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Abstract
In this study, we present a novel methodology that can be used to generate parametric probability weighting functions, which
play an important role in behavioral economics, by making use of the Dombi modifier operator of continuous-valued logic.
Namely, we will show that the modifier operator satisfies the requirements for a probability weighting function. Next, we will
demonstrate that the application of the modifier operator can be treated as a general approach to create parametric probability
weighting functions including themost important ones such as the Prelec and theOstaszewski, Green andMyerson (Lattimore,
Baker and Witte) probability weighting function families. Also, we will show that the asymptotic probability weighting
function induced by the inverse of the so-called epsilon function is none other than the Prelec probability weighting function.
Furthermore, we will prove that, by using the modifier operator, other probability weighting functions can be generated from
the dual generator functions and from transformed generator functions. Finally, we will show how the modifier operator can
be used to generate strictly convex (or concave) probability weighting functions and introduce a method for fitting a generated
probability weighting function to empirical data.

Keywords Probability weighting functions · Modifier operator · Continuous-valued logic · Prospect theory

1 Introduction

It is common knowledge that the probability weighting
functions play an important role in non-expected utility
theories, including prospect theory and rank-dependentmod-
els. Therefore, there has been a consistent interest in them
(see, e.g. Abdellaoui et al. 2008; Kahneman and Tver-
sky 2013; Lattimore et al. 1992; Ostaszewski et al. 1998;
Prelec 1998; Tversky and Kahneman 1992; Wakker 2010;
Wakker and Yang 2019). These functions describe the phe-
nomenon that people tend to overreact those events that
occur with a low probability and underreact to events that
have a high probability (see, e.g. Bleichrodt 2001; Camerer
2007; Chateauneuf et al. 2007;Köbberling andWakker 2003;
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Koszegi and Rabin 2006; Loomes et al. 2002). Thus, in
line with the empirical estimates, the probability weight-
ing functions are regressive (first they have values greater
than the identity function, then they have values less than
the diagonal), inverse S-shaped (first concave, then convex)
and asymmetric (intersecting the diagonal at one third) (see,
e.g. Levy 1992; Li et al. 2017; Offerman et al. 2009; Prelec
1998).

In this study, we present a novel methodology that can be
used to generate parametric probability weighting functions
bymaking use of theDombimodifier operator of continuous-
valued logic (Dombi 2012a). This operator is defined as
follows.

Definition 1 The modifier operator m(λ)
ν,ν0 : [0, 1] → [0, 1] is

given by

m(λ)
ν,ν0

(x) = f −1

(
f (ν0)

(
f (x)

f (ν)

)λ
)

, (1)

where ν, ν0 ∈ (0, 1), λ ∈ R and f : [0, 1] → [0,∞] is a
strictly decreasing (or increasing) continuous function, with
the inverse function f −1 : [0,∞] → [0, 1], such that
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(a) if f is strictly increasing, then f (0) = 0 and limx→1 f (x)
= ∞

(b) if f is strictly decreasing, then f (1) = 0 and limx→0 f (x)
= ∞.

Here, function f is called the generator function of the mod-
ifier operator m(λ)

ν,ν0 .

Wewill show that ifλ > 0, thenm(λ)
ν,ν0 is a probabilityweight-

ing function. It isworthmentioning that in continuous-valued
logic, the generator function f is closely connected with the
conjunction and disjunction operators, and themodifier oper-
atorm(λ)

ν,ν0 is also known as the kappa function. Next, we will
demonstrate that the application of the modifier operator in
Eq. (1) may be treated as a general approach for creating
probability weighting functions including the well-known
ones. We will show that the Prelec probability weighting
function family (see Prelec 1998) can be induced by the
generator function f (x) = − ln(x), where x ∈ (0, 1], by
applying the modifier operator in Eq. (1) with ν0 = ν. Also,
the Ostaszewski, Green and Myerson [Lattimore, Baker and
Witte (see Lattimore et al. 1992)] probabilityweighting func-
tion family (see Ostaszewski et al. 1998) can be generated
from the generator function f (x) = 1−x

x , where x ∈ (0, 1],
bymaking use of themodifier operator in Eq. (1)with ν0 = ν.
Note that the function f (x) = 1−x

x is the generator function
of Dombi conjunction- and disjunction operators (Dombi
1982). In previous papers of ours (see Dombi and Jónás
2018; Dombi et al. 2018), we introduced the epsilon func-
tion that can be used to approximate the exponential function.
Here, we will show that the asymptotic probability weight-
ing function induced by the inverse of the epsilon function
by utilizing Eq. (1) with ν0 = ν is just the Prelec proba-
bility weighting function. Furthermore, we will prove that,
by using the modifier operator in Eq. (1), other probability
weighting functions can be generated from the so-called dual
generator functions and from transformed generator func-
tions. Lastly, we will show how the modifier operator can
be used to generate strictly convex (or concave) probabil-
ity weighting functions and demonstrate how a generated
probability weighting function can be fitted to empirical
data.

The rest of this paper is structured as follows. In Sect. 2,
we will introduce the modifier operator, which we will use
later on, and briefly describe the role of its parameters. In
Sect. 3, we will show how the modifier operator can be uti-
lized to generate probability weighting functions and discuss
how the modifier operator can be utilized in practical regres-
sion problems. Lastly, in Sect. 4, we will provide a short
summary of our findings and highlight our future research
plans.

2 Modifier operators in continuous-valued
logic

In fuzzy logic, linguistic modifiers like ‘very’, ‘more or less’,
‘somewhat’, ‘rather’ and ‘quite’ over fuzzy sets that have
strictly monotonously increasing or decreasing membership
functions can be modeled by modifier operators. In Dombi’s
pliant system (Dombi 2008, 2012a), the general form of the
modifier operator is given by Definition 1.

Later on, we will show that the value of parameter λ is
closely related to the slope of functionm(λ)

ν,ν0 at x = ν. Notice
that

m(λ)
ν,ν0

(ν) = ν0

immediately follows from Eq. (1). Hence, if λ �= 1 and
ν0 = ν, then ν is the fixed point of the transformation
x �−→ m(λ)

ν,ν0(x), where x ∈ (0, 1).

3 Generating probability weighting
functions

In prospect theory, the probability weighting functions are
defined as follows (Wakker 2010).

Definition 2 The function w : [0, 1] → [0, 1] is said to be
a probability weighting function, if w satisfies the following
requirements:

(1) w is strictly increasing;
(2) w(0) = 0 and w(1) = 1.

Note that although the continuity ofw is not required in gen-
eral, we will generate probability weighting functions that
are continuous in the interval [0, 1]. It should be also added
that in prospect theory, the argument of a probability weight-
ing function is traditionally denoted by p, indicating that
the probability weighting function is a transformation on a
probability measure. Here, we will use the notation x for the
argument of function w. In this section, we will show how
the modifier operator in Eq. (1) can be applied to generate
probability weighting functions.

Proposition 1 If λ > 0, then the modifier operator m(λ)
ν,ν0

given by Definition 1 satisfies the requirements for a proba-
bility weighting function in Definition 2.

Proof By noting the properties of the generator function f
(see Definition 1), the proof is straightforward. ��

Proposition 1 lays the foundations for generating proba-
bility weighting functions derived from appropriately chosen
generator functions. Here, we will utilize the modifier opera-
torm(λ)

ν,ν0 with the parameter settings ν0 = ν and λ > 0. This
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allows us to characterize the generated probability weighting
function by its fixed point ν and by its sharpness parameter
λ. That is, the generated probability weighting function w

will always have the form

w(x) = m(λ)
ν (x),

where

m(λ)
ν (x) = f −1

(
f (ν)

(
f (x)

f (ν)

)λ
)

, (2)

x ∈ [0, 1], ν ∈ (0, 1) and λ > 0.

Remark 1 One can easily see that the inverse function[
m(λ)

ν

]−1
of the modifier operator m(λ)

ν given in Eq. (2) is

[
m(λ)

ν

]−1
(x) = f −1

(
f (ν)

(
f (x)

f (ν)

)1/λ
)

,

and so
[
m(λ)

ν

]−1
is a probability weighting function as well.

The following proposition tells us about the shape of the
probability weighting function generated by the modifier
operator m(λ)

ν .

Proposition 2 If λ > 0, ν ∈ (0, 1) and the probability
weighting function w : [0, 1] → [0, 1] is generated by the
modifier operator m(λ)

ν : [0, 1] → [0, 1], then

(1) If 0 < λ < 1, then w(x) is concave in (0, ν] and w(x) is
convex in [ν, 1);

(2) If λ = 1, then w(x) = x for any x ∈ [0, 1];
(3) If 1 < λ, then w(x) is convex in (0, ν] and w(x) is

concave in [ν, 1).

Proof Let w(x) = m(λ)
ν (x) for any x ∈ [0, 1], where ν ∈

(0, 1) and λ > 0. Furthermore, let g(x) be defined by

g(x) = ( f (ν))1−λ ( f (x))λ . (3)

Then, w(x) can be written as

w(x) = f −1 (g(x)) . (4)

Here, we will distinguish two cases: (a) f is strictly increas-
ing, (b) f is strictly decreasing.

(a) In this case, f is a strictly increasing function and so
f −1 is a strictly increasing function as well. By noting
the properties of f (see Definition 1) and using Eq. (3)
and Eq. (4), we readily get that

Fig. 1 The role of parameters ν and λ

– if x ∈ (0, ν] and 0 < λ < 1, then f −1 (g(x)) ≥ x
– if x ∈ [ν, 1) and 0 < λ < 1, then f −1 (g(x)) ≤ x ,

from which (1) follows. Similarly,

– if x ∈ (0, ν] and 1 < λ, then f −1 (g(x)) ≤ x
– if x ∈ [ν, 1) and 1 < λ, then f −1 (g(x)) ≥ x ,

from which we have (3).
(b) In this case, f is a strictly decreasing function and so

f −1 is a strictly decreasing function as well. Using this
fact, the proof can be obtained in a way similar to that of
case (a).

If λ = 1, then w(x) = x trivially holds for any x ∈ [0, 1]. ��

Suppose that the probability weighting function w : [0, 1]
→ [0, 1] is generatedby themodifier operatorm(λ)

ν : [0, 1] →
[0, 1], λ > 0 and ν ∈ (0, 1). Then, the effect of the parame-
tersλ and ν on the shape of the probabilityweighting function
w can be summarized as follows.

– Parameter λ determines the sharpness and the shape of
w. The more the value of λ differs from 1, the more the
shape of w differs from that of the identity function. If
0 < λ < 1, then w is inverse S-shaped, and if 1 < λ,
then w is S-shaped.

– Parameter ν determines the point where w intersects the
diagonal line; that is, parameter ν may be viewed as the
elevator parameter of w.

Figure1 shows the effect of the values of parameters λ

and ν on the shape of the probability weighting function w

that was generated from the same generator function via the
modifier operator m(λ)

ν .
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In the following subsections, we will show that the appli-
cation of the modifier operator in Eq. (2) can be treated as
a general approach for creating probability weighting func-
tions including the most important ones.

3.1 The Prelec probability weighting function family

The Prelec probability weighting function family (Prelec
1998) wP is given by

wP (x) =
(
e−(− ln(x))a

)b
, (5)

where 0 < a < 1, b > 0 and x ∈ (0, 1]. The follow-
ing proposition shows how the Prelec probability weighting
function family can be generated by the modifier operator
m(λ)

ν .

Proposition 3 Let 0 < a < 1, b > 0 and let the generator
function f be given by f (x) = − ln(x), where x ∈ (0, 1]. If

λ = a and ν = e−b
1

1−a
, (6)

then m(λ)
ν (x) = wP (x) for any x ∈ (0, 1].

Proof After direct calculation, we get

m(λ)
ν (x) =

(
e−(− ln(x))λ

)(− ln(ν))1−λ

. (7)

Next, by noting Eq. (6), we immediately get that m(λ)
ν (x) =

wP (x) for any x ∈ (0, 1]. ��

Remark 2 It is worth mentioning that in continuous-valued
logic, the generator function f (x) = − ln(x) induces the
product conjunction operator that is also called the proba-
bilistic t-norm (Klement et al. 2004; Yager et al. 2000).

It should be added that the parameters in Eq. (7) give a
more natural characterization of the probability weighting
function than those in Eq. (5). For example, Wakker (2010)
suggests that the parameter values a = 0.65 and b = 1.0467,
giving an intersection with the diagonal at 0.32, are good
parameter choices for gains. If we wish the function w in
Eq. (7) to have its fixed point at 0.32, then we simply need to
set its parameter ν to 0.32. In prospect theory, the parameters
a and b of the Prelec probability weighting function family
are interpreted as the index of likelihood insensitivity and
the index of pessimism, respectively (Wakker 2010). Thus,
in terms of the parameters of the generated Prelec probability
weighting function in Eq. (7), the index of likelihood insen-
sitivity is λ, and the index of pessimism is (− ln(ν))1−λ.

3.2 The Ostaszewski, Green andMyerson probability
weighting function family

The Ostaszewski, Green and Myerson probability weighting
function family (Ostaszewski et al. 1998) wOGM is given by

wOGM(x) = bxa

bxa + (1 − x)a
, (8)

where 0 < a < 1, b > 0 and x ∈ [0, 1]. Note that
this probability weighting function family was introduced
independently by Lattimore, Baker and Witte as well in
1992 (see Lattimore et al. 1992). Here, we will show that
the Ostaszewski, Green and Myerson probability weighting
function family can be generated by the modifier operator
m(λ)

ν .

Proposition 4 Let 0 < a < 1, b > 0 and let the generator
function f be given by f (x) = 1−x

x , where x ∈ (0, 1]. If

λ = a and ν = 1

1 + ( 1
b

) 1
1−a

, (9)

then m(λ)
ν (x) = wOGM(x) for any x ∈ (0, 1].

Proof By using Eq. (2) with f (x) = 1−x
x , where x ∈ (0, 1],

we get

m(λ)
ν (x) = 1

1 + 1−ν
ν

(
1−x
x

ν
1−ν

)λ
. (10)

Next, by taking into account Eq. (9), from Eq. (10) we can
readily see that m(λ)

ν (x) = wOGM(x) for any x ∈ (0, 1]. ��
It should be mentioned here that in prospect theory, the

parameters a and b of the Ostaszewski, Green and Myerson
probability weighting function family can also be interpreted
as the index of likelihood insensitivity and the index of pes-
simism, respectively (Wakker 2010). Hence, in terms of the
parameters of the probability weighting function in Eq. (10),
the index of likelihood insensitivity is λ, and the index of

pessimism is
(

ν
1−ν

)1−λ

.

It is worth mentioning that in continuous-valued logic,
the Dombi conjunction and disjunction operators (Dombi
2008) are induced by the following generator function
fα : (0, 1) → (0,∞]:

fα(x) =
(
1 − x

x

)α

,

where α �= 0. This means that the generator function f (x) =
1−x
x is a special case of the generator function of Dombi con-

junction and disjunction operators. It is alsoworth noting that
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the function in Eq. (10) is called the kappa function in Dombi
and Jónás (2018, 2020).

It can be shown that the function m(λ)
ν in Eq. (10) is the

solution of the differential equation

dκ(x)

dx
= λ

κ(x) (1 − κ(x))

x (1 − x)
,

with the initial condition κ(ν) = ν, see Dombi (2012a) and
Dombi and Jónás (2020). Thus, we have

dκ(ν)

dx
= λ.

Therefore, the derivative of functionm(λ)
ν in Eq. (10) at x = ν

is equal to the value of parameter λ. This means that the
parameters in Eq. (10) give a more natural characterization
of the probability weighting function than those in Eq. (8).

Now, let t be the tangent line of function m(λ)
ν given

by Eq. (10) at x = ν. Then, t is given by the equation
t(x) = λx + ν(1 − λ), x ∈ [0, 1]. In prospect theory, the
neo-additive probability weighting function wneo : [0, 1] →
[0, 1] is given by

wneo(x) = b + ax,

where a, b > 0 and a + b < 1 (see Wakker 2010). The
parameters a and b of the neo-additive probability weight-
ing function wneo can be interpreted as follows (see Wakker
2010):

– a is an index of likelihood sensitivity (‘curvature’ or
‘inverse S-shape’)

– 2b+a
2 is an index of optimism (elevation).

Now, if wneo(x) = t(x) for any x ∈ [0, 1], then a = λ and
b = ν(1 − λ). In this case, the index of sensitivity is λ and
the index of optimism is ν(1− λ) + λ

2 . Figure2 shows a plot

of function m(λ)
ν given by Eq. (10) and function t , and the

geometric interpretation of the parameters a, b, λ and ν.
It should be added here that the probability weighting

function m(λ)
ν , which coincides with the kappa function, can

be fitted to empirical data by applying our kappa regression
method described in Dombi and Jónás (2020).

3.3 An approximation to the Prelec probability
weighting function family

In Dombi and Jónás (2018), we introduced the epsilon func-
tion.

Fig. 2 Plot of m(λ)
ν given by Eq. (10) and its tangent line at x = ν

Definition 3 Theepsilon function ε
(α)
d : (−d,+d) → [0,∞]

is given by

ε
(α)
d (x) =

(
d + x

d − x

)α d
2

, (11)

where α ∈ R, α �= 0, d ∈ R, d > 0, x ∈ (−d,+d).

If α = −1, then from Eq. (11) we have the following εd :
(−d,+d) → [0,∞] function that is given by

εd(x) =
(
d + x

d − x

)− d
2

,

where d ∈ R, d > 0. The next proposition states a key
property of the epsilon function εd .

Proposition 5 For any x ∈ (−d,+d)

lim
d→∞ εd(x) = e−x .

Proof See the proof of Theorem 1 in Dombi and Jónás
(2018). ��

Since the epsilon function εd is strictly decreasing, it fol-
lows from Proposition 5 that

lim
d→∞ ε−1

d (x) = − ln(x)

holds for any x ∈ (0,∞), where ε−1
d is the inverse function

of εd . The practical implication of Proposition 5 is that if the
value of parameter d is sufficiently large, then εd(x) ≈ e−x

and ε−1
d (x) ≈ − ln(x) for any x ∈ (−d,+d) and for any
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x ∈ (0,∞), respectively. Note that the approximation is
quite good already for d = 10.

Now, let the generator function f be given by

f (x) = ε−1
d (x) = d

x− 2
d − 1

x− 2
d + 1

,

where x ∈ (0, 1] and d > 0. Then the inverse function f −1

is

f −1(x) = εd(x),

and by making use of the modifier operator in Eq. (2) with
λ > 0, we get the probability weighting function

w(x) =
(
1 + q(x)

1 − q(x)

)− d
2

,

where

q(x) = ν− 2
d − 1

ν− 2
d + 1

(
x− 2

d − 1

x− 2
d + 1

ν− 2
d + 1

ν− 2
d − 1

)λ

, (12)

ν ∈ (0, 1), λ > 0, d > 0 and x ∈ (0, 1]. It immediately
follows from Proposition 5 that for any x ∈ (0, 1]

lim
d→∞ w(x) = m(λ)

ν (x),

wherem(λ)
ν is given by Eq. (7), ν ∈ (0, 1) and λ > 0. Further-

more, if a = λ and b = (− ln(ν))1−λ, then the asymptotic
probabilityweighting functionw is just the Prelec probability
weighting function:

lim
d→∞ w(x) =

(
e−(− ln(x))a

)b
. (13)

3.4 Dual probability weighting functions

We will use the concept of the dual generator function.

Definition 4 The dual of the generator function f : [0, 1] →
[0,∞] is the function f̂ : [0, 1] → [0,∞], which is given
by

f̂ (x) = f (1 − x) (14)

for any x ∈ [0, 1].

Obviously, f̂ is a generator functions as well. We will also
make use of the concept of the dual modifier operator.

Definition 5 The dual modifier operator m̂(λ)
ν,ν0 : [0, 1] →

[0, 1] of the modifier operator m(λ)
ν,ν0 is given by

m̂(λ)
ν,ν0

(x) = f̂ −1

⎛
⎝ f̂ (ν0)

(
f̂ (x)

f̂ (ν)

)λ
⎞
⎠ , (15)

where f̂ : [0, 1] → [0,∞] is the dual of the generator func-
tion f , ν, ν0 ∈ (0, 1) and λ ∈ R.

The generator functions f and f̂ are said to be a dual pair of
generator functions, and the corresponding modifier opera-
torsm(λ)

ν,ν0 and m̂
(λ)
ν,ν0 are said to be the dual pair of themodifier

operators induced by f and f̂ , respectively. The following
corollary allows us to generate additional probability weight-
ing functions by using the dual generator functions.

Corollary 1 If λ > 0, then the dual modifier operator m̂(λ)
ν,ν0

of the modifier operator m(λ)
ν,ν0 satisfies the requirements for

a probability weighting function.

Proof The corollary immediately follows from Definition 5
and Proposition 1. ��

Here, we will utilize the dual modifier operator m̂(λ)
ν,ν0 with

the parameter settings ν0 = ν. That is, the generated dual
probability weighting function ŵ will always have the form

ŵ(x) = m̂(λ)
ν (x),

where

m̂(λ)
ν (x) = f̂ −1

⎛
⎝ f̂ (ν)

(
f̂ (x)

f̂ (ν)

)λ
⎞
⎠ ,

ν ∈ (0, 1) and λ > 0.
Table1 summarizes the probability weighting functions

induced by the generator functions presented in Sect. 3.1,
3.2 and 3.3 and the probability weighting functions induced
by the corresponding dual generator functions.

Note thatwehave the requirement ν ∈ (0, 1) andλ > 0 for
all the probability weighting functions in Table1. Moreover,
we have the requirement d > 0 for the functions f3, f̂3, w3

and ŵ3. The expressions for q(x) and r(x) in Table1 are
given by Eq. (12) and by

r(x) = (1 − ν)− 2
d − 1

(1 − ν)− 2
d + 1

(
(1 − x)− 2

d − 1

(1 − x)− 2
d + 1

(1 − ν)− 2
d + 1

(1 − ν)− 2
d − 1

)λ

,

respectively, where x ∈ [0, 1).
Remark 3 Also, notice that w2 and ŵ2 are in fact identical.
However, a deeper study of the pliant logic system (Dombi
2012b) is needed to answer the question when a probability
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Table 1 Generated probability
weighting functions

Generator function Generated probability weighting function Domain

f1(x) = − ln(x) w1(x) =
(
e−(− ln(x))λ

)(− ln(ν))1−λ

x ∈ (0, 1]

f̂1(x) = − ln(1 − x) ŵ1(x) = 1 − (1 − ν)

(
ln(1−x)
ln(1−ν)

)λ

x ∈ [0, 1)
f2(x) = 1−x

x w2(x) = 1

1+ 1−ν
ν

(
1−x
x

ν
1−ν

)λ x ∈ (0, 1]

f̂2(x) = x
1−x ŵ2(x) = 1

1+ 1−ν
ν

(
1−x
x

ν
1−ν

)λ x ∈ [0, 1)

f3(x) = d x− 2
d −1

x− 2
d +1

w3(x) =
(
1+q(x)
1−q(x)

)− d
2

x ∈ (0, 1]

f̂3(x) = d (1−x)−
2
d −1

(1−x)−
2
d +1

ŵ3(x) = 1 −
(
1+r(x)
1−r(x)

)− d
2

x ∈ [0, 1)

Fig. 3 Sample plots of the probability weighting functions in Table1
with the parameter values ν = 1/3 and λ = 0.65

weighting function induced by a generator function f coin-
cides with the probability weighting function induced by the
dual of generator function f .

Due to its simplicity and its useful properties, we recommend
the use of the w2 function as a general model of probability
weighting functions.

Figure3 shows sample plots of the probability weighting
functions that are listed in Table1. These plots tell us that the
probability weighting function induced by the inverse of the
epsilon function (w3) and by its dual function (ŵ3) almost
coincide with the Prelec probability weighting function (w1)
and its dual function (ŵ1), respectively. These observations
are in line with the finding given in Eq. (13); that is, w3 and
w1 are asymptotically identical as the value of parameter d
tends to infinity. Similarly, ŵ3 is asymptotically identical to
ŵ1 when d tends to infinity.

3.5 Additional probability weighting functions
induced from transformed generator functions

Suppose that we have the generator function f : [0, 1] →
[0,∞] and the modifier operator m(λ)

ν,ν0 : [0, 1] → [0, 1]
given in Eq. (1), ν, ν0 ∈ (0, 1) and λ > 0. We have shown
(see Proposition 1) thatm(λ)

ν,ν0 is a probability weighting func-
tion induced by the function f . The following proposition
allows us to generate additional probability weighting func-
tions from transformed generator functions by making use
of the modifier operator m(λ)

ν,ν0 .

Proposition 6 Let f be the generator function of the mod-
ifier operator m(λ)

ν,ν0 given in Definition 1. Furthermore, let
g : [0, 1] → [0, 1] and h : [0,∞] → [0,∞] be two strictly
monotonic functions. Then, the function f̃ : [0, 1] → [0,∞],
which is given by

f̃ = h ◦ ( f ◦ g) (16)

is also a generator function. If λ > 0, then the modifier
operator m̃(λ)

ν,ν0 : [0, 1] → [0, 1] that is given by

m̃(λ)
ν,ν0

(x) = f̃ −1

(
f̃ (ν0)

(
f̃ (x)

f̃ (ν)

)λ
)

.

is a probability weighting function.

Proof If f is a generator function, then f is strictly mono-
tonic in [0, 1]. Since g : [0, 1] → [0, 1] and h : [0,∞] →
[0,∞] are two strictly monotonic functions, f̃ = h ◦ ( f ◦ g)
is a strictly monotonic function and f̃ : [0, 1] → [0,∞].
Therefore, the function f̃ is a generator function as well, and
by noting Proposition 1, we see that m̃(λ)

ν,ν0 is a probability
weighting function. ��

Obviously, if both g and h are the identity functions, then
the generator function f̃ = h ◦ ( f ◦ g) is identical to the
generator function f and themodifier operator m̃ν,ν0 induced
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by f̃ coincides with the modifier operator mν,ν0 given in
Eq. (1).

Also notice that if g : [0, 1] → [0, 1] and h : [0,∞] →
[0,∞] are given by

g(x) = 1 − x and h(x) = x,

then the generator function f̃ = h ◦ ( f ◦g) is identical to the
dual generator function f̂ given in Eq. (14) and the modifier
operator m̃ν,ν0 induced by f̃ coincides with the dual modifier
operator m̂ν,ν0 given in Eq. (15).

Now, for example, let g : [0, 1] → [0, 1] andh : [0,∞] →
[0,∞] be given by

g(x) = xβ and h(x) = ln(1 + γ xα),

where α ∈ R, α �= 0, β ∈ R, β �= 0 and γ ∈ (0,∞). Then,
the generator function f̃ = h◦( f ◦g) is f̃ : [0, 1] → [0,∞],
which is given by

f̃ (x) = ln
(
1 + γ f α(xβ)

)
. (17)

In this case, the inverse function of f̃ is f̃ −1 : [0,∞] →
[0, 1], which is given by

f̃ −1(x) =
(
f −1

((
1

γ

(
ex − 1

)) 1
α

)) 1
β

.

Notice that a wide range of probability weighting functions
can be induced from the generator function f̃ by utilizing
the modifier operator mν,ν0 given in Eq. (1). It is worth men-
tioning that in continuous-valued logic, a special form of the
transformation given in Eq. (17) is used to generate the gen-
eralized Dombi operators (Dombi 2008).

3.6 Generating strictly convex (concave) probability
weighting functions

By noting the result that the modifier operator m(λ)
ν,ν0 is a

probability weighting function (see Proposition 1) and the
fact that m(λ)

ν,ν0(ν) = ν0, we have that

(1) m(λ)
ν,ν0 is strictly convex if ν > ν0; and

(2) m(λ)
ν,ν0 is strictly concave if ν < ν0,

where ν, ν0 ∈ (0, 1) and λ = 1. This key property of the
modifier operator m(λ)

ν,ν0 allows us to generate strictly convex
or strictly concave probability weighting functions.

3.7 Fitting generated probability weighting
functions to empirical data

Suppose that the probabilityweighting functionw : (0, 1) →
(0, 1) is induced from the generator function f : (0, 1) →
(0,∞] by the modifier operator m(λ)

ν given in Eq. (2), where
ν ∈ (0, 1) and λ > 0. That is, we have w(x) = m(λ)

ν (x)
for any x ∈ (0, 1). Now, we will show how the probability
weighting functionw can be fitted to empirical data. Let y =
w(x). Then we also have f (y) = f (w(x)) and since both
sides of this equation are positive, after taking the logarithm
of its both sides, we get

ln ( f (y)) = ln ( f (ν)) + λ ln ( f (x)) − λ ln ( f (ν)) . (18)

The last equation can be written in the form

Y = AX + B, (19)

where X = ln ( f (x)), Y = ln ( f (y)), A = λ and B =
ln ( f (ν)) (1 − λ). Hence, the values of parameters A and B
can be obtained by applying a linear regression. Once we
have the estimated values of Â and B̂ for the parameters A
and B, respectively, the estimates λ̂ and ν̂ of the parameters
λ and ν are

λ̂ = Â

ν̂ = f −1
(
e

B̂
1− Â

)
, (20)

respectively.
Suppose that we have the probability weighting function

w(x) = m(λ)
ν (x) for any x ∈ (0, 1), where m(λ)

ν is given by
Eq. (2) with a fixed generator function f , and with unknown
parameters ν ∈ (0, 1) and λ > 0. Furthermore, suppose
that we have the observation pairs (xi , yi ), where yi is the
empirical value of the probability weighting function w at
xi , i = 1, 2, . . . , n and n ≥ 2. Then, following the line
of thinking presented above, the unknown parameters λ and
ν of the function w can be estimated by fitting the linear
regression model Y = AX + B to the transformed data pairs
(Xi ,Yi ), where

Xi = ln ( f (xi ))

Yi = ln ( f (yi )) ,

and then applying Eq. (20) with the estimates Â and B̂ of the
parameters A and B, respectively.

3.7.1 A demonstrative example

In a survey, 1000 participants were asked in 9 runs about
if, in their opinion, an uncertain event will happen or not.
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Table 2 Empirical data

i xi ki ni − ki ni yi ln( f (xi )) ln( f (yi ))

1 0.12 134 866 1000 0.134 1.8660 0.1616

2 0.18 272 728 1000 0.272 0.9845 0.2118

3 0.27 311 689 1000 0.311 0.7954 0.2788

4 0.36 371 629 1000 0.371 0.5279 0.3411

5 0.52 401 599 1000 0.401 0.4013 0.4498

6 0.63 487 513 1000 0.487 0.0520 0.5284

7 0.72 563 437 1000 0.563 −0.2533 0.5990

8 0.85 622 378 1000 0.622 −0.4980 0.7215

9 0.91 873 127 1000 0.873 −1.9277 0.7951

The known likelihood xi of the event was different in each
run, where i is the run index. The survey results are shown in
Table2. In this table, column ki contains the number of survey
participants who taught that the event will happen, while
column ni − ki indicates the number of those participants
who believed that the event will not happen (ni = 1000
is the number of survey participants, i = 1, 2, . . . , 9). The
yi = ki

ni
values are the estimated values of the probability

perceived by the survey participants when the actual known
probability is xi .

Let x denote the known probability, and let y be the per-
ceived value of the probability x . In Table2, the (xi , yi )
pairs are observations on the (x, y) pairs. Here, we model
the relationship between x and y by using the probability
weighting function w that is induced by the generator func-
tion f (x) = 1−x

x using the modifier operator in Eq. (2),

(x ∈ (0, 1]). That is, w(x) has the form of m(λ)
ν given by

Eq. (10), where ν ∈ (0, 1), λ > 0 and x ∈ (0, 1]. Now,
by using Eq. (18), (19) and the ln ( f (xi )) and ln ( f (yi ))
transformed values in Table2, we can estimate the model
parameters A and B in Eq. (19) by applying linear regres-
sion. The estimated parameter values Â and B̂ are

Â = 0.6972 and B̂ = 0.2572,

from which, using Eq. (20), we get the following λ̂0 and ν̂0
estimations of the parameters λ and ν, respectively:

λ̂0 = 0.6972 and ν̂0 = 0.2996.

Although these estimates of the parameters are not necessar-
ily optimal, they can be used as initial values for the numeric
maximum likelihood estimation of the parameters. We will
demonstrate this here.

Let the random variable ξ be the indicator of the studied
event; that is,

ξ =
{
1, if the event happens

0, if the event does not happen.

Then Pp(ξ = 1|x) represents the perceived probability
of the studied event given that its probability is equal
to x . Here, we have 9000 observations (summarized in
Table2) on the (x, ξ) pair. That is, we have the sample
(x∗

1 , ξ1), (x
∗
2 , ξ2), . . . , (x

∗
n , ξn),where x

∗
j ∈ {x1, x2, . . . , x9},

ξ j ∈ {0, 1}, j = 1, 2, . . . , n, n = 9000. Here, we wish to
model the perceived conditional probability Pp(ξ = 1|x) by
the probabilityweighting function given in Eq. (10). The esti-
mations of the model parameters (λ and ν) can be obtained
by maximizing the likelihood function

L(λ, ν) =
n∏
j=1

Pp(ξ = ξ j |x∗
j )

=
n∏
j=1

wξ j (x∗
j ; ν, λ)

(
1 − w(x∗

j ; ν, λ)
)1−ξ j

,

(21)

where w(x∗
j ; ν, λ) = w(x∗

j ), j = 1, 2, . . . , n. By using the
data in Table 2, the log-likelihood function obtained from
Eq. (21) can be written as

l(λ, ν) =
9∑

i=1

ki ln (w(xi ; ν, λ))

+
9∑

i=1

(ni − ki ) ln (1 − w(xi ; ν, λ)) . (22)

The maxima of the log-likelihood function in (22) can be
determined by applying gradient descent methods to the neg-
ative log-likelihood function (see Dombi and Jónás 2020). In
the optimization procedure, the initial values of the param-
eters λ and ν can be set to those determined by the linear
regression above; that is, the initial values can be set as
λ = λ̂0 and ν = ν̂0. This approach increases the speed
of convergence of the optimization method. Following this
method, the maximum likelihood parameter estimations are

λ̂ = 0.6535 and ν̂ = 0.3085.

Figure4 shows the plots of the probability weighting func-
tions fitted to the empirical data.
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Fig. 4 Fitting probability weighting functions to empirical data

4 Summary and future plans

In this study, we presented a novel methodology that can be
utilized to generate parametric probability weighting func-
tions by making use of the Dombi modifier operator of
continuous-valued logic. The key findings of this paper can
be summarized as follows:

(1) We showed that the modifier operator m(λ)
ν,ν0 given in

Eq. (1) is a probability weighting function.
(2) We demonstrated that the application of the modifier

operatorm(λ)
ν [see Eq. (2)] can be interpreted as a general

approach for generating probability weighting functions,
and this includes the well-known ones.

(3) We pointed out that the Prelec probability weighting
function family can be induced from the generator func-
tion f (x) = − ln(x) by applying the modifier operator
m(λ)

ν . Also, the Ostaszewski, Green and Myerson (Lat-
timore, Baker and Witte) probability weighting function
family may be generated from the generator function
f (x) = 1−x

x by using the modifier operator m(λ)
ν .

(4) In previous papers of ours (see Dombi and Jónás 2018;
Dombi et al. 2018), we introduced the epsilon function
that can be used to approximate the exponential function.
Here, we showed that the asymptotic probability weight-
ing function induced from the inverse of the epsilon
function by using the modifier operator is none other
than the Prelec probability weighting function.

(5) We also showed that even more probability weighting
functions can be generated from the so-called dual gener-
ator functions and from transformed generator functions.

(6) Finally, we discussed how the modifier operator can be
used to generate strictly convex (or concave) probability
weighting functions and introduced a method for fitting

generated probability weighting functions to empirical
data.

In the future, we would like to develop new numerical
methods for fitting the generated probability weighting func-
tions, which are listed in Table1, to empirical data. Since the
generic formof themodifier operator given inEq. (1) can pro-
duce strictly convex (concave) functions, we will investigate
how it can be used in probabilistic sophistication.
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