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Abstract: Noise reduction is a central issue of the theory and practice of signal 
processing. The Savitzky-Golay (SG) smoothing and differentiation filter is 
widely acknowledged as a simple and efficient method for denoising. However 
only few book on signal processing contain this method. As is well known, the 
performance of the classical SG-filter depends on the appropriate setting of the 
window length and the polynomial degree, which should match the scale of the 
signal since, in the case of signals with high rate of change, the performance of 
the filter may be limited. This paper presents a new adaptive strategy to smooth 
irregular signals based on the Savitzky-Golay algorithm. The proposed 
technique ensures high precision noise reduction by iterative multi-round 
smoothing and correction. In each round the parameters dynamically change 
due to the results of the previous smoothing. Our study provides additional 
support for data compression based on optimal resolution of the signal with 
linear approximation. Here, simulation results validate the applicability of the 
novel method. 
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1 Introduction 

Several areas of signal processing, image enhancement, etc., require the development of 
highly efficient data processing methods. In a certain class of problems, for instance 
chemical spectroscopy, smoothing and differentiation is especially important. Much work 
on a particular family of smoothing filters has been carried out. In their cutting edge 
paper of 1964, Savitzky and Golay introduced a particular type of low-pass filter, 
commonly referred as the digital smoothing polynomial filter (DISPO) or Savitzky-Golay 
(SG) filter (Savitzky and Golay, 1964). Corrections of the original technique can be 
found, e.g., in Steiner et al. (1972) and Madden (1978). The principle of their approach is 
fitting a low degree polynomial in least squares sense on the samples within a sliding 
window, in the time domain. The smoothed value of the centrepoint derived from 
convolution. There is a considerable amount of literature on the properties and 
improvements of SG filters (Edwards and Willson, 1974; Ahnert and Abel, 2007; Browne 
et al., 2007; Wayt and Integrated, 2007; Zhao et al., 2014; Persson and Strang, 2003; 
Krishnan and Seelamantula, 2013; Engel et al., 2013). The use of SG smoothing in  
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chemometric algorithms, chemical imaging, etc., is well established (Komsta, 2009; Finta 
et al., 2013; Tong et al., 2015). Few studies have emphasised the frequency domain 
properties of SG-filters (Schafer, 2011b, 2011a; Bromba and Ziegler, 1981; Hamming, 
1989). Schafer proposed a very plausible and practically useful approximate formula for 
the 3dB cut-off frequency as a function of polynomial order and impulse response  
half-length. In Luo et al. (2005b), the properties of the SG digital differentiator filters are 
discussed in detail and recommendations are made for the choice of filter length in order 
to maintain the resolution of the signal derivative. In Luo et al. (2005a), an extension is 
described to calculate the filter coefficients for even-numbered data using a matrix form. 
Some attempts have been made with the purpose of the construction of fractional-order 
SG differentiators. It has been shown, that by applying the Riemann-Lioueville fractional 
order definition in the SG-filter, the fractional order derivative can be obtained of 
corrupted signals (Chen et al., 2011). Moreover recent findings highlight the advantages 
of fractional order SG filters, as new solutions to smooth noisy data obtained from, for 
say, near infrared spectral analysis (Tong et al., 2015). It is worth noting that there are 
several sources of noise, including electronic noise, acoustic noise, electromagnetic and 
electrostatic noise, that may limit the performance and accuracy in signal processing 
systems (Vaseghi, 2008). In signal processing it is commonly assumed that the noise is an 
additive white Gaussian noise (AWGN) process. In practice, often non-stationary, 
impulsive type disturbances, burst noises, etc., can also occur. Although for several 
problems mathematically convenient and efficient filtering and smoothing algorithms 
exist, most of them require the characterisation and model of the noise process. The SG 
method was originally developed to make discernible the relative widths and heights of 
spectral lines. It smooth’s equally the noise and the signal components, as it leads to bias 
and reduction in resolution. For denoising signals with a large spectral dynamic or with a 
high rate of change, the classical SG filtering is an unsuitable method. In addition, the 
efficiency depends on the appropriate selection of the polynomial order and the window 
length, which should match the intrinsic scale of the input signal. However the SG-filters 
give excellent results while preserving simplicity and speed, but most of the applications 
require the users to arbitrarily select the polynomial order and size of the sliding window. 
In general, the SG filters perform well when we apply a low order polynomial with long 
window length or low degree with short window and repeated smoothing. It has also been 
shown that the smoothing effect decreases by applying low order polynomial on higher 
frequencies or high order polynomials on lower frequency parts of the signal. With this in 
mind, in this study we introduce an adaptive smoothing method based on SG filtering, 
which provides a good performance independent of the type of noise process. This brief 
communication is organised as follows. In Section 2 we summarise the basic 
mathematical background of the classical SG smoothing and we discuss its performance. 
In Section 3 we derive the new adaptive multi-round technique. Then the simulation 
results are presented in Section 4. After, in Section 5 we draw some pertinent 
conclusions. 
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Figure 1 Performance of the SG filter, (a) signal with contaminating noise 
(b) dotted line – original signal, solid line – smoothed signal, k = 3, m = 35 

 

 
(a) 

 

 
(b) 

2 Theoretical background 

In the following, a brief summary of the mathematical background of SG filtering is 
provided that is based on Flannery et al. (1992). First, consider a sequence of equally 
spaced input data n{xj, yj}, j = 1,…,n. The smoothed values derives from convolution, 
given by 

1,
m

i i k
i m

g c y +
=−

=   (1) 

where the window length M = 2m + 1, i = –m,…,λ,…,m, and λ denotes the index of the 
middle point. The kth order polynomial P can be written as 

( ) ( ) ( )2
0 1 2

k
λ λ k λP a a x x a x x a x x= + > + > + + >  (2) 

The task is to evaluate the coefficients of equation (2) by minimising the fitting error in 
the least squares sense. The Jacobian matrix is given by 

PJ
a

∂=
∂

 (3) 
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The polynomial at x = x_ is a0, hence in order to evaluate the polynomial in the window 
we have to solve a system of M equations which can be written in matrix form 

J a y⋅ =  (4) 

( ) ( )

( ) ( )

0
1

1 0 0

1

k
λ m λ λ mλ m λ

k k λ mλ m λ λ m λ

x x a yx x

a yx x x x

− −−

++ +

 − −         
     
     × =     
     
      −    − 



     
  

     


 

The coefficients are found from the normal equation in the following writing 

( )( )  T TJ Ja J J a=  (5) 

so 

( ) ( )1  T Ta J J J y−=  (6) 

Since 

( ) ( ) ( )1
0 ,T T

λP x a J J J y−= =  (7) 

by replacing y with a unit vector in equation (6) the c0 coefficient can be calculated as 

( )
1

1
0 ,

1

k
T

j iji
i

c J J J
+

−

=

=  (8) 

Table 1 Some SG coefficients 

SG coefficients 
M k Coefficients 
9 2 –0.0909 0.0606 0.1688 0.2338 0.2554 0.2338 0.1688 0.0606 –0.0909 

4 0.0350 –0.1282 0.0699 0.3147 0.4172 0.3147 0.0699 –0.1282 0.0350 
11 3 –0.0839 0.0210 0.1026 0.1608 0.1958 0.2075 0.1958 0.1608 0.1026 0.0210 –0.0839 

5 0.0420 –0.1049 –0.0233 0.1399 0.2797 0.3333 0.2797 0.1399 –0.0233 –0.1049 0.0420 

Note: M = 2m + 1 is the window length and k denotes the polynomial degree. 

With a size of (2m + 1)x(k + 1) the G matrix of the convolution coefficients 

( ) [ ]0 1, , , ,T
jG J J J g g g= =   (9) 

the coefficients for the γth order derivative being derived from the formula below 
(Orfanidis, 1995), 

( ) ! ( ) ( )
m

γ
γk

m

c γ g m x k m
−

= − −  (10) 
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3 Adaptive multi-round smoothing 

The proposed method seeks to overcome the above mentioned limitations of SG filtering. 
This new adaptive concept ensures the application of a suitable polynomial order and 
window length at the different frequency components of the signal. Thus, it is possible to 
avoid the undershoots and preserve the peaks that could be important from different data 
analysis aspects. Since we perform in the time domain, this method provides efficient 
results independent of the type of contaminating noise. 

3.1 Adaptive construction of SG-filter 

In order to separate the signal components of different frequency-density, first of all, a 
conventional SG filtering is performed. Because we assume that only the corrupted signal 
is available, this step serves to reveal the peaks, hence the window length and degree of 
the polynomial may be arbitrary. After, the first smoothing the coordinates of the local 
minimum and maximum points can be obtained in consecutive order: 

1 2

1 2

u

u

x x x
C

y y y
 

=  
 




 (11) 

Then the d distance vector is introduced, which contains the number of samples between 
two neighbouring points of local minima and maxima: 

( )1 2 1ud δ δ δ −=   (12) 

The separation of R = [r1,…rl] number of parts of the signal containing similar frequency 
components is based on the following measures. The bordering points are marked out for 
detecting the sections between the δ local extrema one-by-one. If the variance given by 

1 2 2
( ) 1

1 ( 1) ,
u

d ii
S u δ δ

−

=
= − −  of the actual section based on the previous values is >> 1, 

then this will be the first section of the next part. In each part of the signal which contains 
similar frequency components, the applied window length (M) and polynomial degree (k) 
is determined as follows. The window should match the scale of the signal and the 
polynomial degree should vary by depending on the framesize and frequency. Since the 
next fuzzy relation can be defined between the section length; 

( ) ( )max
max

1 [0, 1]
1 R

R δ d
F d d

e− −
>> = ∈

+
 (13) 

where Rδ  stands for the average length of the sections in the current R parts of the signal, 
while δmax = max(d) in the observed signal. If max( , ) 1,Rg d d =  the current part of the 
signal contains high frequency components. Hence, the following rules are applied: 

( ) ( )maxif 1 , 0.9  then  5, 0.3R Rg d d k M nint δ> > = =  (14) 

( ) ( )maxif 0.89 , 0.75  then  4, 0.5R Rg d d k M nint δ> = > = =  (15) 

( ) ( )maxif 0.75  , 0.45  then  3,R Rg d d k M nint δ> > = =  (16) 
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( ) ( )maxif 0.44  , 0.2  then  2, 0.5R ng d d k M nint R> > = =  (17) 

( )else  1, 0.8 nk M nint R= =  (18) 

where Rn is the total number of samples of the R part, and we can assign the k and M 
values to each R part of the signal. The values for the bounds have been determined 
according to the formula 2k modified by experimental results. 

3.2 Multi-round correction with linear approximation 

As we have the coordinates of the local minimum and maximum points and the vector d, 
we can easily construct the linear approximation ax + b = y of the sections. It serves for 
performing two important tasks. First, after the first adaptive SG-smoothing subtracting it 
from the smoothed signal the imprecision or inflexion points can be revealed. Therefore it 
makes the correction process possible by introducing new cutting points for the next 
adaptive smoothing. However, we can compress the data in such a way that it could be 
useful for analysing economic trends. Alternatively, a linear regression line could be also 
fitted on the smoothed data between two local extrema. In this case, the ending and 
starting points of two consecutive lines do not necessary follow so as to match at the 
same value. Therefore further corrections can be introduced by marking out the middle 
value between the ending point of the first line and the starting point of the second line. 
After, the new lines are defined at these new points. For details, see Figure 2. The first 
regression line ends on point A and the next regression line starts in point C. The new 
lines are defined at point B. After the correction of the smoothed signal, an adaptive 
smoothing is once again performed. If the difference between the linear approximate and 
the smoothed function is greater then 2, then adaptive smoothing is necessary again. This 
iterative method of smoothing and corrections assists the detection and preservation of 
the soft shapes of the signal. 

Figure 2 Illustration of joining the regression lines 

 

We list below the steps of the adaptive multi-round smoothing procedure: let y0 denote 
the corrupted input signal and let yi denote the corresponding output data. 

1 perform SG-filtering on y0 and get y1 
2 detect local extrema [C] and compute the distances [d] 
3 determine [R] 
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4 perform adaptive SG-smoothing on y1 
5 repeat step 2 on y1 
6 fit linear lines and get ylin 
7 calculate  = y1 – ylin 
8 if  > ν then repeat steps 3 through 7. 

4 Simulation results 

The performance of the proposed method has been tested on a one-dimensional signal 
corrupted with additive noise (Figure 3). The simulation was carried out by using 
Matlab7. After the first smoothing (Figure 3), the cutting points were determined in  
r = [150, 421]. Then the adaptive smoothing was performed (Figure 4). Comparing 
Figure 3 and Figure 4, it can be seen that the undershoot have been corrected by applying 
the appropriate polynomial degree and window length. With the linear approximation 
(Figure 5) of the signal obtained, a further correction for the new repartioning is got, 
where the cutting points are defined in r = [150, 387, 450]. The result of the next adaptive 
SG-smoothing is depicted in Figure 6. It is apparent, that the soft cambers are tracked and 
the shape of the signal preserved with correct elimination of noise components. This 
iterative method of smoothing and correction provides a good performance in the case of 
irregular signals. For fast and simple performance the coefficients are obtained from 

tables. In case of high sampling rate the signal is resampled with ( )
100

xs x =  in order to 

match for shorter running window. Then, the missing values are replaced with simple 
nearest neighbour interpolation. 

Figure 3 (a) Original signal corrupted with noise (b) smoothing with the classical SG filter, k = 3, 
m = 35, dotted line – original signal, solid line – smoothed signal, stars – local minima 
and maxima 
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Figure 4 Smoothing with adaptive SG filtering 

 

Note: Solid line – smoothed signal, dotted line – original signal,  
k1 = 3, m1 = 39, k2 = 3, m2 = 21, k3 = 4, m3 = 31. 

Figure 5 Linear approximation of the signal 

 

Figure 6 Smoothing with adaptive SG filtering after correction 

 

Note: Solid line – smoothed signal, dotted line – original signal,  
k1 = 2, m1 = 45, k2 = 3, m2 = 25, k3 = 4, m3 = 15, k4 = 5, m4 = 9. 

5 Application example: EMG signal denoising 

The processing of electromyography (EMG) signals are highly important in several 
biomedical applications. Recently, many researches focus on the noise-removal issues on 
EMG signals which is very desirable in order to developed precisely standardised 
biomedical technologies (Chowdhury et al., 2013; De Luca et al., 2010). While, for 
instance, study (Clancy et al., 2002) concerns the sources and processing of surface EMG 
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measurement noises and discusses amplitude estimating and noise-cancellating 
techniques of the denoised signal. 

For an application example, our technique was tested on a noisy EMG signal. The 
original data was taken from Goldberger, et al. (2000) which was corrupted with AWGN. 
Performance of the adaptive multi-round filter can be seen on Figures 7 and 8. The 
signal-to-noise ratio was SNR = 0.3744 [dB] before and SNR = 7.3421 [dB] after the 
smoothing. These results validate that this technique can be valuable for several 
applications such as EMG processing applications. 

Figure 7 EMG signal corrupted with noise (see online version for colours) 

 

Figure 8 Denoised EMG signal with adaptive multi-round SG filter (see online version  
for colours) 

 

Notes: Blue line-original signal, red line – denoised signal. 
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6 Conclusions 

In this paper the adaptive multi-round smoothing based on the SG algorithm was 
introduced. An important premise of the classical SG filtering is that the signal should be 
slowly-varying. The proposed method automatically selects the polynomial order and 
window length according to the signal form, thus signals with high rate of change are also 
can be smoothed correctly. For precise smoothing the algorithm applies linear 
approximation of the signal. The optimal resolution of the signal is based on the local 
extrema points. The method iteratively performs the adaptive smoothing and correction, 
hence the shape of also fast-varying signals can be precisely detected. Thus the important 
details of the signal are preserved besides full elimination of the contaminating 
components independent of the character of noise process. Further, such a decomposition 
of the signal with linear approximation allows convenient data compression. Simulation 
results have shown, that the proposed technique allows excellent performance. Our 
procedure is a clear improvement on current methods. 
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