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József Dombi† and Tamás Jónás‡

Abstract
In a previous paper of ours [4], we presented the general formula for λ-

additive measure of union of n sets and gave a proof of it. That proof is based
on the fact that the λ-additive measure is representable. In this study, a novel
and elementary proof of the formula for λ-additive measure of the union of
n sets is presented. Here, it is also demonstrated that, using elementary
techniques, the well-known Poincaré formula of probability theory is just a
limit case of our general formula.
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1 Introduction

Since the fuzzy measures (monotone measures) play an important role in describing
various phenomena, over time there has been a steady interest in them (see, e.g.
[13, 14, 22, 10, 8]). One of the most widely applied classes of monotone measures is
the class of λ-additive measures (Sugeno λ-measures) (see, e.g. [21, 11, 12, 2, 1, 17]).
[21]. Although there are many theoretical and applied articles that discuss the λ-
additive measure, the general form of λ-additive measure of the union of n sets
has just recently been identified [4]. In [4], we proved that if X is a finite set,
A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive measure on X, λ ∈ (−1,∞) and
λ 6= 0, then

Qλ

(
n⋃
i=1

Ai

)
=

=
1

λ

 n∏
k=1

 ∏
1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik))

(−1)k−1

− 1

 ,

(1)
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where P(X) denotes the power set of X. Our proof in [4] is based on the fact that
Qλ is representable [2]; that is, one has Qλ = hλ ◦ µ for a uniquely determined
additive measure µ : P(X)→ [0, 1], where hλ : [0, 1]→ [0, 1] is a strictly increasing
bijection given via

hλ(x) =


(1 + λ)x − 1

λ
, if λ 6= 0

x, if λ = 0,

and λ ∈ (−1,∞). Here, we will prove the formula in Eq. (1) without utilizing the
fact that Qλ is representable. That is, we will give a novel and elementary proof
of Eq. (1). Taking into account the fact that the fuzzy measures and the fuzzy
measure related aggregation are important topics, it is worth mentioning that the
formula in Eq. (1) may also be viewed as an aggregation related to the λ-additive
measure, which is a fuzzy measure.

The well-known Poincaré formula of probability theory is

Pr

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Pr (Ai1 ∩ · · · ∩Aik) , (2)

where Pr is a probability measure on X and A1, . . . , An ∈ P(X). Here, we will
show that the Poincaré formula of probability theory given in Eq. (2) is a limit
case of the general formula of λ-additive measure of the union of n sets given in
Eq. (1). Namely, by using elementary techniques, we will prove that if X is a finite
set, A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive measure on X and λ 6= 0, then

lim
λ→0

Qλ

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Qλ (Ai1 ∩ · · · ∩Aik) .

It is an acknowledged fact that the λ-additive measure is strongly connected
with the belief- and plausibility measures of Dempster-Shafer theory (see, e.g. [22,
9, 5, 20, 7, 3, 16]), and with the theory of rough sets (see, e.g. [6, 24, 23, 15, 18, 19]).
Hence, our formula for the λ-additive measure of the union of n sets may play an
important role in these areas of computer science [4].

The rest of this paper is structured as follows. In Section 2, we will introduce
our new result regarding the λ-additive measure of the union of n sets. Here, we
will also prove that the Poincaré formula of probability theory is just a limit case
of our novel formula; that is, our formula may be viewed as the generalization of
the Poincaré formula. Lastly, in Section 3, we will give a short summary of our
findings and highlight our future research plans including the possible application
of our results in network science.

In this study, we will use the common notations ∩ and ∪ for the intersection
and union operations over sets, respectively. Also, will use the notation A for the
complement of set A.
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2 An elementary proof of the general Poincaré for-
mula

Relaxing the additivity property of the probability measure, the following λ-
additive measures were proposed by Sugeno in 1974 [21].

Definition 1. The function Qλ : P(X) → [0, 1] is a λ-additive measure (Sugeno
λ-measure) on the finite set X, iff Qλ satisfies the following requirements:

(1) Qλ(X) = 1

(2) for any A,B ∈ P(X) and A ∩B = ∅,

Qλ(A ∪B) = Qλ(A) +Qλ(B) + λQλ(A)Qλ(B), (3)

where λ ∈ (−1,∞) and P(X) is the power set of X.

Note that if X is an infinite set, then the continuity of function Qλ is also
required. From now on, P(X) will denote the power set of the finite set X and Qλ
will always denote a λ-additive measure on X.

The calculation of the λ-additive measure of the union of two disjoint sets is
given in Definition 1. The following well-known lemma (see Theorem 4.6 (2) in
[22]) shows how the λ-additive measure of the union of two sets can be computed
when these sets are not necessarily disjoint.

Lemma 1. If X is a finite set and Qλ is a λ-additive measure on X, then for any
A,B ∈ P(X),

Qλ(A ∪B) =
Qλ(A) +Qλ(B) + λQλ(A)Qλ(B)−Qλ(A ∩B)

1 + λQλ(A ∩B)
. (4)

Proof. See the proof of Theorem 4.6 in [22].

Remark 1. Notice that if λ = 0, then Eq. (4) reduces to Qλ(A ∪ B) = Qλ(A) +
Qλ(B)−Qλ(A∩B), which has the same form as the probability measure of union
of two sets.

Here, we will introduce a function and some quantities that we will utilize later
on.

Definition 2. The function p
(k)
n,λ : Pn(X)→ R is given by

p
(k)
n,λ(A1, . . . , An) =

∏
1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik)) ,

where X is a finite set, A1, . . . , An ∈ P(X), n ≥ 2, 1 ≤ k ≤ n. For the sake of

simplicity, we will also use the notation Z
(k)
n,λ = p

(k)
n,λ(A1, . . . , An).
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Later, we will utilize the following quantity to identify the general formula for
the λ-additive measure of the union of n sets.

Definition 3. The quantity Z
∗(k)
n,λ is given by

Z
∗(k)
n,λ = p

(k)
n,λ(A∗1, . . . , A

∗
n),

where X is a finite set, A∗i = Ai ∩ An+1, Ai, An+1 ∈ P(X), n ≥ 2, 1 ≤ i ≤ n,
1 ≤ k ≤ n.

Here, we will demonstrate how the λ-additive measure of the union of n general
sets can be computed. That is, we will discuss the Poincaré formula for the λ-
additive measure. First, we will discuss some key properties of the quantities that
we introduced previously.

Lemma 2. If X is a finite set, A1, . . . , An, An+1 ∈ P(X), A∗i = Ai ∩ An+1 and
1 ≤ i ≤ n, then

Z
∗(k)
n,λ = p

(k)
n,λ(A∗1, . . . , A

∗
n) =

=
∏

1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik ∩An+1)) ,

where n ≥ 2 and 1 ≤ k ≤ n.

Proof. Exploiting the idempotent property of the set intersection operation, the

lemma immediately follows from the definition of Z
∗(k)
n,λ .

The following lemma demonstrates a key connection between the Z
∗(k)
n,λ and Z

(n)
n,λ

quantities.

Lemma 3. Let X be a finite set and let A1, . . . , An, An+1 ∈ P(X), A∗i = Ai∩An+1

and 1 ≤ i ≤ n. Then, for any n ≥ 2, 1 ≤ k ≤ n, the quantity Z
∗(k)
n,λ can be expressed

in terms of Z
(k+1)
n,λ and Z

(k+1)
n+1,λ as follows:

Z
∗(k)
n,λ =


Z

(k+1)
n+1,λ

Z
(k+1)
n,λ

, if k < n

Z
(n+1)
n+1,λ, if k = n.

(5)

Proof. Here, we will distinguish two cases: (1) k < n, (2) k = n.
(1) Based on Lemma 2, the following relation holds:

Z
∗(k)
n,λ = p

(k)
n,λ(A∗1, . . . , A

∗
n) =

=
∏

1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik ∩An+1)) .
(6)
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Next, the right hand side of Eq. (6) can be written as∏
1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik ∩An+1)) =

=

∏
1≤i1<···<ik+1≤n+1

(
1 + λQλ

(
Ai1 ∩ · · · ∩Aik+1

))
∏

1≤i1<···<ik+1≤n

(
1 + λQλ

(
Ai1 ∩ · · · ∩Aik+1

)) =
Z

(k+1)
n+1,λ

Z
(k+1)
n,λ

.

(7)

Notice that based on Definition 2, Z
(k+1)
n,λ exists only if k+ 1 ≤ n; that is, if k < n.

This explains why we need to differentiate the two cases in Eq. (5).
(2) If k = n, then based on Definition 3 and Definition 2,

Z
∗(k)
n,λ = p

(k)
n,λ(A∗1, . . . , A

∗
n) = 1 + λQλ (A∗1 ∩ · · · ∩A∗n) =

= 1 + λQλ ((A1 ∩An+1) ∩ · · · ∩ (An ∩An+1)) =

= 1 + λQλ (A1 ∩ · · · ∩An ∩An+1) = p
(n+1)
n+1,λ(A1, . . . , An+1) = Z

(n+1)
n+1,λ.

(8)

The following example demonstrates the usefulness of Lemma 3. In this exam-

ple, we will show how the quantity Z
∗(1)
3,λ can be expressed in terms of the quantities

Z
(2)
4,λ and Z

(2)
3,λ.

Example 1.

Z
∗(1)
3,λ = (1 + λQλ (A1 ∩A4)) (1 + λQλ (A2 ∩A4)) (1 + λQλ (A3 ∩A4))

Z
(2)
4,λ = (1 + λQλ (A1 ∩A2)) (1 + λQλ (A1 ∩A3)) (1 + λQλ (A1 ∩A4)) ·
· (1 + λQλ (A2 ∩A3)) (1 + λQλ (A2 ∩A4)) (1 + λQλ (A3 ∩A4))

Z
(2)
3,λ = (1 + λQλ (A1 ∩A2)) (1 + λQλ (A1 ∩A3)) (1 + λQλ (A2 ∩A3))

It can be seen from the expressions of Z
∗(1)
3,λ , Z

(2)
4,λ and Z

(2)
3,λ that the equation

Z
∗(1)
3,λ =

Z
(2)
4,λ

Z
(2)
3,λ

holds.

The next lemma shows how the λ-additive measure of set An can be expressed

in terms of the Z
(1)
n,λ and Z

(1)
n−1,λ quantities.

Lemma 4. If X is a finite set, A1, . . . , An ∈ P(X), n ≥ 3 and λ 6= 0, then

Qλ(An) =
1

λ

(
Z

(1)
n,λ

Z
(1)
n−1,λ

− 1

)
. (9)
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Proof. By utilizing the definitions of Z
(1)
n,λ and Z

(1)
n−1,λ, we have

Z
(1)
n,λ

Z
(1)
n−1,λ

=
(1 + λQλ(A1)) · · · (1 + λQλ(An−1)) (1 + λQλ(An))

(1 + λQλ(A1)) · · · (1 + λQλ(An−1))
=

= 1 + λQλ(An),

from which Eq. (9) immediately follows.

Now, we will state and prove a key theorem that allows us to compute the
λ-additive measure of the union of n sets when the parameter λ is nonzero.

Theorem 1. If X is a finite set, A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive
measure on X and λ 6= 0, then

Qλ

(
n⋃
i=1

Ai

)
=

=
1

λ

 n∏
k=1

 ∏
1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik))

(−1)k−1

− 1

 .

(10)

Proof. By utilizing the definition of Z
(k)
n,λ, Eq. (10) can be written as

Qλ

(
n⋃
i=1

Ai

)
=

1

λ

(
n∏
k=1

(
Z

(k)
n,λ

)(−1)k−1

− 1

)
. (11)

It can be shown by direct calculation that the formula in Eq. (11) holds for n = 2, 3;
that is,

Qλ(A1 ∪A2) =
1

λ

((
Z

(1)
2,λ

)(
Z

(2)
2,λ

)−1
− 1

)
Qλ(A1 ∪A2 ∪A3) =

1

λ

((
Z

(1)
3,λ

)(
Z

(2)
3,λ

)−1 (
Z

(3)
3,λ

)
− 1

)
.

Here, we will apply induction; that is, we will prove that if Eq. (11) holds, then
the equation

Qλ

(
n+1⋃
i=1

Ai

)
=

1

λ

(
n+1∏
k=1

(
Z

(k)
n+1,λ

)(−1)k−1

− 1

)
(12)

holds as well.

By making use of Lemma 1, the associativity of the set union operation and
the distributivity of the set intersection operation over the set union operation, we
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have

Qλ

(
n+1⋃
i=1

Ai

)
= Qλ

((
n⋃
i=1

Ai

)
∪An+1

)
=

=
1

1 + λQλ

((
n⋃
i=1

Ai

)
∩An+1

)(Qλ( n⋃
i=1

Ai

)
+Qλ(An+1)+

+λQλ

(
n⋃
i=1

Ai

)
Qλ(An+1)−Qλ

((
n⋃
i=1

Ai

)
∩An+1

))
=

=
1

1 + λQλ

(
n⋃
i=1

(Ai ∩An+1)

)(Qλ( n⋃
i=1

Ai

)
+Qλ(An+1)+

+λQλ

(
n⋃
i=1

Ai

)
Qλ(An+1)−Qλ

(
n⋃
i=1

(Ai ∩An+1)

))
.

(13)

Now, by introducing A∗i = Ai ∩An+1 for all 1 ≤ i ≤ n, Eq. (13) can be written as

Qλ

(
n+1⋃
i=1

Ai

)
=

1

1 + λQλ

(
n⋃
i=1

A∗i

)(Qλ( n⋃
i=1

Ai

)
+Qλ(An+1)+

+λQλ

(
n⋃
i=1

Ai

)
Qλ(An+1)−Qλ

(
n⋃
i=1

A∗i

))
.

(14)

Next, using the inductive condition and the fact that Z
(k)
n,λ = p

(k)
n,λ(A1, . . . , An) holds

by definition for any 1 ≤ k ≤ n, Qλ (
⋃n
i=1A

∗
i ) can be written as

Qλ

(
n⋃
i=1

A∗i

)
=

1

λ

(
n∏
k=1

(
p
(k)
n,λ (A∗1, . . . , A

∗
n)
)(−1)k−1

− 1

)
.

Since Z
∗(k)
n,λ = p

(k)
n,λ(A∗1, . . . , A

∗
n) holds by definition for any 1 ≤ k ≤ n, the previous

equation can be rewritten in the following form:

Qλ

(
n⋃
i=1

A∗i

)
=

1

λ

(
n∏
k=1

(
Z
∗(k)
n,λ

)(−1)k−1

− 1

)
. (15)

Recall that based on Lemma 3, we have the following equation

Z
∗(k)
n,λ =


Z

(k+1)
n+1,λ

Z
(k+1)
n,λ

, if k < n

Z
(n+1)
n+1,λ, if k = n.

(16)
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Applying Eq. (16) to Eq. (15) yields

Qλ

(
n⋃
i=1

A∗i

)
=

=
1

λ

((
n−1∏
k=1

(
Z

(k+1)
n+1,λ

)(−1)k−1 (
Z

(k+1)
n,λ

)(−1)k)(
Z

(n+1)
n+1,λ

)(−1)n+1

− 1

)
.

(17)

Next, based on Lemma 4,

Qλ(An+1) =
1

λ

(
Z

(1)
n+1,λ

Z
(1)
n,λ

− 1

)
. (18)

Now, applying the inductive condition given in Eq. (11) and substituting the for-
mulas for Qλ (

⋃n
i=1A

∗
i ) and Qλ(An+1) given by Eq. (17) and Eq. (18), respectively,

into Eq. (14) gives us

Qλ

(
n+1⋃
i=1

Ai

)
=

=
1
λ (Y1 − 1) + 1

λ (Y2 − 1) + λ 1
λ (Y1 − 1) 1

λ (Y2 − 1)− 1
λ (Y3 − 1)

Y3
,

(19)

where

Y1 =

n∏
k=1

(
Z

(k)
n,λ

)(−1)k−1

Y2 =
Z

(1)
n+1,λ

Z
(1)
n,λ

Y3 =

(
n−1∏
k=1

(
Z

(k+1)
n+1,λ

)(−1)k−1 (
Z

(k+1)
n,λ

)(−1)k)(
Z

(n+1)
n+1,λ

)(−1)n+1

.

Simplifying Eq. (19) leads to

Qλ

(
n+1⋃
i=1

Ai

)
=

1

λ

(
Y1Y2
Y3
− 1

)
. (20)

Now, by substituting the definitions of Y1, Y2 and Y3 into Eq. (20), after simplifi-
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cation we get

Qλ

(
n+1⋃
i=1

Ai

)
=

=
1

λ


(

n∏
k=1

(
Z

(k)
n,λ

)(−1)k−1)
Z

(1)
n+1,λ

Z
(1)
n,λ(

n−1∏
k=1

(
Z

(k+1)
n+1,λ

)(−1)k−1
)(

n−1∏
k=1

(
Z

(k+1)
n,λ

)(−1)k
)(

Z
(n+1)
n+1,λ

)(−1)n+1
− 1

 =

=
1

λ

 Z
(1)
n+1,λ(

n−1∏
k=1

(
Z

(k+1)
n+1,λ

)(−1)k−1
)(

Z
(n+1)
n+1,λ

)(−1)n+1
− 1

 =

=
1

λ

 Z
(1)
n+1,λ(

Z
(2)
n+1,λ

)(
Z

(3)
n+1,λ

)−1

· · ·
(
Z

(n+1)
n+1,λ

)(−1)n+1 − 1

 =

=
1

λ

((
Z

(1)
n+1,λ

)(
Z

(2)
n+1,λ

)−1 (
Z

(3)
n+1,λ

)
· · ·
(
Z

(n+1)
n+1,λ

)(−1)n

− 1

)
=

=
1

λ

(
n+1∏
k=1

(
Z

(k)
n+1,λ

)(−1)k−1

− 1

)
.

Notice that this formula is the same as the formula for Qλ

(⋃n+1
i=1 Ai

)
given in Eq.

(12), which means that we have proved this theorem.

On the one hand, Theorem 1 tells us how to compute the λ-additive measure of
union of n sets in the case when λ is nonzero. On the other hand, it immediately
follows from the definition of λ-additive measure that if λ = 0, then the λ-additive
measure on the finite set X is a probability measure on X. Hence, if X is a finite
set, A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive measure on X and λ = 0, then
Qλ (

⋃n
i=1Ai) can be computed by using the Poincaré formula of probability theory:

Qλ

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Qλ (Ai1 ∩ · · · ∩Aik) . (21)

The following theorem shows how the Poincaré formula of probability theory given
in Eq. (21) may be viewed as a limit case of the general formula of λ-additive
measure of the union of n sets given in Eq. (10).

Theorem 2. If X is a finite set, A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive
measure on X and λ 6= 0, then

lim
λ→0

Qλ

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Qλ (Ai1 ∩ · · · ∩Aik) . (22)
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Proof. Let λ 6= 0. Here, we will distinguish two cases. Namely, (1) when n is even;
and (2) when n is odd.

(1) If n is even, then based on Theorem 1,

lim
λ→0

Qλ

(
n⋃
i=1

Ai

)
= lim
λ→0

(
1

λ

(
Z

(1)
n,λZ

(3)
n,λ · · ·Z

(n−1)
n,λ

Z
(2)
n,λZ

(4)
n,λ · · ·Z

(n)
n,λ

− 1

))
=

=
lim
λ→0

(
1
λ

(
Z

(1)
n,λZ

(3)
n,λ · · ·Z

(n−1)
n,λ − Z(2)

n,λZ
(4)
n,λ · · ·Z

(n)
n,λ

))
lim
λ→0

(
Z

(2)
n,λZ

(4)
n,λ · · ·Z

(n)
n,λ

) ,

(23)

where

Z
(k)
n,λ =

∏
1≤i1<···<ik≤n

(1 + λQλ (Ai1 ∩ · · · ∩Aik)) ,

1 ≤ k ≤ n. Definition of Z
(k)
n,λ implies that

lim
λ→0

(
Z

(2)
n,λZ

(4)
n,λ · · ·Z

(n)
n,λ

)
= 1. (24)

Let F (λ;A1, . . . , An) = Z
(1)
n,λZ

(3)
n,λ · · ·Z

(n−1)
n,λ − Z(2)

n,λZ
(4)
n,λ · · ·Z

(n)
n,λ. Applying the defi-

nition of Z
(k)
n,λ, after direct calculations we get

F (λ;A1, . . . , An) =

1 +
∑

1≤i≤n

λQλ(Ai) +
∑

1≤i1<i2<i3≤n

λQλ(Ai1 ∩Ai2 ∩Ai3) + · · ·

· · ·+
∑

1≤i1<···<in−1≤n

λQλ(Ai1 ∩ · · · ∩Ain−1) +G(λ)−

−1−
∑

1≤i1<i2≤n

λQλ(Ai1 ∩Ai2)−
∑

1≤i1<i2<i3<i4≤n

λQλ(Ai1 ∩Ai2 ∩Ai3 ∩Ai4)− · · ·

· · · −
∑

1≤i1<···<in≤n

λQλ(Ai1 ∩ · · · ∩Ain)−H(λ),

where G(λ) and H(λ) are at least second order polynomials of λ in which the
constant term is equal to zero. Thus,

lim
λ→0

(
1

λ
G(λ)

)
= 0, lim

λ→0

(
1

λ
H(λ)

)
= 0
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and so

lim
λ→0

(
1

λ
F (λ;A1, . . . , An)

)
=

=
∑

1≤i≤n

Qλ(Ai)−
∑

1≤i1<i2≤n

Qλ(Ai1 ∩Ai2)+

+
∑

1≤i1<i2<i3≤n

Qλ(Ai1 ∩Ai2 ∩Ai3)−
∑

1≤i1<i2<i3<i4≤n

Qλ(Ai1 ∩Ai2 ∩Ai3 ∩Ai4)+

· · ·

+
∑

1≤i1<···<in−1≤n

Qλ(Ai1 ∩ · · · ∩Ain−1)−
∑

1≤i1<···<in≤n

Qλ(Ai1 ∩ · · · ∩Ain).

That is, we have the following equation:

lim
λ→0

(
1

λ
F (λ;A1, . . . , An)

)
=

= lim
λ→0

(
1

λ

(
Z

(1)
n,λZ

(3)
n,λ · · ·Z

(n−1)
n,λ − Z(2)

n,λZ
(4)
n,λ · · ·Z

(n)
n,λ

))
=

=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Qλ (Ai1 ∩ · · · ∩Aik) .

(25)

Now, by substituting the formulas in Eq. (24) and Eq. (25) into Eq. (23), we get

lim
λ→0

Qλ

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

Qλ (Ai1 ∩ · · · ∩Aik) .

(2) In the case where n is an odd number, the theorem can be proved by following
steps similar to those of case (1).

This result tells us that our general formula for the λ-additive measure of the
union of n sets may be viewed as the generalization of the Poincaré formula of
probability theory.

3 Summary and future plans

The key findings of this study can be summarized as follows.

(1) We presented the general formula for the λ-additive measure of the union of
n sets in Eq.(1), and gave an elementary proof of it in Theorem 1.

(2) Using elementary techniques, we demonstrated that the Poincaré formula of
probability theory given in Eq. (2) is just a limit case of the general formula
for the λ-additive measure of the union of n sets given in Eq. (1); that is, our
formula may be viewed as a generalization of the Poincaré formula.
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In the future, we should like to formulate a calculus of the λ-additive measure
and generalize the Bayes theorem for λ-additive measures. We also plan to study
how the λ-additive measure and the generalized Poincaré formula can be utilized
in the fields of computer science, engineering and economics.
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