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Abstract—Here, sigmoid function-based preference measures
for intervals and fuzzy numbers are introduced, and their main
properties are outlined. Also, formulas for the numerical compu-
tation of the proposed preference measures are presented. Next,
it is demonstrated that the proposed preference measures for
intervals and fuzzy numbers are asymptotically the well-known
probability-based preference measures for intervals and fuzzy
numbers. Using the new preference measure, two parametric
crisp relations, which have common parameters, over a collection
of fuzzy numbers are introduced. Next, it is shown that the limits
of these relations can be used to rank fuzzy numbers. Namely,
it is proved that the limit of one of these relations is a strict
order relation, while the limit of the other may be viewed as
an indifference relation. This indifference relation can be used
to capture situations where the order of two fuzzy numbers
cannot be judged; and so, their order may be considered as
being indifferent.

Index Terms—preference measure, intervals, fuzzy numbers,
ranking

I. INTRODUCTION

In theory and practice of multi-criteria decision making,

fuzzy numbers are widely used. This explains why the ranking

of fuzzy numbers is an important topic in computer science,

especially in fuzzy decision-making. Without doubt, the rank-

ing of fuzzy numbers is a challenging problem, and there are

plenty of methods available for tackling this problem (see, e.g.

[1]–[9]). To compare and rank fuzzy numbers, Huynh et al.

[10] introduced a probability-based methodology. Wang [11]

used a relative preference relation for ranking triangular and

trapezoidal fuzzy numbers. Chutia and Chutia [12] presented

a value and ambiguity-based method for ranking parametric

forms of fuzzy numbers. Boulmakoul et al. [13]. proposed an

inclusion index and bitset encoding-based approach. Chai et

al. [14] used the Dempster–Shafer theory with fuzzy targets

to develop a ranking method for fuzzy numbers. A class of

signed-distance measures for ranking interval-valued fuzzy

numbers was proposed by Akbari and Hesamian [15]. A

credibility theory-oriented preference index for ranking fuzzy

numbers was introduced by Hesamian and Bahrami [16].

Yatsalo and Martı́nez [17] proposed an approach for ranking

fuzzy numbers and a fuzzy rank acceptability analysis that

provides a degree of confidence for all ranks. Roldán López

de Hierro et al. [18] presented an interesting application of

a fuzzy number ranking method for economic data. Gu and

Xuan [19] proposed a possibility theory-based approach for

ranking fuzzy numbers. It is worth mentioning that there is

a lot of interest in ranking intuitionistic fuzzy numbers (see,

e.g. [20]–[25]).

In this study, we introduce sigmoid function-based pref-

erence measures for intervals and fuzzy numbers, and de-

scribe the main properties of these preference measures.

Then, we present formulas for the numerical computation of

the proposed preference measures. Here, we show that the

proposed preference measures for intervals and fuzzy num-

bers asymptotically correspond to the well-known probability-

based preference measures for intervals and fuzzy numbers.

Next, using the new preference measure, we introduce two

parametric crisp relations, which have common parameters,

over a collection of fuzzy numbers. Then, we prove that the

limits of these relations can be used to rank fuzzy numbers.

Namely, we show that the limit of one of these relations is

a strict order relation, while the limit of the other one may

be viewed as an indifference relation. This latter can be used

to capture situations where the order of two fuzzy numbers

cannot be judged; and then, their order may be viewed as

being indifferent.

It should be added that in a recent paper by Zumelzu et

al. [26], the authors pointed out that among more than two

hundred partial order relations for fuzzy numbers studied, they

found just a few that are total orders. They introduced and

analyzed the notion of admissible orders for fuzzy numbers

with respect to a partial order.

This paper is organized as follows. In Section 2, a sigmoid

function-based preference measure for two intervals is intro-

duced. In Section 3, using the sigmoid function-based pref-

erence measure for two intervals, a new preference measure

for two fuzzy numbers is presented and its main properties

are described. Next, in Section 4, we show how the proposed

preference measure for two fuzzy numbers can be used to rank

fuzzy numbers. Lastly, in Section 5, a short summary of our

results is provided.

II. A PREFERENCE MEASURE FOR TWO INTERVALS

Here, first we define a preference measure for two real

numbers.



Definition 1: The fuzzy relation y is preferred over x (i.e.

x ≺ y) is given by the membership function µ
(λ)
≺ : R2 → (0, 1)

µ
(λ)
≺ (x, y) =

1

1 + e−λ(y−x)
,

where λ > 0.

The following proposition concerns the main properties of

the preference measure µ
(λ)
≺ .

Proposition 1: The preference measure µ
(λ)
≺ has the follow-

ing properties:

µ
(λ)
≺ (y, x) <

1

2
if and only if y < x

µ
(λ)
≺ (y, x) =

1

2
if and only if y = x

µ
(λ)
≺ (y, x) >

1

2
if and only if y > x

lim
(y−x)→−∞

µ
(λ)
≺ (y, x) = 0

lim
(y−x)→+∞

µ
(λ)
≺ (y, x) = 1

µ
(λ)
≺ (x, y) + µ

(λ)
≺ (y, x) = 1. (1)

Proof: The first five properties immediately follow from

the definition for µ
(λ)
≺ given in Definition 1. Next, after direct

calculation, we get

µ
(λ)
≺ (x, y) + µ

(λ)
≺ (y, x) =

1

1 + e−λ(y−x)
+

1

1 + e−λ(x−y)
=

=
1 + e−λ(y−x) + e−λ(x−y) + 1

1 + e−λ(y−x) + e−λ(x−y) + 1
= 1.

Note that (1) is called the reciprocity property of µ(λ).

Using the fuzzy preference relation µ
(λ)
≺

, we will introduce

a preference relation for two intervals as follows. Let I be

a collection of intervals on the real line and let I1, I2 ∈ I,

I1 = [a1, b1] and I2 = [a2, b2]. Henceforth, we shall assume

that a1 < b1 and a2 < b2. We will interpret the preference

I1 ≺I I2 as the average of the µ
(λ)
≺ (x, y) values over the

rectangle R, which is given by

R = {(x, y) ∈ R
2 : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2}.

Definition 2: The preference measure M
(λ)
I,≺ : I× I → [0, 1]

is given by

M
(λ)
I,≺(I1, I2) =

=
1

(b1 − a1)(b2 − a2)

b2
∫

a2





b1
∫

a1

µ
(λ)
≺ (x, y)dx



 dy,
(2)

where I1 = [a1, b1] and I2 = [a2, b2].
The following proposition concerns the reciprocity property

of the preference relation M
(λ)
I,≺.

Proposition 2: For any I1 = [a1, b1] and I2 = [a2, b2]
intervals on the real line and a uniquely determined λ > 0
parameter value,

M
(λ)
I,≺(I1, I2) +M

(λ)
I,≺(I2, I1) = 1.

Proof: Using the definition for the preference measure

M
(λ)
I,≺ given in Definition 2 and the reciprocity property of the

preference measure µ
(λ)
≺ (see (1)), after direct calculation, we

have

M
(λ)
I,≺(I1, I2) +M

(λ)
I,≺(I2, I1) =

=
1

(b1 − a1)(b2 − a2)

( b2
∫

a2

( b1
∫

a1

µ
(λ)
≺ (x, y)dx

)

dy+

+

b1
∫

a1

( b2
∫

a2

µ
(λ)
≺ (y, x)dy

)

dx

)

=

=
1

(b1 − a1)(b2 − a2)

b2
∫

a2

( b1
∫

a1

1dx

)

dy = 1.

A. Connection with the probability-based approach used to

measure the preference of two intervals

The following probability-based approach used to measure

the preference of two intervals is well-known.

Definition 3: The probability-based preference intensity

index M∗

I,≺ : I× I → [0, 1] is given by

M∗

I,≺ (I1, I2) =
µ(A)

µ(Ω)
,

where I1, I2 are two intervals in the collection I,

Ω = I1 × I2,

A = {(x, y) : (x, y) ∈ I1 × I2, x < y} ⊆ Ω,

and µ(R) is the area of the two-dimensional region R for any

R ⊆ Ω.

Here, the function value M∗

I,≺ (I1, I2) represents the probabil-

ity of x < y, where the values of x and y have been randomly

chosen from the intervals I1 and I2, respectively. This notion

was utilized by Huynh et al. [10] to measure the preference

between two intervals and between two fuzzy numbers. Chuan

Yue used the same approach to define the possibility degree of

the preference of two interval-valued intuitionistic fuzzy sets

[21]. Also, see the papers by Sengupta and Pal [27], Kundu

[28], and Dombi and Jónás [29].

In the following proposition, we will demonstrate that the

preference measure M∗

I,≺ is just the limit of the preference

measure M
(λ)
I,≺.

Proposition 3: Let I1 = [a1, b1] and I2 = [a2, b2] be two

intervals on the real line. Then,

lim
λ→∞

M
(λ)
I,≺(I1, I2) = M∗

I,≺(I1, I2). (3)

Proof: Let Ω = I1 × I2, A = {(x, y) : (x, y) ∈ I1 ×
I2, x < y} ⊆ Ω and let µ(A) and µ(Ω) be the areas of the

two-dimensional regions A and Ω, respectively. Exploiting the



properties of the preference measure µ
(λ)
≺ (see Proposition 1),

we have

lim
λ→∞

µ
(λ)
≺ (x, y) =











0, if y < x
1
2 , if y = x

1, if y > x.

Therefore,

lim
λ→∞





b2
∫

a2





b1
∫

a1

µ
(λ)
≺ (x, y)dx



 dy



 = µ(A).

Next, by noting this result and the fact that µ(Ω) = (b1 −
a1)(b2 − a2), we have

lim
λ→∞

M
(λ)
I,≺(I1, I2) =

= lim
λ→∞





1

(b1 − a1)(b2 − a2)

b2
∫

a2





b1
∫

a1

µ
(λ)
≺ (x, y)dx



 dy



 =

=
µ(A)

µ(Ω)
= M∗

I,≺ (I1, I2) ,

which proves (3).

B. Computing the preference measure for two intervals

Now, we will show how the preference measure M
(λ)
I,≺ for

two intervals can be computed. For a fixed y ∈ [a2, b2] let

I(a1, b1, λ, y) be given by

I(a1, b1, λ, y) =

b1
∫

a1

µ
(λ)
≺ (x, y)dx =

b1
∫

a1

1

1 + e−λ(y−x)
dx.

By applying the u = −λx and the v = eu+ay+1 substitutions,

we get that
∫

1

1 + e−λ(y−x)
dx = x−

ln
(

eλx + eλy
)

λ
+ C,

where C is an arbitrary constant. Hence, I(a1, b1, λ, y) is

I(a1, b1, λ, y) = b1 − a1 +
1

λ
ln

(

eλa1 + eλy

eλb1 + eλy

)

.

Next, using (2), after direct calculation, we have

M
(λ)
I,≺(I1, I2) = 1 +

I(a1, b1, a2, b2, λ)

(b1 − a1)(b2 − a2)
, (4)

where

I(a1, b1, a2, b2, λ) =

b2
∫

a2

(

1

λ
ln

(

eλa1 + eλy

eλb1 + eλy

))

dy. (5)

Note that the integral I(a1, b1, a2, b2, λ) in (5) has no closed

form. We can approximate it quite well by using the trape-

zoidal rule. That is,

I(a1, b1, a2, b2, λ) ≈

≈
∆y

2λ

n
∑

i=1

(

ln

(

eλa1 + eλ(a2+(i−1)∆y)

eλb1 + eλ(a2+(i−1)∆y)

)

+

+ ln

(

eλa1 + eλ(a2+i∆y))

eλb1 + eλ(a2+i∆y)

))

,

(6)

where ∆y = b2−a2

n
and n is sufficiently large (e.g. n = 1000).

III. A PREFERENCE MEASURE FOR TWO FUZZY NUMBERS

Here, we will present a concept for measuring the preference

between two fuzzy numbers by using the preference measure

M
(λ)
I,≺ for two intervals, which we introduced in the previous

section. From now on, we will use the following definition for

a fuzzy number.

Definition 4: The fuzzy number A is given by the member-

ship function µA : R → [0, 1],

µA

(

x;xL
A, x

L
A, x

R
A, x

R
A

)

=































0, if x < xL
A

lA(x), if xL
A ≤ x < xL

A

1, if xL
A ≤ x < xR

A

rA(x), if xR
A ≤ x < xR

A

0, if xR
A ≥ x,

(7)

where xL
A < xL

A ≤ xR
A < xR

A, and lA : [xL
A, x

L
A) → [0, 1) and

rA : [xR
A, x

R
A) → [0, 1) are continuous, strictly increasing and

decreasing functions with the inverse functions l−1
A : [0, 1) →

[xL
A, x

L
A) and r−1

A : [0, 1) → [xR
A, x

R
A), respectively.

Note that in Definition 4, the functions lA and rA determine

the left hand side and the right hand side of the membership

function of fuzzy number A.

x

µ(x)

A B
1

0

α

xL

B
xR

B
xL

A
xR

A

xL

A
xR

A
xL

B
xR

B

IA(α)

IB(α)

lA(x)
rA(x)

rB(x)

lB(x)

Fig. 1. Two fuzzy numbers with their α-cut intervals

Suppose that A and B are two fuzzy numbers given by Def-

inition 4 (see Figure 1). Then, the α-cut intervals IA(α) and

IB(α) of the membership functions of A and B, respectively,

are

IA(α) = [aA(α), bA(α)], IB(α) = [aB(α), bB(α)],

where
aA(α) = l−1

A (α), bA(α) = r−1
A (α)

aB(α) = l−1
B (α), bB(α) = r−1

B (α),

and α ∈ [0, 1]. Using the preference measure M
(λ)
I,≺ for two

intervals, the value of M
(λ)
I,≺(IA(α), IB(α)) characterizes how

much the fuzzy number B is preferred over the fuzzy number

A at the α level. Following this line of thinking, we interpret

the preference between the fuzzy numbers A and B as the

average of the M
(λ)
I,≺(IA(α), IB(α)) values, where α ∈ [0, 1].



Definition 5: Let F be a collection of fuzzy numbers.

Let A,B ∈ F, and let λ > 0. The preference mea-

sure M
(λ)
F,≺ : F2 → (0, 1) of the preference A ≺ B (i.e.

M
(λ)
F,≺(A,B)) is given by

M
(λ)
F,≺(A,B) =

1
∫

0

M
(λ)
I,≺(IA(α), IB(α))dα,

where IA(α) and IB(α) are the α-cut intervals of the mem-

bership functions of A and B, respectively, α ∈ [0, 1], and

the preference measure M
(λ)
I,≺ for two intervals is given by

Definition 2.

The following proposition is about the reciprocity property

of the preference measure M
(λ)
F,≺.

Proposition 4: For any fuzzy numbers A, B and a uniquely

determined λ > 0 parameter value

M
(λ)
F,≺(A,B) +M

(λ)
F,≺(B,A) = 1.

Proof: Using the definition for the preference measure

M
(λ)
F,≺ given in Definition 5 and the reciprocity property of

the measure M
(λ)
I,≺ (see Proposition 2) we have

M
(λ)
F,≺(A,B) +M

(λ)
F,≺(B,A) =

1
∫

0

M
(λ)
I,≺(IA(α), IB(α))dα+

+

1
∫

0

(

1−M
(λ)
I,≺(IA(α), IB(α))

)

dα = 1.

A. Computing the preference measure for two fuzzy numbers

Using (4) and (5), M
(λ)
F,≺(A,B) can be written as

M
(λ)
F,≺(A,B) =

=

1
∫

0

(

1 +
I(aA(α), bA(α), aB(α), bB(α), λ)

(bA(α)− aA(α))(bB(α) − aB(α))

)

dα =

= 1 +

1
∫

0

I(aA(α), bA(α), aB(α), bB(α), λ)

(bA(α)− aA(α))(bB(α)− aB(α))
dα,

where
I(aA(α), bA(α), aB(α), bB(α), λ) =

=

bB(α)
∫

aB(α)

(

1

λ
ln

(

eλaA(α) + eλy

eλbA(α) + eλy

))

dy.

We know that I(aA(α), bA(α), aB(α), bB(α), λ) has no

closed form, but using (6), it can be approximated as follows:

I(aA(α), bA(α), aB(α), bB(α), λ) ≈

≈
∆y

2λ

n
∑

i=1

(

ln

(

eλaA(α) + eλ(aB(α)+(i−1)∆y)

eλbA(α) + eλ(aB(α)+(i−1)∆y)

)

+

+ ln

(

eλaA(α) + eλ(aB(α)+i∆y))

eλbA(α) + eλ(aB(α)+i∆y)

))

,

where ∆y = bB(α)−aB(α)
n

and n is sufficiently large (e.g.

n = 1000). Next, using the trapezoidal rule, M
(λ)
F,≺(A,B) can

be approximated by

M
(λ)
F,≺(A,B) ≈ 1+

+
1

2n

n
∑

i=1

(

I
(

aA
(

i−1
n

)

, bA
(

i−1
n

)

, aB
(

i−1
n

)

, bB
(

i−1
n

)

, λ
)

(

bA
(

i−1
n

)

− aA
(

i−1
n

)) (

bB
(

i−1
n

)

− aB
(

i−1
n

)) +

+
I
(

aA
(

i
n

)

, bA
(

i
n

)

, aB
(

i
n

)

, bB
(

i
n

)

, λ
)

(

bA
(

i
n

)

− aA
(

i
n

)) (

bB
(

i
n

)

− aB
(

i
n

))

)

.

B. A demonstrative example

Here, we will show how the preference measure M
(λ)
F,≺

can be computed for two trapezoidal fuzzy numbers. If the

membership function µA : R → [0, 1] of the fuzzy number A
is given by (7) and

lA(x) =
x− xL

A

xL
A − xL

A

, if xL
A ≤ x < xL

A

rA(x) =
x− xR

A

xR
A − xR

A

, if xR
A ≤ x < xR

A,

then A is a trapezoidal fuzzy number.

Let A and B be two trapezoidal fuzzy numbers with the

membership functions µA and µB , and let the parameters of

µA and µB be xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B <

xR
B , respectively (see Figure 2).

x

µ(x)
A

B
1

0
xL
A xL

A xR
A xR

AxL
B

xL
B

xR
B

xR
B

Fig. 2. The membership functions of two trapezoidal fuzzy numbers.

Let the parameter values be

xL
A = 3.00 xL

A = 6.00 xR
A = 9.00 xR

A = 11.00

xL
B = 2.00 xL

B = 9.75 xR
B = 10.25 xR

B = 10.50.

Here, the α-cut intervals IA(α) and IB(α) of the membership

functions of A and B, respectively, are

IA(α) = [aA(α), bA(α)], IB(α) = [aB(α), bB(α)],

where
aA(α) = l−1

A (α) = αxL
A + (1 − α)xL

A

bA(α) = r−1
A (α) = αxR

A + (1− α)xR
A

aB(α) = l−1
B (α) = αxL

B + (1− α)xL
B

bB(α) = r−1
B (α) = αxR

B + (1 − α)xR
B



and α ∈ [0, 1]. Using the expressions for the α-cut intervals

and the approximation formulas presented in this section with

n = 1000, we computed the values of the preference measure

M
(λ)
F,≺(A,B) for certain λ values. The computation results are

listed in Table I.

TABLE I
VALUES OF M

(λ)
F,≺

(A,B) FOR VARIOUS VALUES OF λ

λ M
(λ)
F,≺

(A,B)

1 0.6412

2 0.6715

10 0.6873

30 0.6879

50 0.6880

75 0.6880

Notice that the value of M
(λ)
F,≺(A,B) stabilizes as the value

of λ increases. In the next section, Proposition 5 will provide

an explanation for this phenomenon.

IV. RANKING FUZZY NUMBERS

In [29], we used the so-called probability-based preference

intensity index for two fuzzy numbers to derive a crisp

strict order relation over fuzzy numbers. The probability-based

preference intensity index for two fuzzy numbers is defined

as follows.

Definition 6: Let F be a collection of fuzzy numbers. Let

A,B ∈ F, and let λ > 0. The probability-based preference

intensity index M∗

F,≺ : F2 → [0, 1] of the preference A ≺ B
(i.e. M∗

F,≺(A,B)) is given by

M∗

F,≺(A,B) =

1
∫

0

M∗

I,≺(IA(α), IB(α))dα,

where IA(α) and IB(α) are the α-cut intervals of the mem-

bership functions of A and B, respectively, α ∈ [0, 1], and

the probability-based preference intensity index M∗

I,≺ for two

intervals is given by Definition 3.

The following proposition states an important connection

between the preference measures M
(λ)
F,≺ and M∗

F,≺.

Proposition 5: Let F be a collection of fuzzy numbers and

let A,B ∈ F. Then,

lim
λ→∞

M
(λ)
F,≺(A,B) = M∗

F,≺(A,B). (8)

Proof: This proposition immediately follows from Propo-

sition 3.

Now, we will introduce a parametric crisp relation over a

collection of fuzzy numbers and show that the limit of this

relation is a strict order relation.

Definition 7: Let F be a collection of fuzzy numbers. The

binary relation ≺
(λ,δ)
F over the collection F is given by

≺
(λ,δ)
F =

{

(A,B) ∈ F× F : M
(λ)
F,≺(A,B) ≥

1

2
+ δ

}

,

where δ ∈ (0, 1/2] and λ > 0.

Theorem 1: Let F be a collection of fuzzy numbers. If λ →

∞, then there exists a δ ∈ (0, 1/2] such that ≺
(λ,δ)
F is a strict

order relation over F.

Proof: Based on (8), we have that if λ → ∞, then

≺
(λ,δ)
F =≺

(δ)
F , where

≺
(δ)
F =

{

(A,B) ∈ F× F : M∗

F,≺(A,B) ≥
1

2
+ δ

}

,

δ ∈ (0, 1/2], and M∗

F,≺ is the probability-based preference

intensity index for two fuzzy numbers given in Definition 6.

In [29, Theorem 2], we proved that there exists a δ ∈ (0, 1/2]

such that ≺
(δ)
F is a strict order relation over F. Therefore, the

statement of this theorem is valid.

In practice, for a given finite collection F, the smallest value

of δ ∈ (0, 1
2 ], for which relation ≺

(δ)
F is transitive, can be

numerically determined by using searching methods such as a

binary search. Now, suppose that A and B are two different

elements of F such that 1
2 − δ < M∗

F,≺(A,B) < 1
2 + δ holds.

This means that neither A ≺
(δ)
F B nor B ≺

(δ)
F A nor A = B

holds; that is, ≺
(δ)
F is not a total order. In this case, the order of

A and B may be viewed as being indifferent. With the purpose

of expressing the fact that the order of two fuzzy numbers

is really indifferent, we introduce the following indifference

relation.

Definition 8: Let F be a collection of fuzzy numbers. The

indifference relation relation S(λ,δ)
F over the collection F is

given by

S(λ,δ)
F =

{

(A,B) ∈ F× F :

∣

∣

∣

∣

M
(λ)
F,≺(A,B)−

1

2

∣

∣

∣

∣

< δ

}

,

where δ ∈ (0, 1/2] and λ > 0.

The following proposition is about the limit of the indifference

relation S(λ,δ)
F .

Proposition 6: Let F be a collection of fuzzy numbers.

Then,

lim
λ→∞

S(λ,δ)
F = S(δ)

F ,

where

S(δ)
F =

{

(A,B) ∈ F× F :

∣

∣

∣

∣

M∗

F,≺(A,B)−
1

2

∣

∣

∣

∣

< δ

}

,

δ ∈ (0, 1/2], and M∗

F,≺ is the probability-based preference

intensity index for two fuzzy numbers given in Definition 6.

Proof: This proposition immediately follows from Propo-

sition 5.

Theorem 2: Let F be a collection of fuzzy numbers and

let the relations ≺
(λ,δ)
F and S(λ,δ)

F over the set F be given by

Definition 7 and Definition 8, respectively, where δ ∈ (0, 1/2]
has a fixed value and λ > 0 has a fixed value as well. If

λ → ∞, then there exists a δ ∈ (0, 1/2] such that ≺
(λ,δ)
F is

a strict order relation over F, and for any A,B ∈ F, either

A ≺
(λ,δ)
F B, or B ≺

(λ,δ)
F A or A S(λ,δ)

F B holds.

Proof: The theorem immediately follows from Theorem

1, Proposition 6 and the reciprocity property of M
(λ)
F,≺.

Remark 1: An important practical consequence of Theorem

1 and Theorem 2 is that the limits (λ → ∞) of the relations



≺
(λ,δ)
F and S(λ,δ)

F can be used to rank fuzzy numbers. Namely,

the limit of ≺
(λ,δ)
F is a strict order relation and it can be

used to rank comparable fuzzy numbers, while the limit of

the indifference relation S(λ,δ)
F can be used to express the fact

that the order of some fuzzy numbers is indifferent.

V. CONCLUSIONS

The main findings of this study can be summarized as

follows.

(a) We introduced sigmoid function-based preference mea-

sures for intervals and fuzzy numbers, and described the

main properties of these preference measures.

(b) We presented formulas for the numerical computation

of the proposed preference measures.

(c) We showed that the proposed preference measures for

intervals and fuzzy numbers are, asymptotically, the

well-known probability-based preference measures for

intervals and fuzzy numbers.

(d) Using the new preference measure, we introduced two

parametric crisp relations, which have common param-

eters, over a collection of fuzzy numbers.

(e) Then we proved that the limits of these relations can

be used to rank fuzzy numbers. Here, we showed that

the limit of one of these relations is a strict order

relation, while the limit of the other may be viewed as an

indifference relation. This latter can be used to capture

the situations where the order of two fuzzy numbers

cannot be judged; and so, their order may be viewed as

being indifferent.
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