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A consistent connective system generated by nilpotent operators is not necessarily isomor-
phic to Łukasiewicz-system. Using more than one generator function, consistent nilpotent
connective systems (so-called bounded systems) can be obtained with the advantage of
three naturally derived negations and thresholds. In this paper, implications in bounded
systems are examined. Both R- and S-implications with respect to the three naturally
derived negations of the bounded system are considered. It is shown that these implica-
tions never coincide in a bounded system, as the condition of coincidence is equivalent
to the coincidence of the negations, which would lead to Łukasiewicz logic. The formulae
and the basic properties of four different types of implications are given, two of which
fulfill all the basic properties generally required for implications.
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1. Introduction

In our previous article [7], we showed that a consistent connective system generated by nilpotent operators is not
necessarily isomorphic to Łukasiewicz-system. Using more than one generator function, consistent nilpotent connective
systems can be obtained in a significantly different way with three naturally derived negations. As the class of non-strict
t-norms has preferable properties that make them useful in constructing logical structures, the advantages of such systems
are obvious [14]. Due to the fact that all continuous Archimedean (i.e. representable) nilpotent t-norms are isomorphic to the
Łukasiewicz t-norm [11], the previously studied nilpotent systems were all isomorphic to the well-known Łukasiewicz-logic.
Those consistent connective systems which are not isomorphic to Łukasiewicz logic are called bounded systems [7].

Fuzzy implications are definitely among the most important operations in fuzzy logic [2,17]. Firstly, other basic logical
connectives of the binary logic can be obtained from the classical implication. Secondly, the implication operator plays a cru-
cial role in the inference mechanisms of any logic, like modus ponens, modus tollens, hypothetical syllogism in classical
logic. Fuzzy implications all generalize the classical implication with the two possible crisp values from 0,1, to the fuzzy con-
cept with truth values from the unit interval [0,1] [26]. In classical logic the implication can be defined in several ways. The
most well-known implications are the usual material implication from the Kleene algebra, the implication obtained as the
residuum of the conjunction in Heyting algebra (also called pseudo-Boolean algebra) in the intuitionistic logic framework
and the implication in the setting of quantum logic. While all these differently defined implications have identical truth
tables in the classical case, the natural generalizations of the above definitions in the fuzzy logic framework are not identical.
This fact has led to some throughout research on fuzzy implications [1,3–5,12,18,20,21,24,25].
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Based on the results of [7], now we focus on residual and S-implication operators [3] in bounded systems. The paper is
organized as follows. After some preliminaries in Section 2, we examine the residual implication in Section 3 and
S-implications with special attention to the ordering property in Section 4. In Section 6 we show that in a bounded system,
the minimum and maximum operators can also be expressed in terms of the conjunction, the implication and the negation.
Finally in Section 5 we show that in a bounded system the implications examined in this paper can never coincide. The
formulae and the properties of implications are summarized in Section 7.

2. Preliminaries

2.1. t-Norms and conorms

Now we state the basic notations and results for t-norms and t-conorms [13]. A triangular norm (t-norm for short) T is a binary
operation on the closed unit interval [0,1] such that ð½0;1�; TÞ is an abelian semigroup with neutral element 1 that is totally ordered;
i.e., for all x1; x2; y1; y2 2 ½0;1�with x1 6 x2 and y1 6 y2 we have Tðx1; y1Þ 6 Tðx2; y2Þ, where6 is the natural order on [0,1].

A triangular conorm (t-conorm for short) S is a binary operation on the closed unit interval [0,1] such that ð½0;1�; SÞ is an
abelian semigroup with a neutral element 0 that is totally ordered.

A continuous t-norm T is said to be Archimedean if Tðx; xÞ < x holds for all x 2 ð0;1Þ. A continuous Archimedean T is called
strict if T is strictly monotone; i.e. Tðx; yÞ < Tðx; zÞ whenever x 2 ð0;1� and y < z , and nilpotent if there exist x; y 2 ð0;1Þ such
that Tðx; yÞ ¼ 0.

From the duality between t-norms and t-conorms, we can easily derive the following properties. A continuous t-conorm S
is said to be Archimedean if Sðx; xÞ > x holds for every x; y 2 ð0;1Þ. A continuous Archimedean S is called strict if S is strictly
monotone; i.e. Sðx; yÞ < Sðx; zÞ whenever x 2 ½0;1Þ and y < z, and nilpotent if there exist x; y 2 ð0;1Þ such that Sðx; yÞ ¼ 1.

The following well-known results provide important single variable representations for t-norms and t-conorms.

Proposition 1 ([15,18]). A function T : ½0;1�2 ! ½0;1� is a continuous Archimedean t-norm iff it has a continuous additive
generator; i.e. there exists a continuous strictly decreasing function t : ½0;1� ! ½0;1� with tð1Þ ¼ 0, which is uniquely determined
up to a positive multiplicative constant, such that
Tðx; yÞ ¼ t�1ðminðtðxÞ þ tðyÞ; tð0ÞÞÞ; x; y 2 ½0;1�: ð1Þ
Proposition 2 ([15,18]). A function S : ½0;1�2 ! ½0;1� is a continuous Archimedean t-conorm iff it has a continuous additive gen-
erator; i.e. there exists a continuous strictly increasing function s : ½0;1� ! ½0;1�with sð0Þ ¼ 0, which is uniquely determined up to
a positive multiplicative constant, such that
Sðx; yÞ ¼ s�1ðminðsðxÞ þ sðyÞ; sð1ÞÞÞ; x; y 2 ½0;1�: ð2Þ
Proposition 3. [11]

A t-norm T is strict if and only if tð0Þ ¼ 1 holds for each continuous additive generator t of T.
A t-norm T is nilpotent if and only if tð0Þ <1 holds for each continuous additive generator t of T.
A t-conorm S is strict if and only if sð1Þ ¼ 1 holds for each continuous additive generator s of S.
A t-conorm S is nilpotent if and only if sð1Þ <1 holds for each continuous additive generator s of S.

Proposition 4 [11]. Let T be a continuous Archimedean t-norm.

If T is strict, then it is isomorphic to the product t-norm TP , i.e., there exists an automorphism / of the unit interval such that
T/ ¼ /�1 Tð/ðxÞ;/ðyÞÞð Þ ¼ TP.

If T is nilpotent, then it is isomorphic to the Łukasiewicz t-norm TL , i.e., there exists an automorphism of the unit interval / such
that T/ ¼ /�1 Tð/ðxÞ;/ðyÞÞð Þ ¼ TL .

From the definitions of t-norms and t-conorms it follows immediately that t-norms are conjunctive (i.e.
Tðx; yÞ 6 minðx; yÞ), while t-conorms are disjunctive (i.e. Sðx; yÞP maxðx; yÞ) aggregation functions. This is why they are
widely used as conjunctions and disjunctions in multivalued logical structures.

The use of the so-called cutting function makes the formulae simpler.

Definition 1 ([7,19]). Let us define the cutting operation ½ � by
½x� ¼
0 if x < 0
x if 0 6 x 6 1
1 if 1 < x

8><
>:
and let the notation ½ � also act as ‘brackets’ when writing the argument of an operator, so that we can write f ½x� instead of
f ð½x�Þ.
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2.2. Negations

Definition 2 [2], pp. 13. A unary operation n : ½0;1� ! ½0;1� is called a negation if it is non-increasing and compatible with
classical logic; i.e. nð0Þ ¼ 1 and nð1Þ ¼ 0.

A negation is strict if it is also strictly decreasing and continuous.
A negation is strong, if it is also involutive; i.e. nðnðxÞÞ ¼ x for 8x 2 R.
The well-known representation theorem for strong negations was obtained by Trillas.

Proposition 5 [23]. n is a strong negation if and only if
nðxÞ ¼ fnðxÞ�1ð1� fnðxÞÞ;
where fn : ½0;1� ! ½0;1� is an automorphism of ½0;1�.
Remark 1. This result also means that nðxÞ is a strict negation if and only if
nðxÞ ¼ f�1
n n0 fnðxÞð Þð Þ ð3Þ
where fn : ½0; 1� ! ½0; 1�, called the generator function of n, is a strictly monotone, continuous function with fnð0Þ ¼ 0 and
fnð1Þ ¼ 1 and n0 is a strong negation.
Proposition 6. In Proposition 5 (Trillas) the generator function can also be decreasing.
Proof. Proof can be found in [7], Proposition 7. h
2.3. Implication operators

A mapping i : ½0;1�2 ! ½0;1� is called an implication operator if and only if it satisfies the boundary conditions
ið0;0Þ ¼ ið0;1Þ ¼ ið1;1Þ ¼ 1 and ið1;0Þ ¼ 0.

The above conditions are the minimum requirements for an implication operator. Other potentially interesting properties
of implication operators are listed in [2,6,8,20,22,24]. All fuzzy implications can be obtained by generalizing the implication
operator of classical logic. In this sense, Fodor and Roubens [10] established the following definition.

Definition 3. A fuzzy implication is a function i : ½0;1�2 ! ½0;1� that satisfies the following properties:

1. The first place antitonicity:
for all x1; x2; y 2 ½0;1� ðif x1 6 x2 then iðx1; yÞP iðx2; yÞÞ: ðFAÞ
2. The second place isotonicity:
for all x; y1; y2 2 ½0;1� ðif y1 6 y2 then iðx; y1Þ 6 iðx; y2ÞÞ: ðSIÞ
3. The dominance of falsity of antecedent:
ið0; yÞ ¼ 1 for all y 2 ½0;1�: ðDFÞ
4. The dominance of truth of consequent:
iðx;1Þ ¼ 1 for all x 2 ½0;1�: ðDTÞ
5. The boundary condition:
ið1;0Þ ¼ 0 and ið1;1Þ ¼ 1: ðBCÞ
Other important but usually not required properties of fuzzy implications are defined below [2].

Definition 4. A fuzzy implication i satisfies

1. The left neutrality property (the neutrality of truth), if
ið1; yÞ ¼ y for all y 2 ½0;1�: ðNPÞ
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2. The exchange principle, if
iðx; iðy; zÞÞ ¼ iðy; iðx; zÞÞ for all x; y; z 2 ½0;1�: ðEPÞ
3. The identity principle, if
iðx; xÞ ¼ 1 for all x 2 ½0;1�: ðIPÞ
4. The strong negation principle, if the mapping n� defined as
n�ðxÞ ¼ iðx;0Þ for all x 2 ½0;1� ðSNÞ
is a strong negation.
5. The law of contraposition (or in other words,the contrapositive symmetry) with respect to a strong negation n, if
iðx; yÞ ¼ iðn�ðyÞ;n�ðxÞÞ for all x; y 2 ½0;1�: ðCPÞ
6. The ordering property, if
iðx; yÞ ¼ 1 if and only if x 6 y for all x; y 2 ½0;1�: ðOPÞ
Remark 2. The negation operator n� is also called the natural negation of the implication i (see [2]).
A detailed study of possible relations between all these properties can be found in [2,6,21]. Notice that other properties

can also be found in the literature. In particular, iðx;n�ðxÞÞ ¼ n�ðxÞ for all x 2 ½0;1�, where n� is a strong negation (see [17]).
Three well-established classes of implication operators are (S,N)-, QL- and R-implications.

Definition 5 [2], pp. 57. A function i : ½0;1�2 ! ½0;1� is called an S-implication, if there exists a t-conorm S and a strong
negation n� such that
iSðx; yÞ ¼ Sðn�ðxÞ; yÞ; x; y 2 ½0;1�:
Definition 6 [2], pp. 90. A function i : ½0;1�2 ! ½0;1� is called a QL-operation, if there exists a t-conorm S, a t-norm T and a
strong negation n� such that
iQ ðx; yÞ ¼ Sðn�ðxÞ; Tðx; yÞÞ; x; y 2 ½0;1�:
In general, QL-operations violate property (FA). The conditions under which (FA) is satisfied can be found in [9]. When a
QL-operation is a fuzzy implication, then it is called a QL-implication.
Definition 7 [2], pp. 68. A function i : ½0;1�2 ! ½0;1� is called an R-implication, if there exists a t-norm T such that
iRðx; yÞ ¼ sup z 2 ½0;1� j Tðx; zÞ 6 yf g:

In the case where the given t-norm is left-continuous, we will refer to the R-implication defined above as a residual impli-

cation [2,12,14]. Note that in this case we have Tðx; yÞ ¼ inf z z 2 ½0;1�; j iðx; zÞP yð Þ. It is easy to see that both S-implications
and R-implications satisfy properties FA, SI, DF, DT, BC, regardless of the t-norm T, the t-conorm S and the strong negation n�

types. Hence, they are implications in the Fodor and Roubens sense. Different characterizations of S-implications, QL-impli-
cations and R-implications can be found in the literature (for details, see [3,10,24]). It is worth mentioning here that new
characterizations of R and S-implications can also be found in [25].
2.4. Bounded systems

To construct a logical system, we need to define the logical operators. As in [7], we consider connective systems where the
conjunction and the disjunction are special types of t-norms and t-conorms, respectively.

Definition 8. The triple ðc; d;nÞ, where c is a t-norm, d is a t-conorm and n is a strong negation, is called a connective system.
Definition 9. A connective system is nilpotent, if the conjunction c is a nilpotent t-norm, and the disjunction d is a nilpotent
t-conorm.
Definition 10. Two connective systems, ðc1; d1;n1Þ and ðc2; d2;n2Þ are isomorphic, if there exists a monotone bijection
/ : ½0;1� ! ½0;1� such that
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/�1 c1 /ðxÞ;/ðyÞð Þð Þ ¼ c2ðx; yÞ
/�1 d1 /ðxÞ;/ðyÞð Þð Þ ¼ d2ðx; yÞ
/�1 n1 /ðxÞð Þð Þ ¼ n2ðxÞ:
Definition 11. A connective system is called Łukasiewicz system, if it is isomorphic to ð½xþ y� 1�; ½xþ y�;1� xÞ, i.e. it has the
form
ð/�1½/ðxÞ þ /ðyÞ � 1�;/�1½/ðxÞ þ /ðyÞ�;/�1½1� /ðxÞ�Þ:
Since the generator functions of the nilpotent t-norms and t-conorms are bounded and determined up to a multiplicative
constant (see Proposition 1 and 2), they can be normalized (see [7]). Let us use the following notations for the uniquely
defined normalized generator functions:
fcðxÞ :¼ tðxÞ
tð0Þ ; f dðxÞ :¼ sðxÞ

sð1Þ :
Using this concept, we have fc; fd; fn : ½0;1� ! ½0;1�, where fn is the generator function of the negation used in our system.
We will suppose that fc is continuous and strictly decreasing, fd is continuous and strictly increasing and fn is continuous and
strictly monotone.

Definition 12. The negations nc and nd generated by fc and fd respectively,
ncðxÞ ¼ f�1
c ð1� fcðxÞÞ
and
ndðxÞ ¼ f�1
d ð1� fdðxÞÞ
are called natural negations.
Next, we recall certain important properties of connective systems and then give the propositions describing the condi-

tions that a logical system must satisfy in order to have the above properties (see [7]).

Definition 13. Classification property means that the law of contradiction holds, i.e.
cðx;nðxÞÞ ¼ 0 8x 2 ½0;1�; ð4Þ
and the excluded middle principle holds as well, i.e.
dðx;nðxÞÞ ¼ 1 8x 2 ½0;1�: ð5Þ
Definition 14. The De Morgan identity means that
c nðxÞ;nðyÞð Þ ¼ nðdðx; yÞÞ ð6Þ
or
dðnðxÞ;nðyÞÞ ¼ nðcðx; yÞÞ 8x; y 2 ½0;1�: ð7Þ
Remark 3. These two forms of the De Morgan law are equivalent, if the negation is involutive. The first De Morgan law holds
with a strict negation n if and only if the second holds with n�1 (see page 18 in [10]).
Definition 15. A connective system is said to be consistent, if the classification property (Definition 13) and the De Morgan
identity (Definition 14) hold.
Proposition 7 (See also [7] Proposition 10, [10] 1.5.4. and 1.5.5., and [2] 2.3.12. and 2.3.15.). In a connective system the
classification property holds if and only if ndðxÞ 6 nðxÞ 6 ncðxÞ,where nc and nd are the natural negations.
Proposition 8 (See [7] Proposition 12). If fc is the normalized generator function of a conjunction in a connective system, fd is a
normalized generator function of the disjunction and n is a strong negation, then the following statements are equivalent:

1. The De Morgan law holds in the connective system. That is,
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cðnðxÞ;nðyÞÞ ¼ nðdðx; yÞÞ 8x; y 2 ½0;1�: ð8Þ
2. The normalized generator functions of the conjunction, disjunction and negation operator obey the following equations (which
are obviously equivalent to each other):
nðxÞ ¼ f�1
c fdðxÞð Þ ¼ f�1

d fcðxÞð Þ; ð9Þ
fcðxÞ ¼ fdðnðxÞÞ or equivalently f dðxÞ ¼ fcðnðxÞÞ: ð10Þ
Proposition 9 (See [7] Proposition 15.).

1. If the connective system ðc; d;nÞ is consistent, then fcðxÞ þ fdðxÞP 1 for any x 2 ½0;1�, where fc and fd are the normalized gen-
erator functions of the conjunction c and the disjunction d respectively.

2. If fcðxÞ þ fdðxÞP 1 for any x 2 ½0;1� and the De Morgan law holds, then the connective system ðc; d;nÞ satisfies the classification
property as well (which now means that the system is consistent).

The following proposition shows that a consistent nilpotent connective system is isomorphic to Łukasiewicz system if and
only if the negations coincide.

Proposition 10. In a connective system fcðxÞ þ fdðxÞ ¼ 1 if and only if
ncðxÞ ¼ ndðxÞ:
Definition 16 (See [7]). A nilpotent connective system is called a bounded system, if
fcðxÞ þ fdðxÞ > 1 ðor equivalently ndðxÞ < nðxÞ < ncðxÞÞ
holds for all x 2 ð0;1Þ, where fc and fd are the normalized generator functions of the conjunction and disjunction, and nc;nd

are the natural negations.
Remark 4. Note that Łukasiewicz system is characterized by ndðxÞ ¼ ncðxÞ or equivalently,
fcðxÞ þ fdðxÞ ¼ 1:

Next we examine the implications in bounded systems.

3. R-implications in bounded systems

For implications i in nilpotent connective systems we use the notation i. For the residual implication, we easily get the
following formula (see [2], Theorem 2.5.21.).

Proposition 11. In a nilpotent connective system ðc; d;nÞ the residual implication has the following form.
iRðx; yÞ ¼ f�1
c fcðyÞ � fcðxÞ½ �;
where fc is the generator function of c, and ½ � is the cutting operator defined in Definition 1.
Proof. From the definition of residual implication,
iRðx; yÞ ¼ max z : cðx; zÞ 6 yf g;
where
cðx; zÞ ¼ f�1
c fcðxÞ þ fcðzÞ½ � 6 y:
From this, we have z ¼ f�1
c fcðyÞ � fcðxÞ½ �. h
Proposition 12. We can also express iR by using the negation operator and the normalized generator function of d.
Proof. From nðxÞ ¼ f�1
c ðfdðxÞÞ, we have
fcðxÞ ¼ fdðnðxÞÞ and f�1
c ðxÞ ¼ n�1 f�1

d ðxÞ
� �

;

iRðx; yÞ ¼ n�1 f�1
d fdðnðxÞÞ � fdðnðyÞÞ½ �
� �

: �
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The notation H is introduced below for further applications. A new formula for iR is given in (12) by using H.
HðxÞ ¼ 1� fdðnðxÞÞ; ð11Þ
so n�1 f�1
d ðxÞ
� �

¼ H�1ð1� xÞ. From this we have
iRðx; yÞ ¼ H�1 1� 1� HðxÞ � ð1� HðyÞÞ½ �ð Þ ¼ H�1 HðyÞ � HðxÞ þ 1½ �: ð12Þ
Next, we examine the properties given in Definition 4 to see whether they are compatible with the R-implication in a nil-
potent connective system.

Remark 5. Note that the following results regarding the properties of iR correspond with Section 2.5. in [2].
Proposition 13. In a nilpotent connective system, iR satisfies

1. the left neutrality property (the neutrality of truth), (NP) i.e. iRð1; yÞ ¼ y for all y 2 ½0;1�,
2. the exchange principle, (EP) i.e. iR x; iRðy; zÞð Þ ¼ iR y; iRðx; zÞð Þ for all x; y; z 2 ½0;1�,
3. the identity principle, (IP) i.e. iR x; xð Þ ¼ 1 for all x 2 ½0;1�,
4. the strong negation principle, (SN), since n�RðxÞ ¼ iR x;0ð Þ ¼ ncðxÞ for all x; y 2 ½0;1� is a strong negation,
5. the law of contraposition (contrapositive symmetry), (CP) with respect to the strong negation in (SN); i.e.

iR x; yð Þ ¼ iRðncðyÞ;ncðxÞÞ forall x; y 2 ½0;1�,
6. the ordering principle, (OP) is valid for iRðx; yÞ, i. e. iRðx; yÞ ¼ 1 if and only if x 6 y.
Proof. NP, EP, IP and OP always hold for an R-implication derived from a continuous t-norm (see [2], Theorem 2.5.7.).
CP follows directly from the definition of nc .
EP and OP together always imply SN for continuous implications (see [2], Corollary 1.4.19.). h
Remark 6. Note that the law of contraposition (contrapositive symmetry), (CP) with respect to the strong negation n; i.e.
iRðx; yÞ ¼ iRðnðyÞ;nðxÞÞ for all x; y 2 ½0;1�, never holds in a bounded system (see also Corollary 1.5.12. in [2]).
Proof. We prove that iRðx; yÞ ¼ iRðnðyÞ;nðxÞÞ holds for all x; y 2 ½0;1� if and only if f cðxÞ þ fdðxÞ ¼ 1; i.e. the system is a
Łukasiewicz logical system.

If x 6 y, then nðyÞ 6 nðxÞ, and therefore from the ordering property we get that both sides are equal to 1.
If x > y, then the two sides of the equality are equal if and only if fcðyÞ � fcðxÞ ¼ fdðxÞ � fdðyÞ, i.e. fcðxÞ þ fdðxÞ ¼ fcðyÞ þ fdðyÞ

for all x; y 2 ½0;1�, which means that fcðxÞ þ fdðxÞ is constant.
Since fcð0Þ þ fdð0Þ ¼ 1; f cðxÞ þ fdðxÞ ¼ 1. h

A different form of the residual implication is also given in the following section.

4. S-implications in bounded systems

In a nilpotent connective system ðc; d;nÞ we can define different types of S-implications.

Definition 17.

1. iSn ðx; yÞ ¼ dðnðxÞ; yÞ; x; y 2 ½0;1�,
2. iSd

ðx; yÞ ¼ dðndðxÞ; yÞ; x; y 2 ½0;1�,
3. iSc ðx; yÞ ¼ dðncðxÞ; yÞ; x; y 2 ½0;1�,

where nc and nd are the natural negations of c and d.
Replacing the disjunction in the definitions above by an appropriate composition of negations and the conjunction leads

us to further possible definitions of implications. Since in a bounded system the negations n; nc and nd never coincide, nega-
tions different from n can also be used similarly to the De Morgan identity.

Definition 18. In a nilpotent connective system ðc; d;nÞ

1. ic
Sn
ðx; yÞ ¼ n cðx;nðyÞÞð Þ; x; y 2 ½0;1�,

2. ic
Sd
ðx; yÞ ¼ nd cðx;ndðyÞÞð Þ; x; y 2 ½0;1�,

3. ic
Sc
ðx; yÞ ¼ nc cðx;ncðyÞÞð Þ; x; y 2 ½0;1�,
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where nc and nd are the natural negations of c and d.
Note that from the De Morgan identity it follows immediately that.
ic
Sn
ðx; yÞ ¼ iSn ðx; yÞ and as the following proposition shows, ic

Sc
is the residual implication.

Proposition 14. In a nilpotent connective system ðc; d;nÞ icSc
ðx; yÞ ¼ f�1

c ½fcðyÞ � fcðxÞ� ¼ iRðx; yÞ, where fc is the normalized
generator function of c.
Proof.
ic
Sc
ðx; yÞ ¼ nc cðx; ncðyÞÞð Þ

¼ nc f�1
c fcðxÞ þ 1� fcðyÞ½ �
� �

¼ f�1
c ½1� 1� fcðyÞ þ fcðxÞð Þ�

¼ f�1
c ½fcðyÞ � fcðxÞ�: �
4.1. Properties of iSn ; iSd
and iSc

First the formulae for the S-implications defined above are given.

Proposition 15. In a nilpotent connective system ðc; d;nÞ

1. iSn ðx; yÞ ¼ f�1
d ½fcðxÞ þ fdðyÞ�,

2. iSd
ðx; yÞ ¼ f�1

d ½1� fdðxÞ þ fdðyÞ�,
3. iSc ðx; yÞ ¼ f�1

d fdðyÞ þ fdðncðxÞÞ½ �,

where fc and fd are the normalized generator functions of c and d, respectively.
Proof. All the three formulae are easy to verify. h

Next, the basic properties of the S-implications in a nilpotent connective system are stated. Note that the following results
are consistent with those described in Section 2.5. of [2].

Proposition 16. In a nilpotent connective system, iSn ; iSd
and iSc satisfy

1. the left neutrality property (the neutrality of truth), (NP), i.e. ið1; yÞ ¼ y for all y 2 ½0;1�,
2. the exchange principle, (EP), i.e. i x; iðy; zÞð Þ ¼ i y; iðx; zÞð Þ for all x; y; z 2 ½0;1�,
3. the identity principle, (IP), i.e. i x; xð Þ ¼ 1 for all x 2 ½0;1�,
4. the strong negation principle, (SN) since iS x;0ð Þ for all x; y 2 ½0;1� is a strong negation,
5. the law of contraposition (contrapositive symmetry), (CP) with respect to the strong negation in SN.

Proof.

1. NP holds for every S-implication (see [2], Proposition 2.4.3.).
2. EP holds for every S-implication (see [2], Proposition 2.4.3.).
3. IP holds as well, because of the consistency property and the use of nilpotent operators (see [2], Theorem 2.4.17.).
4. For SN,

(a) n�nðxÞ ¼ iSn x;0ð Þ ¼ dðnðxÞ;0Þ ¼ f�1
d fd nðxÞð Þ þ 0½ � ¼ nðxÞ,

(b) n�dðxÞ ¼ iSd
x;0ð Þ ¼ dðndðxÞ;0Þ ¼ f�1

d fd ndðxÞð Þ þ 0½ � ¼ ndðxÞ,
(c) n�cðxÞ ¼ iSc x;0ð Þ ¼ dðncðxÞ;0Þ ¼ f�1

d fd ncðxÞð Þ þ 0½ � ¼ ncðxÞ.
5. CP is trivial. h

4.1.1. S-implications and the ordering property
First, we define the so-called weak ordering principle for implications. Although the ordering principle plays an important

role, as we will see, only the weak ordering property can be required in general.

Definition 19. The implication i satisfies the weak ordering principle (WOP), if the following statement holds:
iðx; yÞ ¼ 1 if and only if x 6 sðyÞ;
where s is a strictly increasing function from ½0;1� ! ½0;1� with sð0Þ ¼ 0 and sð1Þ ¼ 1.
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Remark 7. In the terminology of Maes and De Baets, s from Definition 19 is an affirmation (see [16]).
Remark 8. Note that for sðxÞ ¼ x we get the original ordering property (OP).
Henceforth we use the following notations for the composition of two negation operators.

Definition 20. In a connective system ðc; d;nÞ
sn;dðxÞ :¼ nðndðxÞÞ;
and
sc;dðxÞ :¼ ncðndðxÞÞ;
where nc and nd are the natural negations of c and d respectively.
Remark 9. Note that in a consistent connective system sd;n ¼ sn;c and similarly, sc;n ¼ sn;d.
Proposition 17. In a nilpotent connective system iSd
satisfies the ordering principle (OP), while iSn and iSc satisfy the weak ordering

principle (WOP).
Proof. For iSd
we have the following:
iSd
ðx; yÞ ¼ 1 if and only if f�1

d fdðndðxÞÞ þ fdðyÞ½ � ¼ 1;
which means that fdðndðxÞÞ þ fdðyÞP 1, from which we get ndðxÞP ndðyÞ, which holds if and only if x 6 y.
For iSc , let sðxÞ ¼ sc;dðxÞ ¼ ncðndðxÞÞ.
iSc ðx; yÞ ¼ 1 if and only if f�1
d fdðncðxÞÞ þ fdðyÞ½ � ¼ 1;
which means that fdðncðxÞÞ þ fdðyÞP 1, from which we get ncðxÞP ndðyÞ, so x 6 ncðndðyÞÞ ¼ sc;dðyÞ.
Similarly, for iSn , let sðxÞ ¼ sn;dðxÞ ¼ nðndðxÞÞ.
iSn ðx; yÞ ¼ 1 if and only if f�1
d fdðnðxÞÞ þ fdðyÞ½ � ¼ 1;
which means that fdðnðxÞÞ þ fdðyÞP 1, from which we get nðxÞP ndðyÞ, so x 6 nðndðyÞÞ ¼ sn;dðyÞ. h

Next we give an example for a bounded system illustrating that iSn does not satisfy the ordering property. For
fcðxÞ ¼ 1� x2; f dðxÞ ¼ 1� ð1� xÞ2; nðxÞ ¼ 1� x, there exist an x and a y for which iSn ðx; yÞ ¼ 1 and y < x, i.e. the ordering
principle does not hold, because iSn ðx; yÞ ¼ 1 if and only if dðnðxÞ; yÞ ¼ 1.

For x ¼ 0:5 and y ¼ 0:4 we get fcð0:5Þ þ fdð0:4Þ ¼ ð1� 0:52Þ þ ð1� ð1� 0:4Þ2Þ ¼ 0:75þ ð1� 0:36Þ ¼ 1:39, so
ið0:5;0:4Þ ¼ 1 and ðy < xÞ.

Remark 10. Note that the following statements are equivalent:
iSc ðx; yÞ ¼ 1 if and only if x 6 y ð13Þ
fcðxÞ þ fdðxÞ ¼ 1 for all x 2 ½0;1�: ð14Þ
In other words, the ordering property, (OP) never holds in a bounded system.
We show that the ordering property holds if and only if fcðxÞ þ fdðxÞ ¼ 1. We have ncðxÞP ndðyÞ. This means that the

ordering property for iSc (and also similarly for iSn ) is equivalent to the followings: ncðxÞP ndðyÞ if and only if x 6 y.
It is easy to see that the condition above holds if and only if ndðxÞ ¼ ncðxÞ, i.e. fcðxÞ þ fdðxÞ ¼ 1.

5. Comparison of implications in bounded systems

Now we prove that in a bounded system, the different types of implications considered so far never coincide.

Proposition 18. In a connective system ðc; d; nÞ, any two of the implications defined so far coincide if and only if fcðxÞ þ fdðxÞ ¼ 1,
where fc and fd are the normalized generator functions of c and d respectively.
Proof. It was shown in Section 4 that in a bounded system (where nc; nd and n are different) the natural negations of the
implications in question are the same only in the case of iR and iSd

, which simply means that it is sufficient to examine their
equality.

Since iR satisfies OP while iSc for fcðxÞ þ fdðxÞ – 1 does not (see Table 1), we see that in a bounded system they cannot be
equal. h



Table 1
Properties of implications in bounded systems.

Formula NP EP IP SN CP WOP OP

ic ¼ iR f�1
c fcðyÞ � fcðxÞ½ � U U U U ncðxÞ U U U

id ¼ iSd f�1
d 1� fdðxÞ þ fdðyÞ½ � U U U U ndðxÞ U U U

iSn f�1
d fcðxÞ þ fdðyÞ½ � U U U U nðxÞ U U sn;dðxÞ �

iSc f�1
d fdðyÞ þ fdðncðxÞÞ½ � U U U U ncðxÞ U U sc;dðxÞ �

Fig. 1. ic (residual) implications for rational generators.

Fig. 2. id implications for rational generators.
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Remark 11. It is clear that in a Łukasiewicz logical system (where fcðxÞ þ fdðxÞ ¼ 1), all the implications considered in this
paper coincide.

From the results of Sections 3 and 4, we can say that in a bounded system we have two different implications (namely iR

and iSd
) that satisfy all of the properties NP, EP, IP, SN, CP, OP (see Table 1). Hence, the notations ic and id are used, to coincide

with the generator functions fc and fd used in the formulae of the implications, respectively (see Table 1). Henceforth let us
use the following notation for sake of simplicity.
idðx; yÞ :¼ iSd
ðx; yÞ
and
icðx; yÞ :¼ iRðx; yÞ:



Fig. 3. Sn-implications for rational generators.

Fig. 4. Sc-implications for rational generators.

Table 2
Rational generator functions.

f ðxÞ (generator) f�1ðxÞ 1� f ðxÞ Negation

Negation 1
1þ m

1�m
1�x

x

1
1þ1�m

m
1�x

x

1
1þ1�m

m
x

1�x
nðxÞ ¼ 1

1þ 1�m
mð Þ

2 x
1�x

Conjunction 1
1þ mc

1�mc
x

1�x

1
1þ1�mc

mc
x

1�x

1
1þ1�mc

mc
1�x

x
ncðxÞ ¼ 1

1þ mc
1�mcð Þ2 x

1�x

Disjunction 1
1þ md

1�md
1�x

x

1
1þ1�md

md
1�x

x

1
1þ1�md

md
x

1�x

ndðxÞ ¼ 1

1þ 1�md
md

� �2
x

1�x

J. Dombi, O. Csiszár / Information Sciences 283 (2014) 229–240 239
6. Min and max operators in nilpotent connective systems

In this section we show that in a nilpotent connective system, the minimum and maximum operators can be expressed in
terms of the conjunction, the disjunction and the negation.

Proposition 19. c x; icðx; yÞð Þ ¼Minðx; yÞ; x; y 2 ½0;1�.
Proof. c x; icðx; yÞð Þ ¼ f�1
c fcðxÞ þ fcðyÞ � fcðxÞ½ �½ �.

For x 6 y fcðxÞP fcðyÞ, which means that c x; icðx; yÞ½ � ¼ x.
Similarly, for x P y fcðxÞ 6 fcðyÞ, which means that c x; icðx; yÞð Þ ¼ y. h
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Proposition 20. n c nðxÞ; ic nðxÞ;nðyÞð Þð Þð Þ ¼ Maxðx; yÞ; x; y 2 ½0;1�.
Proof. The statement follows immediately from the previous proposition (or also can been proved similarly). h
7. Summary

In this paper implications in nilpotent connective systems were examined. The concept of a weak ordering property was
defined. In bounded systems two different implications, ic and id were introduced, both of which fulfill all the basic features
generally required for implications. In Table 1, the results concerning the properties of each implication are listed below. For
rational generator functions, the implications have been plotted in Figs. 1a–4b. The formulae of the generators and the impli-
cations are summarized in Tables 1 and 2 (see [7]).
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