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Abstract. Modal operators play an important role in fuzzy theory, and in recent
years researchers have devoted more effort on this topic. Here we concentrate on
continuous strictly monotonously increasing Archimedian t-norms. In our study,
we will construct modal operators related to negation operators and we introduce
graded modal operators.
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1 Introduction

In logic, modal operators have a variety of applications and even from a theoretical
perspective it is interesting to study the continuous extension of these operators. Our
approach is different from other authors, because we would like to find proper algebric
expressions for these operators based on some basic considerations. On the one hand,
continuous-valued logic can be studied from a logical point of view (axiomatization,
completeness, possible extensions, predicat calculi, etc.). On the other hand it can be
studied from algebraic point of view to find the proper operator, as we do it in con-
junctive and disjunctive operators and now we have Frank, Hamacher, Einstein mean
operators etc. With the latter, he have to solve functional equations. If we have differ-
ent continuous-valued logical system (i.e. operators), we have to build different modal
operators.
Our objective is to find these operators. If a logical operator is given we construct its
unary operator. Different unary operators are studied in continuous valued (fuzzy) logic
as modal operators (necessity and possibility, hedges (strengthened and weakened oper-
ators, truth-value modifiers, truth-stresser, truth-depresser), etc). Here, we will present
approaches for obtaining the concrete form of the necessity and possibility operators.
These may be expressed in a simple parametrical form. By modifying the parameter
value, we get different unary operators, namely modality, hedge and negation opera-
tors.
In this paper we deal with continuous valued, Archimedian t-norm based logic. It is
Hájek BL with the exception of Gödel logic, since in the latter x∧x = x holds. If we use
BL formalism (i.e. strong negation to define modalities), then the most general approach
to deal with involution in t-norm based logic is the paper of Flaminio, Marchioni [10].
Here the authors set of logical frame to Esteva and Godo monodial logic MTL, which
contains BL. So we can say that this is the most general logic from this point of view.
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Cintulas paper only deals with involutive expansions of the logic SBL, which includes
Gödel logic. We have to mention that Esteva, Godo and Noguera [6] study the probably
most general logic for truth-hedges. It is the closest to the system which given in this
paper.
Cintula et al. [1] carried out a study on fuzzy logic with an additional involutive nega-
tion operator. This was a survey paper and they presented a propositional logic extended
with an involutive negation. With this concept, Cintula improved the expressive poten-
tial of mathematical logic.
In Hájek’s paper [8], a system called basic logic (BL) was defined. Not long ago, a
survey paper was published [7] that discussed the state-of-art development of BL. The
problem with this logic is that the implication is defined by the residual of the t-norm,
the negation operator is defined by ∼x = x → 0 and in the strict operator case, the
negation operator is not involutive. In fact it is a drastic negation operator. Neither the
implication operator nor the negation operator is continuous. From an application point
of view, the continuity property is always indispensable.
In Esteva et al. [5], logics with involutive negation were introduced. This negation
is different from implication based negation "∼" and it functions as a basic negation
(not(x) = 1−x). But this negation operator is not related to the residual implication in
strict monotonous operator case.
Modal logic has been used in rough sets as well, where the sets are approximated by
elements of a partition induced by an equivalence relation. A natural choice for rough
set logic is S5 (Orlowska [11]). Here, the possibility and necessity modalities express
outer and inner approximation operators.
In our previous article [3], we looked for strictly monotonously increasing Archimedian
t-norms and t-conorms (called conjunctive and disjunctive operators) for which the De
Morgan identity is valid with infinitely many negation operators. In this article, we will
denote these operators by c(x, y) and d(x, y), respectively.

2 Basic considerations of negation

Here, we will interpret 1 as the true value and 0 as the false value. Now we will state
definitions and properties of negation operator.

Definition 1. We say that η(x) is a strong negation if η : [0, 1] → [0, 1] satisfies the
following conditions:
C1: η : [0, 1]→ [0, 1] is continuous (Continuity)
C2: η(0) = 1, η(1) = 0 (Boundary conditions)
C3: η(x) < η(y) for x > y (Monotonicity)
C4: η(η(x)) = x (Involution)

Remark. The boundary condition C2 can be inferred by using C1 and C3.

From C1, C2 and C3, it follows that there exists a fixed point (or neutral value) ν ∈ [0, 1]
of the negation where



Modalities based on double negation 3

η(ν) = ν (1)

Later on we will characterise the negation operator in terms of the ν parameter.

Definition 2. We will say that a negation ην1(x) is stricter than ην2(x) if ν1 < ν2.

For the strong negation, two representation theorems are known. Trillas [13] showed
that every involutive negation operator has the following form, and here we denoted this
negation by n(x).

n(x) = g−1(1− g(x)) (2)

where g : [0, 1] → [0, 1] is a continuous strictly increasing (or decreasing) function.
This generator function corresponds to nilpotent operators (nilpotent t-norms [9] [12] [14]).
Examples for the negation: nα(x) = (1 − xα)

1
α (Yager negation), na(x) = 1−x

1+ax
(Hamacher and Sugeno negation). We can express the parameter of the negation oper-
ator in terms of its fixed point (or neutral value). The Yager negation operator has the
form

nν(x) =
(
1− x− lnνln2

)− ln2
lnν

In a similar way, we get the new form of the Hamacher negation operator:

nν(x) =
1

1 + ( 1−νν )2 x
1−x

.

This form of the negation operator can be found in [2].
For the strictly monotonously increasing t-norms, another form of negation operator is
given in [3] [4]. It is

ην(x) = f−1
(
f2(ν)

f(x)

)
(3)

where f : [0, 1] → [0,∞] is a continuous, increasing (or decreasing) function and f is
the generator function of a strict monotone t-norm, or t-conorm. This negation operator
is an element of the Pliant system [3] [4].

Here we show that (2) and (3) are equivalent, when f(ν) = 1.

Proposition 1. Let n(x) and η(x) be defined by (2) and (3). If f(ν) = 1 and

f(x) =
1− g(x)
g(x)

, g(x) =
1

1 + f(x)

then
n(x) = η(x)

Proof. The following expression is valid

f−1(x) = g−1
(

1

x+ 1

)
.
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So we get

f−1
(

1

f(x)

)
=g−1

(
1

1 + 1
f(x)

)
=

= g−1

 1

1 + g(x)
1−g(x)

 =g−1 (1− g(x)) .

The properties of the functions (f, g) can be easily verified.

Next, we will use (3) to represent the negation operator because here we are just con-
sidering strict monotone operators.
In Figure 1, we sketch the shape of the negation function and we demonstrate the mean-
ing of the ν value. We can introduce a non continuous negation [3], [4].
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Fig. 1. The shape of the negation function when f(x) = 1−x
x

and ν = 0.4

Definition 3 (Drastic negation). We call η0(x) and η1(x) drastic negations when

η0(x) =

{
1 if x = 0
0 if x 6= 0

η1(x) =

{
1 if x 6= 1
0 if x = 1

Here, η0(x) is the strictest negation, while η1(x) is the least strict negation. They are
non-continuous negation operators, so they are not negation operators in the original
sense (see Figure 2).

Let g(x) =
1

1 + 1−ν
ν

x
1−x

Then

g−1(1− g(x)) = 1

1 +
(
1−ν
ν

)2 x
1−x

=
1− x
1 + a x

,
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Fig. 2. η0(x) and η1(x) are drastic negation operators

where a+ 1 =
(
1−ν
ν

)2
and ν ∈ (0, 1).

Let f(x) = 1−x
x Then

f−1
(
f2(ν)

f(x)

)
=

1

1 +
(
1−ν
ν

)2 · x
1−x

(4)

Remark. There are strictly monotone operators (t-norm, t-conorm) that build a De-
Morgan system with infinitely many negations. This operator is called Pliant operator
[3].

This system is useful for building modal operators. In the Pliant system the negation
operator closely related to the t-norm and t-conorm. Based on different negations, in
the next we deal with modalities.

3 Modalities induced by two different negation operators

To obtain this structure, we equip it with another type of negation operator. In modal
logic, it is called an intuitionistic negation operator. In our system, the modalities in-
duced by a suitable composition of the two negation operators generate a modal system
with the full distributivity property of the modal operators. The necessity operator is
simultaneously distributive over the conjunctive and disjunctive operators and the pos-
sibility operator is also simultaneously distributive over the conjunctive and disjunctive
operators.
With this starting point, the necessity and possibility operators used in fuzzy logic are
based on an extension of modal logic to the continuous case. We begin with the nega-
tion operator and we make use of two types of this operator, one is strict, and one is
less strict. We will show that with these two negation operators we can define the modal
hedges. Next, we use the classical notation for the sake of convention.
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In intuitionistic logic, another kind of negation operator also has to be taken into ac-
count. Here∼x means the negated value of x.∼1x and∼2x are two negation operators.
We will construct linguistic modal hedges called necessity and possibility hedges. The
construction is based on the fact that modal operators can be realized by combining two
kinds of negation operators. In our modal logic, ∼1x means x is impossible. In other
words, ∼1 is a stronger negation than not(x), i.e. ∼2x.
We can write

∼1x := impossible(x)
∼2x := not(x)

As we mentioned above, in modal logic we have two more operators than the classical
logic case, namely necessity and possibility; and in modal logic there are two basic
identities. These are:

∼1x = impossible(x) = necessity(not(x)) = � ∼2x (5)

♦x = possible(x) = not(impossible(x)) =∼2(∼1x) (6)

In our context, we model impossible(x) with a stricter negation operator than not(x).
Eq.(6) also serves as a definition for the possibility operator.

If in Eq.(5) we replace x by ∼2x and using the fact that ∼2x is involutive, we get

�x =∼1(∼2x), (7)

and with Eq.(6), we have

♦x =∼2(∼1x). (8)

The necessity and possibility operators have a common form, i.e. they can be expressed
by double negation equipped by different neutral values. Here, "not" and "impossible"
are two different negations.
If ν is small, we can say that the negation operator is strict; otherwise it is not strict.
"Impossible" is a stricter negation compared with "not".
Based on the above considerations, we can formally define the necessity and possibility
modifiers.

Definition 4. The general form of the modal operator is

τν1,ν2(x) = ην1 (ην2(x)) or τν1,ν2(x) = nν1(nν2(x)) (9)

and ν1, ν2 are neutral values of the negation operator. If ν1 < ν2, then τν(x) is a
necessity operator, and if ν2 < ν1, then τν(x) is a possibility operator. If ν1 = ν2 then
τν(x) is the identity operator and τν(x) = x.
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With this notion, we can make use of Eq.(7) and Eq.(8)

The necessity and possibility operators using the representation of the negation operator
(τ) have a common form

τν1,ν2(x) = ην1(ην2(x)) =f
−1
(
f2(ν1)

f2(ν2)
f(x)

)
τν1,ν2(x) = nν1(nν2(x)) =f

−1
1

(
2ν1 − f1

(
f−12 (2ν2 − f2(x))

))
We can define the dual possibility and necessiy operators like so:

Definition 5. A necessity operator and a possibility operator are dual if

ν1 =η(ν2) ν1 =f−1
(

1

f(ν2)

)
We will show that both modal operators belong to the same class of unary operators,
and also show that because they have a common form, we can denote both of them by
τν(x). Depending on the ν value, we get the necessity operator or the possibility oper-
ator.

Definition 6. The dual possibility and necessity operators are

�ν(x) =τ
N
ν (x) = f−1

(
f(x)

f2(ν)

)
and (10)

♦ν(x) =τ
P
ν (x) = f−1

(
f2(ν)f(x)

)
(11)

when f(ν) < 1

Previously we defined the drastic negation operator. Here we will define the drastic
necessity and possibility operators by using the drastic negation operators:

Definition 7. Drastic model operators are the following:

Drastic necessity �1(x) = τN1 (x) =

{
1 if x = 1

0 if x 6= 1
(12)

Drastic possibility ♦0(x) = τP0 (x) =

{
0 if x = 0

1 if x 6= 0
(13)

See Figure 3 below

Remark. Drastic necessity and possibility operators can be obtained by using drastic
negations. (See Definition 3.)
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Fig. 3. The drastic necessity τ1(x) and the drastic possibility τ0(x)

(12) and (13) are known as Baas-Monteiro ∆ operator and its dual ∇, respectively. ∆
and∇ are definable by an involution and strict negation [7].
The necessity operator (�) will be denoted by τN (x), and the possibility operator (♦)
will be denoted by τP (x). Because both operators can be deduced from each other, we
handled them together.
Now let τN [0, 1]→ [0, 1] and τP [0, 1]→ [0, 1] be two unary operators that satisfy the
following conditions for the necessity operator and the possibility operator:

N1. τN (1) = 1 P1. τP (0) = 0

N2. τN (x) ≤ x P2. x ≤ τP (x)
N3. x ≤ y implies τN (x) ≤ τN (y) P3. x ≤ y implies τP (x) ≤ τP (y)
N4. τP (x) = η

(
τN (η(x))

)
P4. τN (x) = η

(
τP (η(x))

)
[N5. τP (x) = τN

(
τP (x)

)
P5. τN (x) = τP

(
τN (x)

)
]

Remark. In our system, (N5) and (P5) are not required. Only a special parametrical
form of τP and τN satisfies (N5) and (P5).
Instead of (N5) and (P5), our demand is the so-called neutrality principle, i.e.

N ′(5) τN
(
τP (x)

)
= x P ′(5) τP

(
τN (x)

)
= x

Next, we will show that the basic properties are fulfilled.

Proposition 2. τNν (x) and τPν (x) statisfies the basic properties of modalities: {N prin-
ciple, T principle, K principle, DF♦ principle, N∗ principle, P principle, T principle, K
principle, DF� principle, P ∗ principle}
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Proof. We prove only the Necessity case. The possibility case can be proven by a sim-
ilar way. We will assume that f is strictly decreasing and that f(ν) < 1

N1. τNν (1) = f−1
(
f(1)

f2(ν)

)
= f−1(0) = 1

N2. τNν (x) < x x ∈ (0, 1) So:

f−1
(
f(x)

f2(ν)

)
< x

1 < f2(ν)

N3. if x < y then

f−1
(
f(x)

f2(ν)

)
< f−1

(
f(y)

f2(ν)

)
,

so f(x) > f(y)

N4. τNν (x) = f−1
(
f(x)

f2(ν)

)
, τNν (η(x)) = f−1

(
1

f(x)f2(ν)

)
η(τNν (η(x))) = f−1

(
f2(ν)f(x)

)
= τPν (x)

N’5 τNν (τPν (x)) = x, f−1
(
f2(ν)f(x)

f2(ν)

)
= x

Proposition 3. For the composition of the drastic modal operator the following are
valid:

A.) i �1(♦ν(x)) = τN1 (τPν (x)) = τN1 (x) = �1(x)
ii �ν(♦0(x)) = τNν (τP0 (x)) = τP0 (x) = ♦0(x)

B.) i ♦0(�ν(x)) = τP0 (τNν (x)) = τP0 (x) = ♦0(x)
ii ♦ν(�1(x)) = τPν (τN1 (x)) = τN1 (x) = �1(x)

C.) i �1(♦0(x)) = τN1 (τP0 (x)) = τP0 (x) = ♦0(x)
ii ♦0(�1(x)) = τP0 (τN1 (x)) = τN1 (x) = �1(x)

The proofs are based on the definition of drastic modal operators stated above.

Remark. N5 and P5 are also valid when the possibility operator is drastic.

For N5 see: A/ii, and C/i
For P5 see: B/ii, and C/ii

By making use of (2) and (2), we can define the concrete forms of the necessity and
possibility operators.
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Example 1.
Here, we use the Yager operator and the representation theorem of Trillas [13]

τ(x) = nν1(nν2(x)) =

(
1−

(
1− x−

ln 2
lnν2

) lnν2
lnν1

)− ln ν1
ln2

Example 2.

τPν (x) =
1

1 +
(
1−ν
ν

)2 1−x
x

or τNν (x) =
1

1 +
(

ν
1−ν

)2
1−x
x

when ν >
1

2
(14)

See both plots below,
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Fig. 4. The necessity and possibility operators with different ν values (ν = 0.2, 0.3, 0.4)

If we use the definition of τ(x) = �x or ♦x (i.e. necessity, or possibility x), then we
can introduce different necessity and possibility operators.

�(2)
ν x = �ν (�ν(x)) = τNν (τNν (x))

♦(2)
ν x = ♦ν (♦ν(x)) = τPν (τPν (x))

Definition 8. We call graded modalities a k composition of the modalities.

�(k)
ν (x) = �ν(�ν(. . . �ν︸ ︷︷ ︸

k

(x)) . . .) = τNν
(
τNν (. . . τNν (x))

)
(15)

♦(k)
ν (x) = ♦ν(♦ν(. . . ♦ν)︸ ︷︷ ︸

k

(x)) . . .) = τPν
(
τPν (. . . τPν (x))

)
(16)

Proposition 4. The composition of a modal operator is a closed operation.

�(k)
ν (x) = �ν∗(x) ♦(k)

ν (x) = ♦ν∗(x)

where
ν∗ = f−1

(
f2k(ν)

)
(17)
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Proof. In the possible modal operator case:

f−1
(
f2(ν)

(
f2(ν) . . .

(
f2(ν)f(x)

)
. . .
))

= f−1
(
f2k(ν)f(x)

)

Proposition 5. The following properties hold for the composition of modal operators

Properties using classical notations

1. �(n)
ν (�(m)

ν (x)) = (τNν (τNν (x))(m))(n) =
(
τNν (x)

)(n+m)
= �(n+m)

ν (x)

2. ♦(n)
ν (♦(m)

ν (x)) = (τPν (τPν (x))(m))(n) =
(
τPν (x)

)(n+m)
= ♦(n+m)

ν (x)

3. ♦(n)
ν (�(m)

ν (x)) = (τPν (τNν (x))(m))(n) =


♦(n−m)
ν (x) if n−m > 0

x if n = m = 0

�(m−n)
ν (x) if n−m < 0

4. �(n)
ν (♦(m)

ν (x)) = (τNν (τPν (x))(m))(n) =


�(n−m)
ν (x) if n−m > 0

x if n = m = 0

♦(m−n)
ν (x) if n−m < 0

5. lim
K→∞

(τNν (x))(K) = τ1(x)

6. lim
K→∞

(τPν (x))(K) = τ0(x)

Proof: They follow from direct calculation.

Using the Dombi operator when ν > 1
2 , we have

τ (N)
ν (x) =

1

1 +
(
1−ν
ν

)2k 1−x
x

τ (P )
ν (x) =

1

1 +
(

ν
1−ν

)2k
1−x
x

4 Conclusions

We defined necessity and possibility operators using double negation where the fixed
points are different. The composition of the modal operators is closed. So we have
series of modal operators with different degrees. We defined these modal operators
using a generator function of the operator system and these functions are the generator
functions of the operators of the Pliant logical system. There are several open questions
as how can we apply this approach to the nilpotent operator class, or how the logic
behind this structure can be characterized, etc. It seems that the Pliant structure has an
outstanding position. Particularly its special case namely the Dombi operator plays an
important role in the practical applications.
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