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Abstract In this study, we present a novel methodology
that can be used to generate parametric probability weight-
ing functions, which play an important role in behavioral
economics, by making use of the Dombi modifier operator
of continuous-valued logic. Namely, we will show that the
modifier operator satisfies the requirements for a probability
weighting function. Next, we will demonstrate that the ap-
plication of the modifier operator can be treated as a general
approach to create parametric probability weighting func-
tions including the most important ones such as the Prelec-
and the Ostaszewski, Green and Myerson (Lattimore, Baker
and Witte) probability weighting function families. Also, we
will show that the asymptotic probability weighting function
induced by the inverse of the so-called epsilon function is
none other than the Prelec probability weighting function.
Furthermore, we will prove that, by using the modifier op-
erator, other probability weighting functions can be gener-
ated from the dual generator functions and from transformed
generator functions. Finally, we will show how the modifier
operator can be used to generate strictly convex (or concave)
probability weighting functions and introduce a method for
fitting a generated probability weighting function to empiri-
cal data.
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1 Introduction

It is common knowledge that the probability weighting func-
tions play an important role in non-expected utility theo-
ries, including prospect theory and rank-dependent mod-
els. Therefore, there has been a consistent interest in them
(see, e.g. Abdellaoui et al. (2008); Kahneman and Tver-
sky (2013); Tversky and Kahneman (1992); Prelec (1998);
Lattimore et al. (1992); Ostaszewski et al. (1998); Wakker
(2010); Wakker and Yang (2019)). These functions describe
the phenomenon that people tend to overreact those events
that occur with a low probability and underreact to events
that have a high probability (see, e.g. Camerer (2007);
Köbberling and Wakker (2003); Koszegi and Rabin (2006);
Bleichrodt (2001); Chateauneuf et al. (2007); Loomes et al.
(2002)). Thus, in line with the empirical estimates, the prob-
ability weighting functions are regressive (first they have
values greater than the identity function, then they have val-
ues less than the diagonal), inverse S-shaped (first concave,
then convex) and asymmetric (intersecting the diagonal at
one third) (see, e.g. Prelec (1998); Offerman et al. (2009);
Li et al. (2017); Levy (1992)).

In this study, we present a novel methodology that can
be used to generate parametric probability weighting func-
tions by making use of the Dombi modifier operator of
continuous-valued logic (Dombi 2012a). This operator is de-
fined as follows.

Definition 1 The modifier operator m(λ )
ν ,ν0 : [0,1]→ [0,1] is

given by

m(λ )
ν ,ν0(x) = f−1

(
f (ν0)

(
f (x)
f (ν)

)λ
)
, (1)

where ν ,ν0 ∈ (0,1), λ ∈R and f : [0,1]→ [0,∞] is a strictly
decreasing (or increasing) continuous function, with the in-
verse function f−1 : [0,∞]→ [0,1], such that
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(a) if f is strictly increasing, then f (0) = 0 and
limx→1 f (x) = ∞

(b) if f is strictly decreasing, then f (1) = 0 and
limx→0 f (x) = ∞.

Here, function f is called the generator function of the mod-
ifier operator m(λ )

ν ,ν0 .

We will show that if λ > 0, then m(λ )
ν ,ν0 is a probabil-

ity weighting function. It is worth mentioning that in
continuous-valued logic, the generator function f is closely
connected with the conjunction and disjunction operators,
and the modifier operator m(λ )

ν ,ν0 is also known as the kappa
function. Next, we will demonstrate that the application
of the modifier operator in Eq. (1) may be treated as a
general approach for creating probability weighting func-
tions including the well-known ones. We will show that
the Prelec probability weighting function family (see Prelec
(1998)) can be induced by the generator function f (x) =
− ln(x), where x ∈ (0,1], by applying the modifier opera-
tor in Eq. (1) with ν0 = ν . Also, the Ostaszewski, Green
and Myerson (Lattimore, Baker and Witte (see Lattimore
et al. (1992))) probability weighting function family (see
Ostaszewski et al. (1998)) can be generated from the gen-
erator function f (x) = 1−x

x , where x ∈ (0,1], by making use
of the modifier operator in Eq. (1) with ν0 = ν . Note that
the function f (x) = 1−x

x is the generator function of Dombi
conjunction- and disjunction operators (Dombi 1982). In
previous papers of ours (see Dombi and Jónás (2018);
Dombi et al. (2018)), we introduced the epsilon function
that can be used to approximate the exponential function.
Here, we will show that the asymptotic probability weight-
ing function induced by the inverse of the epsilon function
by utilizing Eq. (1) with ν0 = ν is just the Prelec proba-
bility weighting function. Furthermore, we will prove that,
by using the modifier operator in Eq. (1), other probabil-
ity weighting functions can be generated from the so-called
dual generator functions and from transformed generator
functions. Lastly, we will show how the modifier operator
can be used to generate strictly convex (or concave) prob-
ability weighting functions and demonstrate how a gener-
ated probability weighting function can be fitted to empirical
data.

The rest of this paper is structured as follows. In Section
2, we will introduce the modifier operator, which we will
use later on, and briefly describe the role of its parameters.
In Section 3, we will show how the modifier operator can
be utilized to generate probability weighting functions and
discuss how the modifier operator can be utilized in practical
regression problems. Lastly, in Section 4, we will provide
a short summary of our findings and highlight our future
research plans.

2 Modifier operators in continuous-valued logic

In fuzzy logic, linguistic modifiers like ‘very’, ‘more or
less’, ‘somewhat’, ‘rather’ and ‘quite’ over fuzzy sets that
have strictly monotonously increasing or decreasing mem-
bership functions can be modeled by modifier operators. In
Dombi’s pliant system (Dombi 2008, 2012a), the general
form of the modifier operator is given by Definition 1.

Later on, we will show that the value of parameter λ is
closely related to the slope of function m(λ )

ν ,ν0 at x= ν . Notice
that

m(λ )
ν ,ν0(ν) = ν0

immediately follows from Eq. (1). Hence, if λ 6= 1 and
ν0 = ν , then ν is the fixed point of the transformation
x 7−→ m(λ )

ν ,ν0(x), where x ∈ (0,1).

3 Generating probability weighting functions

In prospect theory, the probability weighting functions are
defined as follows (Wakker 2010).

Definition 2 The function w : [0,1]→ [0,1] is said to be a
probability weighting function, if w satisfies the following
requirements:

(1) w is strictly increasing;
(2) w(0) = 0 and w(1) = 1.

Note that although the continuity of w is not required in gen-
eral, we will generate probability weighting functions that
are continuous in the interval [0,1]. It should be also added
that in prospect theory, the argument of a probability weight-
ing function is traditionally denoted by p, indicating that the
probability weighting function is a transformation on a prob-
ability measure. Here, we will use the notation x for the ar-
gument of function w. In this section, we will show how the
modifier operator in Eq. (1) can be applied to generate prob-
ability weighting functions.

Proposition 1 If λ > 0, then the modifier operator m(λ )
ν ,ν0

given by Definition 1 satisfies the requirements for a proba-
bility weighting function in Definition 2.

Proof By noting the properties of the generator function f
(see Definition 1), the proof is straightforward. ut

Proposition 1 lays the foundations for generating proba-
bility weighting functions derived from appropriately cho-
sen generator functions. Here, we will utilize the modi-
fier operator m(λ )

ν ,ν0 with the parameter settings ν0 = ν and
λ > 0. This allows us to characterize the generated probabil-
ity weighting function by its fixed point ν and by its sharp-
ness parameter λ . That is, the generated probability weight-
ing function w will always have the form

w(x) = m(λ )
ν (x),
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where

m(λ )
ν (x) = f−1

(
f (ν)

(
f (x)
f (ν)

)λ
)
, (2)

x ∈ [0,1], ν ∈ (0,1) and λ > 0.

Remark 1 One can easily see that the inverse function[
m(λ )

ν

]−1
of the modifier operator m(λ )

ν given in Eq. (2) is

[
m(λ )

ν

]−1
(x) = f−1

(
f (ν)

(
f (x)
f (ν)

)1/λ
)
,

and so
[
m(λ )

ν

]−1
is a probability weighting function as well.

The following proposition tells us about the shape of the
probability weighting function generated by the modifier op-
erator m(λ )

ν .

Proposition 2 If λ > 0, ν ∈ (0,1) and the probability
weighting function w : [0,1] → [0,1] is generated by the
modifier operator m(λ )

ν : [0,1]→ [0,1], then

(1) If 0 < λ < 1, then w(x) is concave in (0,ν ] and w(x) is
convex in [ν ,1);

(2) If λ = 1, then w(x) = x for any x ∈ [0,1];
(3) If 1 < λ , then w(x) is convex in (0,ν ] and w(x) is con-

cave in [ν ,1).

Proof Let w(x) =m(λ )
ν (x) for any x∈ [0,1], where ν ∈ (0,1)

and λ > 0. Furthermore, let g(x) be defined by

g(x) = ( f (ν))1−λ ( f (x))λ . (3)

Then, w(x) can be written as

w(x) = f−1 (g(x)) . (4)

Here, we will distinguish two cases: (a) f is strictly increas-
ing, (b) f is strictly decreasing.

(a) In this case, f is a strictly increasing function and so
f−1 is a strictly increasing function as well. By noting
the properties of f (see Definition 1) and using Eq. (3)
and Eq. (4), we readily get that
– if x ∈ (0,ν ] and 0 < λ < 1, then f−1 (g(x))≥ x
– if x ∈ [ν ,1) and 0 < λ < 1, then f−1 (g(x))≤ x,

from which (1) follows. Similarly,
– if x ∈ (0,ν ] and 1 < λ , then f−1 (g(x))≤ x
– if x ∈ [ν ,1) and 1 < λ , then f−1 (g(x))≥ x,

from which we have (3).

(b) In this case, f is a strictly decreasing function and so
f−1 is a strictly decreasing function as well. Using this
fact, the proof can be obtained in a way similar to that of
case (a).

If λ = 1, then w(x) = x trivially holds for any x ∈ [0,1]. ut

Suppose that the probability weighting function
w : [0,1] → [0,1] is generated by the modifier operator
m(λ )

ν : [0,1]→ [0,1], λ > 0 and ν ∈ (0,1). Then, the effect
of the parameters λ and ν on the shape of the probability
weighting function w can be summarized as follows.

– Parameter λ determines the sharpness and the shape of
w. The more the value of λ differs from 1, the more the
shape of w differs from that of the identity function. If
0 < λ < 1, then w is inverse S-shaped, and if 1 < λ , then
w is S-shaped.

– Parameter ν determines the point where w intersects the
diagonal line; that is, parameter ν may be viewed as the
elevator parameter of w.
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Fig. 1 The role of parameters ν and λ

Figure 1 shows the effect of the values of parameters λ

and ν on the shape of the probability weighting function w
that was generated from the same generator function via the
modifier operator m(λ )

ν .
In the following subsections, we will show that the ap-

plication of the modifier operator in Eq. (2) can be treated as
a general approach for creating probability weighting func-
tions including the most important ones.

3.1 The Prelec probability weighting function family

The Prelec probability weighting function family (Prelec
1998) wP is given by

wP(x) =
(

e−(− ln(x))a
)b

, (5)

where 0 < a < 1, b > 0 and x ∈ (0,1]. The following propo-
sition shows how the Prelec probability weighting function
family can be generated by the modifier operator m(λ )

ν .
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Proposition 3 Let 0 < a < 1, b > 0 and let the generator
function f be given by f (x) =− ln(x), where x ∈ (0,1]. If

λ = a and ν = e−b
1

1−a
, (6)

then m(λ )
ν (x) = wP(x) for any x ∈ (0,1].

Proof After direct calculation, we get

m(λ )
ν (x) =

(
e−(− ln(x))λ

)(− ln(ν))1−λ

. (7)

Next, by noting Eq. (6), we immediately get that m(λ )
ν (x) =

wP(x) for any x ∈ (0,1]. ut

Remark 2 It is worth mentioning that in continuous-valued
logic, the generator function f (x) = − ln(x) induces the
product conjunction operator that is also called the proba-
bilistic t-norm (Yager et al. 2000; Klement et al. 2004).

It should be added that the parameters in Eq. (7) give
a more natural characterization of the probability weighting
function than those in Eq. (5). For example, Wakker (2010)
suggests that the parameter values a = 0.65 and b = 1.0467,
giving an intersection with the diagonal at 0.32, are good pa-
rameter choices for gains. If we wish the function w in Eq.
(7) to have its fixed point at 0.32, then we simply need to set
its parameter ν to 0.32. In prospect theory, the parameters
a and b of the Prelec probability weighting function family
are interpreted as the index of likelihood insensitivity and
the index of pessimism, respectively (Wakker 2010). Thus,
in terms of the parameters of the generated Prelec probabil-
ity weighting function in Eq. (7), the index of likelihood in-
sensitivity is λ , and the index of pessimism is (− ln(ν))1−λ .

3.2 The Ostaszewski, Green and Myerson probability
weighting function family

The Ostaszewski, Green and Myerson probability weighting
function family (Ostaszewski et al. 1998) wOGM is given by

wOGM(x) =
bxa

bxa +(1− x)a , (8)

where 0< a< 1, b> 0 and x∈ [0,1]. Note that this probabil-
ity weighting function family was introduced independently
by Lattimore, Baker and Witte as well in 1992 (see Latti-
more et al. (1992)). Here, we will show that the Ostaszewski,
Green and Myerson probability weighting function family
can be generated by the modifier operator m(λ )

ν .

Proposition 4 Let 0 < a < 1, b > 0 and let the generator
function f be given by f (x) = 1−x

x , where x ∈ (0,1]. If

λ = a and ν =
1

1+
( 1

b

) 1
1−a

, (9)

then m(λ )
ν (x) = wOGM(x) for any x ∈ (0,1].

Proof By using Eq. (2) with f (x) = 1−x
x , where x ∈ (0,1],

we get

m(λ )
ν (x) =

1

1+ 1−ν

ν

( 1−x
x

ν

1−ν

)λ
. (10)

Next, by taking into account Eq. (9), from Eq. (10) we can
readily see that m(λ )

ν (x) = wOGM(x) for any x ∈ (0,1]. ut

It should be mentioned here that in prospect theory, the
parameters a and b of the Ostaszewski, Green and Myer-
son probability weighting function family can also be inter-
preted as the index of likelihood insensitivity and the index
of pessimism, respectively (Wakker 2010). Hence, in terms
of the parameters of the probability weighting function in
Eq. (10), the index of likelihood insensitivity is λ , and the
index of pessimism is ( ν

1−ν
)1−λ .

It is worth mentioning that in continuous-valued logic,
the Dombi conjunction- and disjunction operators (Dombi
2008) are induced by the following generator function
fα : (0,1)→ (0,∞]:

fα(x) =
(

1− x
x

)α

,

where α 6= 0. This means that the generator function f (x) =
1−x

x is a special case of the generator function of Dombi
conjunction- and disjunction operators. It is also worth not-
ing that the function in Eq. (10) is called the kappa function
in Dombi and Jónás (2020, 2018).

It can be shown that the function m(λ )
ν in Eq. (10) is the

solution of the differential equation

dκ(x)
dx

= λ
κ(x)(1−κ(x))

x(1− x)
,

with the initial condition κ(ν) = ν , see Dombi (2012a);
Dombi and Jónás (2020). Thus, we have

dκ(ν)

dx
= λ .

Therefore, the derivative of function m(λ )
ν in Eq. (10) at x =

ν is equal to the value of parameter λ . This means that the
parameters in Eq. (10) give a more natural characterization
of the probability weighting function than those in Eq. (8).

Now, let t be the tangent line of function m(λ )
ν given by

Eq. (10) at x = ν . Then, t is given by the equation t(x) =
λx+ν(1−λ ), x∈ [0,1]. In prospect theory, the neo-additive
probability weighting function wneo : [0,1]→ [0,1] is given
by

wneo(x) = b+ax,

where a,b > 0 and a + b < 1 (see Wakker (2010)). The
parameters a and b of the neo-additive probability weight-
ing function wneo can be interpreted as follows (see Wakker
(2010)):
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– a is an index of likelihood sensitivity (‘curvature’ or ‘in-
verse S-shape’)

– 2b+a
2 is an index of optimism (elevation).

Now, if wneo(x) = t(x) for any x ∈ [0,1], then a = λ and
b = ν(1−λ ). In this case, the index of sensitivity is λ and
the index of optimism is ν(1−λ )+ λ

2 . Figure 2 shows a plot

of function m(λ )
ν given by Eq. (10) and function t, and the

geometric interpretation of the parameters a,b,λ and ν . It
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Fig. 2 Plot of m(λ )
ν given by Eq. (10) and its tangent line at x = ν

should be added here that the probability weighting function
m(λ )

ν , which coincides with the kappa function, can be fitted
to empirical data by applying our kappa regression method
described in Dombi and Jónás (2020).

3.3 An approximation to the Prelec probability weighting
function family

In Dombi and Jónás (2018), we introduced the epsilon func-
tion.

Definition 3 The epsilon function ε
(α)
d : (−d,+d)→ [0,∞]

is given by

ε
(α)
d (x) =

(
d + x
d− x

)α
d
2
, (11)

where α ∈ R, α 6= 0, d ∈ R, d > 0, x ∈ (−d,+d).

If α = −1, then from Eq. (11) we have the following εd :
(−d,+d)→ [0,∞] function that is given by

εd(x) =
(

d + x
d− x

)− d
2
,

where d ∈ R, d > 0. The next proposition states a key prop-
erty of the epsilon function εd .

Proposition 5 For any x ∈ (−d,+d)

lim
d→∞

εd(x) = e−x.

Proof See the proof of Theorem 1 in Dombi and Jónás
(2018). ut

Since the epsilon function εd is strictly decreasing, it fol-
lows from Proposition 5 that

lim
d→∞

ε
−1
d (x) =− ln(x)

holds for any x ∈ (0,∞), where ε
−1
d is the inverse function

of εd . The practical implication of Proposition 5 is that if
the value of parameter d is sufficiently large, then εd(x) ≈
e−x and ε

−1
d (x)≈− ln(x) for any x ∈ (−d,+d) and for any

x ∈ (0,∞), respectively. Note that the approximation is quite
good already for d = 10.

Now, let the generator function f be given by

f (x) = ε
−1
d (x) = d

x−
2
d −1

x−
2
d +1

,

where x ∈ (0,1] and d > 0. Then the inverse function f−1 is

f−1(x) = εd(x),

and by making use of the modifier operator in Eq. (2) with
λ > 0, we get the probability weighting function

w(x) =
(

1+q(x)
1−q(x)

)− d
2
,

where

q(x) =
ν
− 2

d −1

ν
− 2

d +1

(
x−

2
d −1

x−
2
d +1

ν
− 2

d +1

ν
− 2

d −1

)λ

, (12)

ν ∈ (0,1), λ > 0, d > 0 and x∈ (0,1]. It immediately follows
from Proposition 5 that for any x ∈ (0,1]

lim
d→∞

w(x) = m(λ )
ν (x),

where m(λ )
ν is given by Eq. (7), ν ∈ (0,1) and λ > 0. Further-

more, if a = λ and b = (− ln(ν))1−λ , then the asymptotic
probability weighting function w is just the Prelec probabil-
ity weighting function:

lim
d→∞

w(x) =
(

e−(− ln(x))a
)b

. (13)
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3.4 Dual probability weighting functions

We will use the concept of the dual generator function.

Definition 4 The dual of the generator function f : [0,1]→
[0,∞] is the function f̂ : [0,1]→ [0,∞], which is given by

f̂ (x) = f (1− x) (14)

for any x ∈ [0,1].

Obviously, f̂ is a generator functions as well. We will also
make use of the concept of the dual modifier operator.

Definition 5 The dual modifier operator m̂(λ )
ν ,ν0 : [0,1] →

[0,1] of the modifier operator m(λ )
ν ,ν0 is given by

m̂(λ )
ν ,ν0(x) = f̂−1

(
f̂ (ν0)

(
f̂ (x)
f̂ (ν)

)λ
)
, (15)

where f̂ : [0,1]→ [0,∞] is the dual of the generator function
f , ν ,ν0 ∈ (0,1) and λ ∈ R.

The generator functions f and f̂ are said to be a dual pair
of generator functions, and the corresponding modifier op-
erators m(λ )

ν ,ν0 and m̂(λ )
ν ,ν0 are said to be the dual pair of the

modifier operators induced by f and f̂ , respectively. The fol-
lowing corollary allows us to generate additional probability
weighting functions by using the dual generator functions.

Corollary 1 If λ > 0, then the dual modifier operator m̂(λ )
ν ,ν0

of the modifier operator m(λ )
ν ,ν0 satisfies the requirements for

a probability weighting function.

Proof The corollary immediately follows from Definition 5
and Proposition 1. ut

Here, we will utilize the dual modifier operator m̂(λ )
ν ,ν0

with the parameter settings ν0 = ν . That is, the generated
dual probability weighting function ŵ will always have the
form

ŵ(x) = m̂(λ )
ν (x),

where

m̂(λ )
ν (x) = f̂−1

(
f̂ (ν)

(
f̂ (x)
f̂ (ν)

)λ
)
,

ν ∈ (0,1) and λ > 0.
Table 1 summarizes the probability weighting functions

induced by the generator functions presented in sections 3.1,
3.2 and 3.3 and the probability weighting functions induced
by the corresponding dual generator functions.

Note that we have the requirement ν ∈ (0,1) and λ > 0
for all the probability weighting functions in Table 1. More-
over, we have the requirement d > 0 for the functions f3, f̂3,

Table 1 Generated probability weighting functions

Generator function Generated probability weighting function Domain

f1(x) =− ln(x) w1(x) =
(

e−(− ln(x))λ
)(− ln(ν))1−λ

x ∈ (0,1]

f̂1(x) =− ln(1− x) ŵ1(x) = 1− (1−ν)

(
ln(1−x)
ln(1−ν)

)λ

x ∈ [0,1)

f2(x) = 1−x
x w2(x) = 1

1+ 1−ν
ν

(
1−x

x
ν

1−ν

)λ
x ∈ (0,1]

f̂2(x) = x
1−x ŵ2(x) = 1

1+ 1−ν
ν

(
1−x

x
ν

1−ν

)λ
x ∈ [0,1)

f3(x) = d x
− 2

d −1

x
− 2

d +1
w3(x) =

(
1+q(x)
1−q(x)

)− d
2 x ∈ (0,1]

f̂3(x) = d (1−x)
− 2

d −1

(1−x)
− 2

d +1
ŵ3(x) = 1−

(
1+r(x)
1−r(x)

)− d
2 x ∈ [0,1)

w3 and ŵ3. The expressions for q(x) and r(x) in Table 1 are
given by Eq. (12) and by

r(x) =
(1−ν)−

2
d −1

(1−ν)−
2
d +1

(
(1− x)−

2
d −1

(1− x)−
2
d +1

(1−ν)−
2
d +1

(1−ν)−
2
d −1

)λ

,

respectively, where x ∈ [0,1).

Remark 3 Also, notice that w2 and ŵ2 are in fact identical.
However, a deeper study of the pliant logic system (Dombi
2012b) is needed to answer the question when a probability
weighting function induced by a generator function f coin-
cides with the probability weighting function induced by the
dual of generator function f .

Due to its simplicity and its useful properties, we recom-
mend the use of the w2 function as a general model of prob-
ability weighting functions.

Figure 3 shows sample plots of the probability weighting
functions that are listed in Table 1. These plots tell us that the
probability weighting function induced by the inverse of the
epsilon function (w3) and by its dual function (ŵ3) almost
coincide with the Prelec probability weighting function (w1)
and its dual function (ŵ1), respectively. These observations
are in line with the finding given in Eq. (13); that is, w3 and
w1 are asymptotically identical as the value of parameter d
tends to infinity. Similarly, ŵ3 is asymptotically identical to
ŵ1 when d tends to infinity.

3.5 Additional probability weighting functions induced
from transformed generator functions

Suppose that we have the generator function f : [0,1] →
[0,∞] and the modifier operator m(λ )

ν ,ν0 : [0,1]→ [0,1] given
in Eq. (1), ν ,ν0 ∈ (0,1) and λ > 0. We have shown (see
Proposition 1) that m(λ )

ν ,ν0 is a probability weighting func-
tion induced by the function f . The following proposition
allows us to generate additional probability weighting func-
tions from transformed generator functions by making use
of the modifier operator m(λ )

ν ,ν0 .
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Fig. 3 Sample plots of the probability weighting functions in Table 1
with the parameter values ν = 1/3 and λ = 0.65

Proposition 6 Let f be the generator function of the mod-
ifier operator m(λ )

ν ,ν0 given in Definition 1. Furthermore, let
g : [0,1]→ [0,1] and h : [0,∞]→ [0,∞] be two strictly mono-
tonic functions. Then, the function f̃ : [0,1]→ [0,∞], which
is given by

f̃ = h◦ ( f ◦g) (16)

is also a generator function. If λ > 0, then the modifier op-
erator m̃(λ )

ν ,ν0 : [0,1]→ [0,1] that is given by

m̃(λ )
ν ,ν0(x) = f̃−1

 f̃ (ν0)

(
f̃ (x)

f̃ (ν)

)λ
 .

is a probability weighting function.

Proof If f is a generator function, then f is strictly mono-
tonic in [0,1]. Since g : [0,1]→ [0,1] and h : [0,∞]→ [0,∞]

are two strictly monotonic functions, f̃ = h ◦ ( f ◦ g) is a
strictly monotonic function and f̃ : [0,1] → [0,∞]. There-
fore, the function f̃ is a generator function as well, and
by noting Proposition 1, we see that m̃(λ )

ν ,ν0 is a probability
weighting function. ut

Obviously, if both g and h are the identity functions, then
the generator function f̃ = h◦ ( f ◦g) is identical to the gen-
erator function f and the modifier operator m̃ν ,ν0 induced
by f̃ coincides with the modifier operator mν ,ν0 given in Eq.
(1).

Also notice that if g : [0,1]→ [0,1] and h : [0,∞]→ [0,∞]

are given by

g(x) = 1− x and h(x) = x,

then the generator function f̃ = h◦ ( f ◦g) is identical to the
dual generator function f̂ given in Eq. (14) and the modifier

operator m̃ν ,ν0 induced by f̃ coincides with the dual modifier
operator m̂ν ,ν0 given in Eq. (15).

Now, for example, let g : [0,1]→ [0,1] and h : [0,∞]→
[0,∞] be given by

g(x) = xβ and h(x) = ln(1+ γxα),

where α ∈R, α 6= 0, β ∈R, β 6= 0 and γ ∈ (0,∞). Then, the
generator function f̃ = h◦( f ◦g) is f̃ : [0,1]→ [0,∞], which
is given by

f̃ (x) = ln
(

1+ γ f α(xβ )
)
. (17)

In this case, the inverse function of f̃ is f̃−1 : [0,∞]→ [0,1],
which is given by

f̃−1(x) =

(
f−1

((
1
γ
(ex−1)

) 1
α

)) 1
β

.

Notice that a wide range of probability weighting functions
can be induced from the generator function f̃ by utilizing
the modifier operator mν ,ν0 given in Eq. (1). It is worth men-
tioning that in continuous-valued logic, a special form of the
transformation given in Eq. (17) is used to generate the gen-
eralized Dombi operators (Dombi 2008).

3.6 Generating strictly convex (concave) probability
weighting functions

By noting the result that the modifier operator m(λ )
ν ,ν0 is a

probability weighting function (see Proposition 1) and the
fact that m(λ )

ν ,ν0(ν) = ν0, we have that

(1) m(λ )
ν ,ν0 is strictly convex if ν > ν0; and

(2) m(λ )
ν ,ν0 is strictly concave if ν < ν0,

where ν ,ν0 ∈ (0,1) and λ = 1. This key property of the
modifier operator m(λ )

ν ,ν0 allows us to generate strictly convex
or strictly concave probability weighting functions.

3.7 Fitting generated probability weighting functions to
empirical data

Suppose that the probability weighting function w : (0,1)→
(0,1) is induced from the generator function f : (0,1) →
(0,∞] by the modifier operator m(λ )

ν given in Eq. (2), where
ν ∈ (0,1) and λ > 0. That is, we have w(x)=m(λ )

ν (x) for any
x∈ (0,1). Now, we will show how the probability weighting
function w can be fitted to empirical data. Let y=w(x). Then
we also have f (y) = f (w(x)) and since both sides of this
equation are positive, after taking the logarithm of its both
sides, we get

ln( f (y)) = ln( f (ν))+λ ln( f (x))−λ ln( f (ν)) . (18)



8 J. Dombi, T. Jónás

The last equation can be written in the form

Y = AX +B, (19)

where X = ln( f (x)), Y = ln( f (y)), A = λ and B =

ln( f (ν))(1−λ ). Hence, the values of parameters A and B
can be obtained by applying a linear regression. Once we
have the estimated values of Â and B̂ for the parameters A
and B, respectively, the estimates λ̂ and ν̂ of the parameters
λ and ν are

λ̂ = Â

ν̂ = f−1
(

e
B̂

1−Â

)
,

(20)

respectively.
Suppose that we have the probability weighting function

w(x) = m(λ )
ν (x) for any x ∈ (0,1), where m(λ )

ν is given by
Eq. (2) with a fixed generator function f , and with unknown
parameters ν ∈ (0,1) and λ > 0. Furthermore, suppose that
we have the observation pairs (xi,yi), where yi is the em-
pirical value of the probability weighting function w at xi,
i = 1,2, . . . ,n and n ≥ 2. Then, following the line of think-
ing presented above, the unknown parameters λ and ν of
the function w can be estimated by fitting the linear regres-
sion model Y =AX +B to the transformed data pairs (Xi,Yi),
where

Xi = ln( f (xi))

Yi = ln( f (yi)) ,

and then applying Eq. (20) with the estimates Â and B̂ of the
parameters A and B, respectively.

3.7.1 A demonstrative example

In a survey, 1000 participants were asked in 9 runs about if,
in their opinion, an uncertain event will happen or not. The
known likelihood xi of the event was different in each run,
where i is the run index. The survey results are shown in
Table 2. In this table, column ki contains the number of sur-
vey participants who taught that the event will happen, while
column ni − ki indicates the number of those participants
who believed that the event will not happen (ni = 1000 is the
number of survey participants, i = 1,2, . . . ,9). The yi =

ki
ni

values are the estimated values of the probability perceived
by the survey participants when the actual known probabil-
ity is xi.

Let x denote the known probability, and let y be the
perceived value of the probability x. In Table 2, the (xi,yi)

pairs are observations on the (x,y) pairs. Here, we model
the relationship between x and y by using the probabil-
ity weighting function w that is induced by the generator
function f (x) = 1−x

x using the modifier operator in Eq. (2),

(x ∈ (0,1]). That is, w(x) has the form of m(λ )
ν given by Eq.

Table 2 Empirical Data

i xi ki ni− ki ni yi ln( f (xr)) ln( f (yr))
1 0.12 134 866 1000 0.134 1.8660 0.1616
2 0.18 272 728 1000 0.272 0.9845 0.2118
3 0.27 311 689 1000 0.311 0.7954 0.2788
4 0.36 371 629 1000 0.371 0.5279 0.3411
5 0.52 401 599 1000 0.401 0.4013 0.4498
6 0.63 487 513 1000 0.487 0.0520 0.5284
7 0.72 563 437 1000 0.563 -0.2533 0.5990
8 0.85 622 378 1000 0.622 -0.4980 0.7215
9 0.91 873 127 1000 0.873 -1.9277 0.7951

(10), where ν ∈ (0,1), λ > 0 and x ∈ (0,1]. Now, by us-
ing Eq. (18), Eq. (19) and the ln( f (xi)) and ln( f (yi)) trans-
formed values in Table 2, we can estimate the model param-
eters A and B in Eq. (19) by applying linear regression. The
estimated parameter values Â and B̂ are

Â = 0.6972 and B̂ = 0.2572,

from which, using Eq. (20), we get the following λ̂0 and ν̂0
estimations of the parameters λ and ν , respectively:

λ̂0 = 0.6972 and ν̂0 = 0.2996.

Although these estimates of the parameters are not necessar-
ily optimal, they can be used as initial values for the numeric
maximum likelihood estimation of the parameters. We will
demonstrate this here.

Let the random variable ξ be the indicator of the studied
event; that is,

ξ =

{
1, if the event happens
0, if the event does not happen.

Then Pp(ξ = 1|x) represents the perceived probability of
the studied event given that its probability is equal to
x. Here, we have 9000 observations (summarized in Ta-
ble 2) on the (x,ξ ) pair. That is, we have the sam-
ple (x∗1,ξ1),(x∗2,ξ2), . . . ,(x∗n,ξn), where x∗j ∈ {x1,x2, . . . ,x9},
ξ j ∈{0,1}, j = 1,2, . . . ,n, n= 9000. Here, we wish to model
the perceived conditional probability Pp(ξ = 1|x) by the
probability weighting function given in Eq. (10). The esti-
mations of the model parameters (λ and ν) can be obtained
by maximizing the likelihood function

L(λ ,ν) =
n

∏
j=1

Pp(ξ = ξ j|x∗j) =

=
n

∏
j=1

wξ j(x∗j ;ν ,λ )
(
1−w(x∗j ;ν ,λ )

)1−ξ j ,

(21)

where w(x∗j ;ν ,λ ) = w(x∗j), j = 1,2, . . . ,n. By using the data
in Table 2, the log-likelihood function obtained from Eq.
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(21) can be written as

l(λ ,ν) =
9

∑
i=1

ki ln(w(xi;ν ,λ ))+

+
9

∑
i=1

(ni− ki) ln(1−w(xi;ν ,λ )) .

(22)

The maxima of the log-likelihood function in (22) can be de-
termined by applying gradient descent methods to the neg-
ative log-likelihood function (see Dombi and Jónás (2020)).
In the optimization procedure, the initial values of the pa-
rameters λ and ν can be set to those determined by the lin-
ear regression above; that is, the initial values can be set
as λ = λ̂0 and ν = ν̂0. This approach increases the speed
of convergence of the optimization method. Following this
method, the maximum likelihood parameter estimations are

λ̂ = 0.6535 and ν̂ = 0.3085.

Figure 4 shows the plots of the probability weighting func-
tions fitted to the empirical data.
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Lin. regression: λ̂0 = 0.6972, ν̂0 = 0.2996
Max. likelihood: λ̂ = 0.6535, ν̂ = 0.3085
w(x) = x

Fig. 4 Fitting probability weighting functions to empirical data.

4 Summary and future plans

In this study, we presented a novel methodology that can be
utilized to generate parametric probability weighting func-
tions by making use of the Dombi modifier operator of
continuous-valued logic. The key findings of this paper can
be summarized as follows:

(1) We showed that the modifier operator m(λ )
ν ,ν0 given in Eq.

(1) is a probability weighting function.
(2) We demonstrated that the application of the modifier op-

erator m(λ )
ν (see Eq. (2)) can be interpreted as a general

approach for generating probability weighting functions,
and this includes the well-known ones.

(3) We pointed out that the Prelec probability weighting
function family can be induced from the generator func-
tion f (x) = − ln(x) by applying the modifier operator
m(λ )

ν . Also, the Ostaszewski, Green and Myerson (Latti-
more, Baker and Witte) probability weighting function
family may be generated from the generator function
f (x) = 1−x

x by using the modifier operator m(λ )
ν .

(4) In previous papers of ours (see Dombi and Jónás (2018);
Dombi et al. (2018)), we introduced the epsilon function
that can be used to approximate the exponential func-
tion. Here, we showed that the asymptotic probability
weighting function induced from the inverse of the ep-
silon function by using the modifier operator is none
other than the Prelec probability weighting function.

(5) We also showed that even more probability weighting
functions can be generated from the so-called dual gen-
erator functions and from transformed generator func-
tions.

(6) Finally, we discussed how the modifier operator can be
used to generate strictly convex (or concave) probability
weighting functions and introduced a method for fitting
generated probability weighting functions to empirical
data.

In the future, we would like to develop new numerical
methods for fitting the generated probability weighting func-
tions, which are listed in Table 1, to empirical data. Since
the generic form of the modifier operator given in Eq. (1)
can produce strictly convex (concave) functions, we will in-
vestigate how it can be used in probabilistic sophistication.
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