of different (X,Y ) pairs computed by Alg. 4. Case
columns refer to the test cases defined in Table 1.

Testing on both datasets led to an enormous number of equivalence classes
(about 106 − 107). Alg. 3 is not feasible from a run time perspective, even on the
smaller images (BrainWeb sets), while Alg. 4 needs just a few seconds as its improve-
ments drastically reduced the required number of iterations, and Alg. 3 strongly
depends on the size of image. The number of different (X,Y ) pairs (Prop. 4) varies
on different images, and does not reflect the image size.

- -

Figure 1: Dermoscopy images

6 Conclusions

The equivalence of affinities is a novel concept and it plays an important role in
analyzing affinity functions in the FC framework. It tells us that we should note
that different techniques used to defining affinity functions may lead to equivalent
affinities, thus making these new constructions is unnecessary in a real application,
as they only increase redundancy. Apart from the theoretical results, practical

1The blue channel in RGB colour space, proposed in [9, 8, 20, 17]
2A special membership scene in L*a*b* colour space where a given spel’s membership value

reflects to its colour distance from the average background colour [37]
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- -

Figure 2: BrainWeb images

Dataset # Feature image(s) Base affinities Mean

Dermatology
1 greyscale hom./obj. geometric
2 B channel 1 hom./obj. arithmetic
3 a special scene 2 hom./obj. arithmetic

BrainWeb
1 T2 and PD hom. geometric
2 T2 hom. arithmetic
3 T1 hom/obj. geometric

Table 1: Test cases for the datasets. The membership scenes (feature images) are
extracted according to the methodology of the particular domain. The expressions
”hom.” and ”obj.” stand for homogeneity-based and object feature-based affinities,
respectively.

BrainWeb Case-1 Case-2 Case-3
Number of parameters 2.13× 107 6.16× 106 1.74× 106

Alg. 4
Running time 2.8 s 1.1 s 0.4 s
Iterations 5.42× 107 3.09× 107 8.24× 106

(X,Y ) pairs 10411 7857 4057

Alg. 3
Running time 420.3. s 451.9 s 438.0 s
Iterations 1.22× 1010 1.22× 1010 1.22× 1010

Table 2: Results got on BrainWeb datasets. The expression ”(X,Y ) pairs” refers
to the size of S in Prop. 4, which is an important factor in the time-complexity of
Alg. 4.



16 Gergely Gulyás, József Dombi

Dermatology Case-1 Case-2 Case-3
Number of parameters 4.51× 106 1.71× 107 3.48× 107

Alg. 4
Running time 1.6 s 3.2 s 6.2 s
Iterations 1.16× 107 4.24× 107 9.99× 107

(X,Y ) pairs 4612 8909 14089

Alg. 3
Running time ≈ 141 h ≈ 141 h ≈ 141 h
Iterations 1.37× 1013 1.37× 1013 1.37× 1013

Table 3: Results on dermatology images. The expression ”(X,Y ) pairs” refers to
the size of S in Prop. 4 which is an important factor in the time-complexity of
Alg. 4.

considerations can be derived as well. For instance, we could use integer arithmetic-
based affinities in performance-sensitive applications.

In this paper, we focused on an example where the affinity operator has a
parameter with a real value and it maps different affinity functions for different pa-
rameter values. These types of operators are used in a very common scenario when
a homogeneity and an object feature-based affinity are combined. We constructed
a general algorithm schema which could be a template for algorithms which are
able to determine the equivalence classes of affinities according to a given affinity
operator. Based on this template, we defined three algorithms for the example in
which the above-mentioned affinities are combined using quasi-linear means. The
complexity of these algorithms was also considered, and they were tested using two
sets of medical images.

The structure of equivalence classes for quasi-linear means-based operators is
quite simple and concise from a mathematical point of view. Furthermore, Alg. 4
required only a few seconds to process an image in our tests. Despite these points,
the number of equivalence classes was enormous on the test images (106 − 107),
which means we narrowed down the search space from the [0, 1] interval3 to a
finite set of 107 elements. However, this value is still too high to explore all the
different, non-equivalent affinities in a proper application, even if the experiments
are performed in an automatic environment without human supervision.

There are many ways we could continue and improve the results of this study in
the future. We did not analyze the relationship between the parameter values of the
affinity operator and the corresponding segmentation results. We think that the
reasonable number of different segmentations (and affinity functions) for a given
image should be closer to 10 − 100 than to 107, and the set of all non-redundant,
non-equivalent affinities could be a good starting point to reduce this number.
Other use cases could be also considered, when the parameter of affinity operator
is not the weight of combination. Concrete algorithms built up from this schema
will also give us information about complexity. The general algorithm schema could
be extended to multiple variables and proper algorithms could be implemented.

3Obviously, in a proper implementation, we could use a floating point type which has a finite
set of values
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