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Abstract—In this study, it is demonstrated that the application
of the Dombi modifier operator class of continuous-valued logic
may be viewed as a general approach for modeling probability
weighting functions of prospect theory including the well-known
ones. Furthermore, a two-phase regression method for fitting
a probability weighting function generated by the modifier
operator to empirical data is also presented.
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I. INTRODUCTION

In economics, the probability waiting functions describe the
phenomenon that people tend to overreact those events that
occur with a low probability and underreact the events that
have a high probability (see, e.g. [1]–[6]). The large amount
of researches related to the probability weighting functions
in prospect theory demonstrate that these functions play an
essential role in decision making (see, e.g. [7]–[14]). In this
paper, we present a novel methodology that can be used to
generate parametric probability weighting functions by making
the use of Dombi’s modifier operators of continuous-valued
logic [15]. Here, we will show that the modifier operator
m

(λ)
ν,ν0 : [0, 1]→ [0, 1], which is given by

m(λ)
ν,ν0(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
, (1)

where ν, ν0 ∈ (0, 1), λ ∈ R and f : [0, 1] → [0,∞] is a
strictly monotonic (either increasing or decreasing) continuous
function with the inverse function f−1 : [0,∞] → [0, 1], is
a probability weighting function. In fuzzy theory, function
f is called the generator function of the modifier operator
(probability weighting function) m(λ)

ν,ν0 . The main findings of
our research, which we will present in this paper, are as
follows.

1) We will demonstrate that the application of the modifier
operator in equation (1) may be treated as a general
approach for creating probability weighting functions
including the well-known ones.

2) We will introduce a two-phase regression method for
fitting a probability weighting function generated by the
modifier operator in (1) with ν = ν0 to empirical data.

The rest of this paper is structured as follows. In Section 2,
we will briefly introduce the basic notions of prospect theory
including the probability weighting functions. In Section 3,
we will revisit the general form of the modifier operators
in Dombi’s pliant system [15], [16]. Next, in Section 4,
we will show how the modifier operator can be utilized to
model probability weighting functions. A two-phase regression
method for fitting a probability weighting function generated
by the modifier operator to empirical data is presented in
Section 5. Lastly, in Section 6, we will provide a short
summary of our findings.

II. PROBABILITY WEIGHTING FUNCTIONS IN PROSPECT
THEORY

Here, we will use the concepts of utility functions and
probability weighting functions. In prospect theory, these
functions are defined as follows [13], [17].

Definition 1 (Utility function): The function U : [0,∞]→ R
is said to be a utility function, if U satisfies the following
requirements:

1) U is continuous and strictly increasing
2) U(0) = 0.

The value of the utility function U at x may be viewed as the
utility value of the wealth x.

Definition 2 (Probability weighting function): The function
w : [0, 1] → [0, 1] is said to be a probability weighting
function, if w satisfies the following requirements:

1) w is continuous and strictly increasing
2) w(0) = 0 and w(1) = 1.
Let S be a finite set of possible states (events), and let

E1, E2, . . . , En ⊆ S be uncertain events, n ≥ 2. In prospect
theory, a prospect is a mapping from S to the real numbers,
describing the resulting outcome for every state if that state is
the true state [13]. Traditionally, prospects are often denoted
as (E1 : x1, E2 : x2, . . . , En : xn) meaning that the prospect



yields xi under the event Ei, where i = 1, 2, . . . , n. The
prospect (E1 : x1, E2 : x2, . . . , En : xn) is evaluated by
using the formula:

n∑
i=1

W (Ei)U(xi), (2)

in which the functions W and U can be interpreted accord-
ing to the following cases, where each case generalizes the
preceding one [17].

• Case 1: (Expected value) U is the identity function and
W is a probability measure P on the finite set S.

• Case 2: (Expected utility) U is a utility function and W
is a probability measure P on the finite set S.

• Case 3: (Probabilistic sophistication (with non-expected
utility)) U is a utility function, P is a probability measure
on the finite set S, and there exists a probability weighting
function w, such that W = w ◦ P .

• Case 4: (General model) U is a utility function and W is
a fuzzy measure (monotone measure) on the finite set
S; that is, W satisfies the following requirements: (i)
W (∅) = 0; (ii) W (S) = 1; (iii) for any A,B ∈ S A ⊂ B
implies W (A) ≤W (B).

In this paper, we will show how certain unariy operators of
continuous-valued logic can be applied to modeling probability
weighting functions. It should be added here that in prospect
theory, the argument of a probability weighting function is
traditionally denoted by p, indicating that the probability
weighting function is a transformation on a probability mea-
sure. Here, we will use the notation x for the argument of
function w.

III. GENERAL FORM OF MODIFIER OPERATOR IN PLIANT
SYSTEM

In continuous-valued logic, linguistic modifiers over fuzzy
sets that have strictly monotonously increasing or decreasing
membership functions can be modeled by modifier operators.
In Dombi’s pliant system [15], [16], the general form of the
modifier operator is given as follows.

Definition 3: The modifier operator m(λ)
ν,ν0 : [0, 1] → [0, 1]

is given by

m(λ)
ν,ν0(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
, (3)

where ν, ν0 ∈ (0, 1), λ ∈ R and f : [0, 1]→ [0,∞] is a strictly
decreasing (or increasing) continuous function with the inverse
function f−1 : [0,∞] → [0, 1]. Here, function f is called the
generator function of the modifier operator m(λ)

ν,ν0 .
Later on, we will show that the value of parameter λ is closely
related to the slope of function m(λ)

ν,ν0 at x = ν. Notice that

m(λ)
ν,ν0(ν) = ν0

immediately follows from (3). Hence, if λ 6= 1 and ν0 = ν,
then ν is the fix point of the transformation x 7−→ m

(λ)
ν,ν0(x),

where x ∈ [0, 1].

IV. MODELING PROBABILITY WEIGHTING FUNCTIONS

The following proposition lays the foundations for generat-
ing probability weighting functions derived from appropriately
chosen generator functions.

Proposition 1: Let f : [0, 1] → [0,∞] be a strictly
decreasing (or increasing) continuous function with the inverse
function f−1 : [0,∞] → [0, 1], where ν, ν0 ∈ (0, 1), λ > 0,
and let the modifier operator m(λ)

ν,ν0 : [0, 1]→ [0, 1] be induced
from the generator function f according to (3). Then, m(λ)

ν,ν0

is a probability weighting function.
Proof: Let λ > 0, ν, ν0 ∈ (0, 1) and let K =

f(ν0)(f(ν))
−λ. Thus,

m(λ)
ν,ν0(x) = f−1

(
Kfλ(x)

)
for any x ∈ [0, 1]. If f is strictly decreasing (increasing),
then f−1 is strictly decreasing (increasing) as well. Noting
that λ > 0, f−1

(
Kfλ(x)

)
is strictly increasing; that is,

m
(λ)
ν,ν0 satisfies requirement (1) for a probability weighting

function in Definition 2. Next, taking into account the fact
that f−1

(
Kfλ(x)

)
is strictly increasing and f : [0, 1] →

[0,∞] is strictly monotonic, we have f−1(f(0)) = 0 and
f−1(f(1)) = 1. This means that m(λ)

ν,ν0 satisfies requirement
(2) for a probability weighting function in Definition 2.

Here, we will utilize the modifier operator m(λ)
ν,ν0 with the

parameter settings ν0 = ν and λ > 0. This allows us to
characterize the generated probability weighting function by
its fix point ν and by its sharpness parameter λ. That is,
the generated probability weighting function w(λ)

ν will always
have the form

w(λ)
ν (x) = m(λ)

ν (x),

where

m(λ)
ν (x) = f−1

(
f(ν)

(
f(x)

f(ν)

)λ)
, (4)

ν ∈ (0, 1) and λ > 0. For the sake of simplicity, from now
on, we will use the shortened notation w for the probability
weighting function w

(λ)
ν . The following proposition tells us

about the shape of the probability weighting function gener-
ated by the modifier operator m(λ)

ν .
Proposition 2: If λ > 0, ν ∈ (0, 1) and the probability

weighting function w : [0, 1] → [0, 1] is generated by the
modifier operator m(λ)

ν : [0, 1]→ [0, 1], then
1) If 0 < λ < 1, then w(x) is concave in (0, ν] and w(x)

is convex in [ν, 1);
2) If λ = 1, then w(x) = x for any x ∈ [0, 1];
3) If 1 < λ, then w(x) is convex in (0, ν] and w(x) is

concave in [ν, 1).

Proof: Let w(x) = m
(λ)
ν (x) for any x ∈ [0, 1], where

ν ∈ (0, 1) and λ > 0. Furthermore, let g(x) be defined by

g(x) = (f(ν))
1−λ

(f(x))
λ
.

Then, w(x) can be written as

w(x) = f−1 (g(x)) .



Here, we will differentiate two cases: (a) f is strictly increas-
ing, (b) f is strictly decreasing.

(a) In this case, f is a strictly increasing function and so
f−1 is a strictly increasing function as well.
(a1) If x ∈ (0, ν] and 0 < λ < 1, then

(f(ν))
1−λ ≥ (f(x))

1−λ, g(x) ≥ f(x) and w(x) =
f−1 (g(x)) ≥ x.

(a2) If x ∈ [ν, 1) and 0 < λ < 1, then
(f(ν))

1−λ ≤ (f(x))
1−λ, g(x) ≤ f(x) and w(x) =

f−1 (g(x)) ≤ x.
From (a1) and (a2), 1) follows.
(a3) If x ∈ (0, ν] and 1 < λ, then (f(ν))

1−λ ≤
(f(x))

1−λ, g(x) ≤ f(x) and w(x) =
f−1 (g(x)) ≤ x.

(a4) If x ∈ [ν, 1) and 1 < λ, then (f(ν))
1−λ ≥

(f(x))
1−λ, g(x) ≥ f(x) and w(x) =

f−1 (g(x)) ≥ x.
From (a3) and (a4), 3) follows.

(b) In this case, f is a strictly decreasing function and so
f−1 is a strictly decreasing function as well.
(b1) If x ∈ (0, ν] and 0 < λ < 1, then

(f(ν))
1−λ ≤ (f(x))

1−λ, g(x) ≤ f(x) and w(x) =
f−1 (g(x)) ≥ x.

(b2) If x ∈ [ν, 1) and 0 < λ < 1, then
(f(ν))

1−λ ≥ (f(x))
1−λ, g(x) ≥ f(x) and w(x) =

f−1 (g(x)) ≤ x.
From (b1) and (b2), 1) follows.
(b3) If x ∈ (0, ν] and 1 < λ, then (f(ν))

1−λ ≥
(f(x))

1−λ, g(x) ≥ f(x) and w(x) =
f−1 (g(x)) ≤ x.

(b4) If x ∈ [ν, 1) and 1 < λ, then (f(ν))
1−λ ≤

(f(x))
1−λ, g(x) ≤ f(x) and w(x) =

f−1 (g(x)) ≥ x.
From (b3) and (b4), 3) follows.

If λ = 1, then w(x) = x trivially holds for any x ∈ [0, 1].
Suppose that the probability weighting function w : [0, 1]→

[0, 1] is generated by the modifier operator m(λ)
ν : [0, 1] →

[0, 1], λ > 0 and ν ∈ (0, 1). Then, the effect of the parameters
λ and ν on the shape of the probability weighting function w
can be summarized as follows.

• Parameter λ determines the sharpness and the shape of
w. The more the value of λ differs from 1, the more the
shape of w differs from that of the identity function. If
0 < λ < 1, then w is inverse S-shaped, and if 1 < λ,
then w is S-shaped.

• Parameter ν determines the point where w intersects the
diagonal line; that is, parameter ν may be viewed as the
elevator parameter of w.

Figure 1 shows the effect of the values of parameters λ
and ν on the shape of the probability weighting function w
that was generated from the same generator function via the
modifier operator m(λ)

ν .
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Fig. 1. The role of parameters ν and λ

One can easily see that the modifier operator m(λ)
ν with

the generator function f(x) = − ln(x), where x ∈ (0, 1],
generates the probability weighting function

w(x) =
(
e−(− ln(x))λ

)(− ln(ν))1−λ

. (5)

Now, if the parameters λ and ν are set as

λ = a,

ν = e−b
1

1−a
,

where 0 < a < 1 and b > 0, then the equation in (5) can be
written as

w(x) =
(
e−(− ln(x))a

)b
,

which is the well-known Prelec’s probability weighting func-
tion [10].

It can also be shown that the modifier operator m(λ)
ν with the

generator function f(x) = 1−x
x , where x ∈ (0, 1], generates

the probability weighting function

w(x) =
1

1 + 1−ν
ν

(
1−x
x

ν
1−ν

)λ . (6)

Now, if the parameters λ and ν are set as

λ = a,

ν =
1

1 +
(
1
b

) 1
1−a

,

where 0 < a < 1 and b > 0, then the equation in (6) can be
written as

w(x) =
bxa

bxa + (1− x)a
.

In prospect theory, this function is known as the Ostaszewski,
Green and Myerson probability weighting function [12]. Note
that this probability weighting function family was introduced
independently by Lattimore, Baker and Witte as well in 1992
(see [11]).



Based on the results presented in this section, the application
of the modifier operator in (4) can be treated as a general ap-
proach for creating probability weighting functions including
the most important ones.

V. A TWO-PHASE REGRESSION METHOD

In this section, we will show how a probability weighting
function generated by the modifier operator in (4) can be
fitted to empirical data. Suppose that the probability weighting
function w : (0, 1] → (0, 1] is induced from the generator
function f : (0, 1] → (0,∞] by the modifier operator m(λ)

ν

given in (4), where ν ∈ (0, 1) and λ > 0. That is, we have

w(x) = f−1

(
f(ν)

(
f(x)

f(ν)

)λ)
(7)

for any x ∈ (0, 1].
Let A be an uncertain event in the finite event space S, and

let P : P(S)→ [0, 1] be a probability measure on S. Suppose
that x = P (A) is the known probability of event A. Let Y be
a dichotomous random variable such that

Y =

{
1, if A happens
0, if A happens,

where A denotes the complement of event A. In practice,
one may have a perceived probability Pp(A) of the event
A, which may differ from P (A). Here, we seek to model
the perceived probability Pp(A), when the probability P (A)
is assumed to be known. In other words, we wish to model
the conditional probability Pp(Y = 1|x) which represents the
perceived probability of event A given that the probability of
event A is equal to x. Let (x1, Y1), (x2, Y2), . . . , (xn, Yn) be a
sample of independent observation pairs on the variable x and
the dichotomous random variable Y , xi ∈ (0, 1), Yi ∈ {0, 1},
n ≥ 2. Assume that

Pp(Y = 1|x) = w(x),

that is, the conditional perceived probability Pp(Y = 1|x) is
modeled by a probability weighting function w. Recall that
the function w is parametric, it has the parameters λ and ν.
Now, we will introduce a two-phase method for fitting the
probability weighting function w to empirical data:

1) In the first phase of our method, we will transform the
function w to a linear function, and then we will apply
linear regression to get the estimates ν̂0 and λ̂0 of the
parameters ν and λ, respectively.

2) In the second phase of our method, we will give the
maximum likelihood estimation of the parameters ν and
λ by using a numeric optimization method in which the
unknown parameter values are initialized with ν̂0 and
λ̂0 that were obtained in the first phase.

A. Phase 1: Linearization and Linear Regression

Let y = w(x), where x ∈ (0, 1]. Then, by noting (7), we
have

f(y) = f(ν)

(
f(x)

f(ν)

)λ
.

Since both members of the previous equation are positive, after
taking the logarithm of its both sides, we get

ln (f(y)) = ln (f(ν)) + λ ln (f(x))− λ ln (f(ν)) .

The last equation can be written in the form

v = αu+ β,

where u = ln (f(x)), v = ln (f(y)), α = λ and β =
ln (f(ν)) (1 − α). Hence, the values of parameters α and β
can be obtained by applying a linear regression. Once we have
the estimated values of α̂ and β̂ for the parameters α and β,
respectively, the estimates λ̂0 and ν̂0 of the parameters λ and
ν are

λ̂0 = α̂

ν̂0 = f−1
(
e

β̂
1−α̂

)
,

(8)

respectively.
Let x∗1, x

∗
2, . . . , x

∗
m be the unique values among the values

x1, x2, . . . , xn in the sample (x1, Y1), (x2, Y2), . . . , (xn, Yn),
m ≤ n. Furthermore, let y∗r be the estimated value of
the conditional perceived probability Pp(Y = 1|x = x∗r)
computed from the sample (x1, Y1), (x2, Y2), . . . , (xn, Yn),
where r = 1, 2, . . . ,m. That is,

y∗r =
kr
nr

where

kr = |{(xi, Yi) : xi = x∗r , Yi = 1, i = 1, 2, . . . , n}| , (9)

nr = |{(xi, Yi) : xi = x∗r , i = 1, 2, . . . , n}| (10)

and r = 1, 2, . . . ,m. In other words, k∗r and y∗r are, respec-
tively, the conditional frequency and the conditional relative
frequency of event A given the condition x = x∗r . Next,
following the line of thinking presented above, the unknown
parameters λ and ν of the function w can be estimated
by fitting the linear regression model v = αu + β to the
transformed data pairs (ur, vr), where

ur = ln (f(x∗r))

vr = ln (f(y∗r )) ,

and then applying the equations in (8) with the estimates α̂
and β̂ of the parameters α and β, respectively.

B. Phase 2: Maximum Likelihood Estimation

By utilizing the sample (x1, Y1), (x2, Y2), . . . , (xn, Yn) the
unknown parameters ν and λ of the probability weighting
function w can be estimated by maximizing the perceived
likelihood function L : (0, 1)× (0,∞]→ (0, 1)

L(ν, λ) =

n∏
i=1

Pp(Y = Yi|xi) =

=

n∏
i=1

wYi(xi; ν, λ) (1− w(xi; ν, λ))1−Yi ,
(11)



where w(xi; ν, λ) = w(xi) = w
(λ)
ν (xi), i = 1, 2, . . . , n. Obvi-

ously, maximizing the likelihood function in (11) is equivalent
to maximizing the log-likelihood function l : (0, 1)×(0,∞)→
(0,−∞], which is given by

l(ν, λ) =

n∑
i=1

Yi ln (w(xi; ν, λ))+

+

n∑
i=1

(1− Yi) ln (1− w(xi; ν, λ)) .
(12)

By making the use of the frequencies kr and nr given in (9)
and (10) the log-likelihood function in (12) can be written as

l(ν, λ) =

m∑
i=1

kr ln (w(xi; ν, λ))+

+

m∑
i=1

(nr − kr) ln (1− w(xi; ν, λ)) .
(13)

The maxima of the log-likelihood function in (13) can be
determined by using the so-called GLOBAL method which
is a stochastic global optimization procedure introduced by
Csendes (see [18], [19]). The GLOBAL method was imple-
mented in the MATLAB 2019a numerical computing envi-
ronment. In the optimization procedure, the initial values of
the parameters ν and λ can be set to those determined in the
first phase of our regression method (see (8)). This approach
increases the speed of convergence of the GLOBAL method.

C. A Demonstrative Example

100 people were surveyed in 9 runs about if, in their
opinion, an uncertain event will happen or not. The empirical
results from the survey are summarized in Table I, the first col-
umn of which (r) contains the run identifier (r = 1, 2, . . . , 9).
The known likelihood xr of the event was different in each
run. In Table I, for each run, column kr contains the number
of people who taught that the event will happen, while column
nr−kr indicates the number of those participants who believed
that the event will not happen (nr = 100 is the number of
survey participants). The estimate of the perceived conditional
likelihood of the event computed from the survey results for
each run is in column yr of Table I.

TABLE I
EMPIRICAL DATA

r xr kr nr − kr nr yr ln(f(xr)) ln(f(yr))
1 0.1 15 85 100 0.15 2.1972 1.7346
2 0.2 23 77 100 0.23 1.3863 1.2083
3 0.3 29 71 100 0.29 0.8473 0.8954
4 0.4 35 65 100 0.35 0.4055 0.6190
5 0.5 41 59 100 0.41 0.0000 0.3640
6 0.6 48 52 100 0.48 -0.4055 0.0800
7 0.7 55 45 100 0.55 -0.8473 -0.2007
8 0.8 65 35 100 0.65 -1.3863 -0.6190
9 0.9 76 24 100 0.76 -2.1972 -1.1527

A probability weighting function w induced by the generator
function f : (0, 1] → [0,∞], f(x) = 1−x

x by using the
modifier operator in (3) was fitted to the empirical data

in Table I. Recall that this generator function induces the
probability weighting function given in (6). Here, we applied
our two-phase regression method to determine the estimates
of the parameters ν and λ of function w. In the first phase, by
applying a linear regression to the (ln(f(xr)), ln(f(yr))) pairs
and using the formulas in (8), we got the following estimates
of the parameters ν and λ:

ν̂0 = 0.2793, λ̂0 = 0.6567.

In the second phase, by initializing the parameters ν and λ with
ν̂0 and λ̂0, respectively, and then by applying the GLOBAL
optimization method to maximize the log-likelihood function,
we received the following ν̂ and λ̂ estimates of the parameters
ν and λ:

ν̂ = 0.2753, λ̂ = 0.6591.

The maximum value of the log-likelihood function is
−546.8268. Figure 2 shows the plots of the probability weight-
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Fig. 2. Plots of regression functions

ing functions fitted to the empirical data. Since the phase 1
and phase 2 estimates of the parameters are very close, the
two regression function plots in Figure 2 almost completely
coincide. It should be added that when the generator function
is f(x) = 1−x

x , then the modifier operator generates the so-
called kappa function. In this case, the regression is called the
kappa regression (see in press [20]), and the log-likelihood
function is concave. Therefore, the negative log-likelihood
function can be minimized by using gradient descend methods.

VI. CONCLUSIONS

The key findings of our study can be summarized as follows.
• The modifier operator m(λ)

ν,ν0 given in (3) satisfies the
requirements for a probability weighting function.

• Application of the modifier operator m(λ)
ν (see (4)) can be

interpreted as a general approach for generating probabil-
ity weighting functions, and this includes the well-known
ones.

• Since the probability weighting functions generated by
the modifier operator m(λ)

ν can be transformed to linear



functions, these probability weighting functions are easy-
to-use in regression problems.

• A two-phase regression method for fitting generated
probability weighting functions to empirical data was
introduced. In its first phase, the probability weighting
function is transformed to a linear function and linear
regression is applied to estimate the function parameters.
In the second phase of the presented method, the max-
imum likelihood estimations of the regression function
parameters are provided by using a numeric optimization
method in which the unknown parameter values are
initialized with those obtained in the first phase.
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[2] V. Köbberling and P. P. Wakker, “Preference foundations for nonex-
pected utility: A generalized and simplified technique,” Mathematics of
Operations Research, vol. 28, no. 3, pp. 395–423, 2003.

[3] B. Koszegi and M. Rabin, “A model of reference-dependent prefer-
ences,” The Quarterly Journal of Economics, vol. 121, no. 4, pp. 1133–
1165, 2006.

[4] H. Bleichrodt, “Probability weighting in choice under risk: An empirical
test,” Journal of Risk and Uncertainty, vol. 23, no. 2, pp. 185–198, Sep
2001.

[5] A. Chateauneuf, J. Eichberger, and S. Grant, “Choice under uncertainty
with the best and worst in mind: Neo-additive capacities,” Journal of
Economic Theory, vol. 137, no. 1, pp. 538–567, 2007.

[6] G. Loomes, P. G. Moffatt, and R. Sugden, “A microeconometric test
of alternative stochastic theories of risky choice,” Journal of Risk and
Uncertainty, vol. 24, no. 2, pp. 103–130, Mar 2002.

[7] M. Abdellaoui, H. Bleichrodt, and O. l’Haridon, “A tractable method
to measure utility and loss aversion under prospect theory,” Journal of
Risk and uncertainty, vol. 36, no. 3, p. 245, 2008.

[8] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision
under risk,” in Handbook of the fundamentals of financial decision
making: Part I. World Scientific, 2013, pp. 99–127.

[9] A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative
representation of uncertainty,” Journal of Risk and uncertainty, vol. 5,
no. 4, pp. 297–323, 1992.

[10] D. Prelec, “The probability weighting function,” Econometrica, vol. 66,
pp. 497–528, 1998.

[11] P. K. Lattimore, J. R. Baker, and A. D. Witte, “The influence of
probability on risky choice: A parametric examination,” Journal of
Economic Behavior & Organization, vol. 17, no. 3, pp. 377–400, 1992.

[12] P. Ostaszewski, L. Green, and J. Myerson, “Effects of inflation on the
subjective value of delayed and probabilistic rewards,” Psychonomic
Bulletin & Review, vol. 5, no. 2, pp. 324–333, 1998.

[13] P. P. Wakker, Prospect theory: For risk and ambiguity. Cambridge
University Press, 2010.

[14] P. P. Wakker and J. Yang, “A powerful tool for analyzing concave/convex
utility and weighting functions,” Journal of Economic Theory, vol. 181,
pp. 143–159, 2019.

[15] J. Dombi, “On a certain type of unary operators,” in 2012 IEEE
International Conference on Fuzzy Systems, June 2012, pp. 1–7.

[16] J. Dombi, “Towards a general class of operators for fuzzy systems,”
IEEE Transactions on Fuzzy Systems, vol. 16, no. 2, pp. 477–484, 2008.

[17] T. Offerman, J. Sonnemans, G. Van de Kuilen, and P. P. Wakker, “A
truth serum for non-Bayesians: Correcting proper scoring rules for risk
attitudes,” The Review of Economic Studies, vol. 76, no. 4, pp. 1461–
1489, 2009.

[18] T. Csendes, “Nonlinear parameter estimation by global opitmization -
efficiency and reliability,” Acta Cybernetica, vol. 8, no. 4, pp. 361–372,
1988.

[19] T. Csendes, L. Pál, J. Sendin, and J. Banga, “The global optimization
method revisited,” Optimization Letters, vol. 2, no. 4, pp. 445–454, 2008.

[20] J. Dombi and T. Jónás, “Kappa regression: an alternative to logis-
tic regression,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems,, vol. accepted paper, in press, 2019.


