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a b s t r a c t

Combining neural networks with continuous logic and multicriteria decision-making tools can reduce
the black-box nature of neural models. In this study, we show that nilpotent logical systems offer
an appropriate mathematical framework for hybridization of continuous nilpotent logic and neural
models, helping to improve the interpretability and safety of machine learning. In our concept, per-
ceptrons model soft inequalities; namely membership functions and continuous logical operators. We
design the network architecture before training, using continuous logical operators and multicriteria
decision tools with given weights working in the hidden layers. Designing the structure appropriately
leads to a drastic reduction in the number of parameters to be learned. The theoretical basis offers a
straightforward choice of activation functions (the cutting function or its differentiable approximation,
the squashing function), and also suggests an explanation to the great success of the rectified linear
unit (ReLU). In this study, we focus on the architecture of a hybrid model and introduce the building
blocks for future applications in deep neural networks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

AI techniques, especially deep learning models are revolution-
izing the business and technology world. One of the greatest
challenges is the increasing need to address the problem of inter-
pretability and to improve model transparency, performance, and
safety. Although deep neural networks have achieved impressive
experimental results e.g. in image classification, they may surpris-
ingly be unstable when it comes to adversarial perturbations, that
is, minimal changes to the input image that cause the network
to misclassify it [1–4]. Interpretability becomes more and more
important these days when it comes to predictive modeling. In
a high-risk environment it is inevitable to know why a decision
was made, it is not enough to know that the predictive per-
formance on a test dataset was good. This knowledge can help
you learn more about the problem, the data and the reason why
a model might fail. In black-box models, less is known about
what influencing variables are actually driving the final decision.
The relationship between the input and output is often limited
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in complexity and local interpretations. White-box models such
as linear regression and decision trees are significantly easier to
explain and interpret, on the other hand, provide less predictive
capacity and are not always capable of modeling the inherent
complexity of the dataset (i.e. feature interactions).

Combining deep neural networks with structured logical rules
and multicriteria decision tools, where logical operators are ap-
plied on clusters created in the first layer, contributes to the re-
duction of the black-box nature of neural models. Aiming at inter-
pretability, transparency and safety, implementing continuous-
valued logical operators offers a promising direction.

Although Boolean units and multilayer perceptrons have a
long history, to the best of our knowledge there has been little
attempt to combine neural networks with continuous logical sys-
tems so far. The basic idea of continuous logic is the replacement
of the space of truth values {T , F} by a compact interval such as
[0, 1]. This means that the inputs and the outputs of the extended
logical gates are real numbers of the unit interval, representing
truth values of inequalities. Quantifiers ∀x and ∃x are replaced by
supx and infx, and logical connectives are continuous functions.
Based on this idea, human thinking and natural language can be
modeled in a sophisticated way.

Among other families of many-valued logics, t-norm fuzzy
logics are broadly used in applied fuzzy logic and fuzzy set theory
as a theoretical basis for approximate reasoning. In fuzzy logic,
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the membership function of a fuzzy set represents the degree
of truth as a generalization of the indicator function in classical
sets. Both propositional and first-order (or higher-order) t-norm
fuzzy logics, as well as their expansions by modal and other
operators, have been studied thoroughly. Important examples
of t-norm fuzzy logics are monoidal t-norm logic of all left-
continuous t-norms, the basic logic of all continuous t-norms,
product fuzzy logic of the product t-norm, or the nilpotent min-
imum logic of the nilpotent minimum t-norm. Some indepen-
dently motivated logics belong among t-norm fuzzy logics as
well, like Łukasiewicz logic (which is the logic of the Łukasiewicz
t-norm) and Gödel–Dummett logic (which is the logic of the
minimum t-norm).

Recent results [5–10] show that in the field of continuous
logic, nilpotent logical systems are the most suitable for neural
computation, mainly because of their bounded generator func-
tions. Moreover, among other preferable properties, the fulfill-
ment of the law of contradiction and the excluded middle, and
the coincidence of the residual and the S-implication [11,12] also
make the application of nilpotent operators in logical systems
promising. In [5–10] a rich asset of operators was examined
thoroughly: in [5], negations, conjunctions and disjunctions, in [7]
implications, and in [6] equivalence operators. In [8], a parametric
form of a general operator oν was given by using a shifting
transformation of the generator function. Varying the parameters,
nilpotent conjunctive, disjunctive, aggregative (where a high in-
put can compensate for a lower one) and negation operators can
all be obtained. Moreover, as it was shown in [9], membership
functions, which play a substantial role in the overall perfor-
mance of fuzzy representation, can also be defined by means of
a generator function.

In this study, we introduce a nilpotent neural model, where
nilpotent logical operators and multicriteria decision tools are
implemented in the hidden layers of neural networks (see Fig. 3).
Only the weights of the first layer (parameters of hyperplanes
separating the decision space) are to be learned, and the archi-
tecture needs to be designed. In a more sophisticated version,
left for future work, the type of the operators in the hidden
layers can also be learned by the network, or e.g. by a genetic
algorithm. Moreover, in [9] the authors showed that the most
important logical operators can be expressed as a composition of
a parametric unary operator and the arithmetic mean. This means
that the neural network only needs to learn the parameters of the
first layer and (if not initially given) the parameters of these unary
operators in the hidden layers.

In the nilpotent neural model, the activation functions in the
first layer are membership functions representing truth values of
inequalities, normalizing the inputs. At the same time, the acti-
vation functions in the hidden layers model the cutting function
(or to avoid the vanishing gradient problem, its differentiable
approximation, the so-called squashing function) in the nilpotent
logical operators. The theoretical background offers a straight-
forward choice of activation functions: the squashing function,
which is an approximation of the rectifier. The fact that the
squashing function, in contrast to the rectifier, is bounded from
above, makes the continuous logical concept applicable.

The article is organized as follows. After summarizing the
most important related work in Section 2, we revisit the relevant
preliminaries concerning nilpotent logical systems in Section 3.
The nilpotent neural concept is described in Section 4. In Sec-
tion 5, the model is illustrated with some extended tensorflow
playground examples. Finally, the main results are summarized
in Section 6.

2. Related work

Combinations of neural networks and logic rules have been
considered in different contexts. Neuro-fuzzy systems [13] were
examined thoroughly in the literature. These hybrid intelligent
systems synergize the human-like reasoning style of fuzzy sys-
tems with the learning structure of neural networks through the
use of fuzzy sets and a linguistic model consisting of a set of
IF-THEN fuzzy rules. These models were the first attempts to
combine continuous logical elements and neural computation.

KBANN [14], Neural-symbolic systems [15], such as CILP++
[16], constructed network architectures from given rules to per-
form knowledge acquisition. Kulkarni et al. [17] used a specialized
training procedure to obtain an interpretable neural layer of an
image network. In [18], Hu et al. proposed a general framework
capable of enhancing various types of neural networks (e.g., CNNs
and RNNs) with declarative first-order logic rules. Specifically,
they developed an iterative distillation method that transfers
the structured information of logic rules into the weights of
neural networks. With a few highly intuitive rules, they obtained
substantial improvements and achieved state-of-the-art or com-
parable results to previous best-performing systems. In [19], Xu
et al. developed a novel methodology for using symbolic knowl-
edge in deep learning by deriving a semantic loss function that
bridges between neural output vectors and logical constraints.
This loss function captures how close the neural network is to
satisfying the constraints on its output. In [20], Fischer et al. pre-
sented DL2, a system for training and querying neural networks
with logical constraints. Using DL2, one can declaratively specify
domain knowledge constraints to be enforced during training, as
well as pose queries on the model to find inputs that satisfy a set
of constraints. DL2 works by translating logical constraints into a
loss function with desirable mathematical properties. The loss is
then minimized with standard gradient-based methods [21].

Last but not least, we would like to mention modular neu-
ral networks, as an improvement on the conventional artificial
neural networks, where a task can be divided into subtasks, and
each of these sub-tasks is learned by an expert sub-module. This
technique has been successfully used e.g. in pattern recognition,
particularly to human recognition using different biometric mea-
sures [22–26]. Granual computing, where a granule is defined as
one of the numerous small particles forming a larger unit, has
also been successfully combined with modular neural networks
by granulating the information that the network is going to learn.
This approach defines a granule as one of the numerous small
particles forming a larger unit. In [25], the advantages of this
type of networks were widely demonstrated. Using the granual
approach, the smaller sub-tasks, which are easily described with
the model proposed in this work, can be combined to solve a
more complex problem.

All of these promising approaches point towards the desirable
mathematical framework that nilpotent logical systems can offer.
Our general aspiration here is to provide a general mathematical
framework in order to benefit from tight integration of ma-
chine learning and continuous logical methods. The model is well
aligned not only with black-box models, but also with white-box
models such as regression or decision trees [27].

3. Nilpotent logical systems and multicriteria decision tools

In this Section, we show why a specific logical system, the
nilpotent logical system is well-suited to the neural environment.
First, we provide some basic preliminaries.

The most important operators in classical logic are the con-
junction, the disjunction, and the negation operator. These three
basic operators together form a so-called connective system.
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When extending classical logic to continuous logic, compatibility
and consistency are crucial. The negation should also be involu-
tive; i.e. n(n(x)) = x, for ∀x ∈ [0, 1]. Involutive negations are
called strong negations.

Definition 1. The triple (c, d, n), where c is a t-norm, d is
a t-conorm, and n is a strong negation, is called a connective
system.

As mentioned in the Introduction, numerous continuous log-
ical systems have been introduced and studied in the literature.
In this study, we will show how nilpotent logical systems relate
to neural networks.

Definition 2 ([5]). A connective system is nilpotent, if the con-
junction c is a nilpotent t-norm, and the disjunction d is a nilpo-
tent t-conorm.

In the nilpotent case, the generator functions of the disjunc-
tion and the conjunction (denoted by t(x) and s(x) respectively)
are bounded functions, being determined up to a multiplicative
constant. This means that they can be normalized the following
way:

fc(x) :=
t(x)
t(0)

, fd(x) :=
s(x)
s(1)

. (1)

Note that the normalized generator functions are now
uniquely defined.

Next, we recall the definition of the cutting function, to sim-
plify the notations used. The differentiable approximation of this
cutting function, the squashing function S(x) introduced and ex-
amined in [28], will be a ReLu-like bounded activation function
in our model. In [8], the authors showed that all the nilpotent
operators can be described by using one generator function f (x)
and the cutting function.

Definition 3. Let us define the cutting operation [ ] by

[x] =

{ 0 if x < 0
x if 0 ≤ x ≤ 1
1 if 1 < x

Remark 1. Note that the cutting function has the same values as
ReLu (rectified linear unit) for x ≤ 1, but it remains bounded for
∀x ∈ R.

Proposition 1. With the help of the cutting operator, we can
write the conjunction and disjunction in the following form, where fc
and fd are decreasing and increasing normalized generator functions
respectively.

c(x, y) = f −1
c [fc(x) + fc(y)], (2)

d(x, y) = f −1
d [fd(x) + fd(y)]. (3)

Remark 2. For the natural negations to coincide, as shown in [5],
fc(x) + fd(x) = 1 must hold for ∀x ∈ [0, 1], which means that
only one generator function, e.g. fd(x) is needed to describe the
operators. Henceforth, fd is represented by f (x).

Remark 3. Note that the min and max operators (often used
as conjunction and disjunction in applications) can also be ex-
pressed by [ ] in the following way:

min(x, y) = [x + [y − x + 1] − 1] , (4)

max(x, y) = [x + [y − x]] , (5)

where x, y ∈ [0, 1].

The associativity of t-norms and t-conorms permits us to
consider their extensions to the multivariable case. In [8], the au-
thors examined a general parametric operator oν(x) of nilpotent
systems.

Definition 4. Let f : [0, 1] → [0, 1] be an increasing bijection,
ν ∈ [0, 1], and x = (x1, . . . , xn), where xi ∈ [0, 1] and let us define
the general operator by

oν(x) = f −1

[
n∑

i=1

(f (xi) − f (ν)) + f (ν)

]
=

= f −1

[
n∑

i=1

f (xi) − (n − 1)f (ν)

]
.

(6)

Remark 4. Note that the general operator for ν = 1 is conjunc-
tive, for ν = 0 it is disjunctive and for ν = ν∗

= f −1
( 1
2

)
it is

self-dual.

On the basis of Remark 4, the conjunction, the disjunction and
the aggregative operator can be defined in the following way.

Definition 5. Let f : [0, 1] → [0, 1] be an increasing bijection,
x = (x1, . . . , xn), where xi ∈ [0, 1]. Let us define the conjunction,
the disjunction and the aggregative operator by

c(x) := o1(x) = f −1

[
n∑

i=1

f (xi) − (n − 1)

]
, (7)

d(x) := o0(x) = f −1

[
n∑

i=1

f (xi)

]
, (8)

a(x) := oν∗ (x) = f −1

[
n∑

i=1

f (xi) −
(n − 1)

2

]
, (9)

respectively, where ν∗
= f −1

( 1
2

)
.

A conjunction, a disjunction and an aggregative operator differ
only in one parameter of the general operator in (6). The pa-
rameter ν has the semantic meaning of the level of expectation:
maximal for the conjunction, neutral for the aggregation, and
minimal for the disjunction. Next, let us recall the weighted form
of the general operator:

Definition 6. Let w ∈ Rn, f : [0, 1] → [0, 1] an increasing
bijection with ν ∈ [0, 1], x = (x1, . . . , xn), where xi ∈ [0, 1]. The
weighted general operator is defined by

oν,w(x) := f −1

[
n∑

i=1

wi(f (xi) − f (ν)) + f (ν)

]
. (10)

Note that if the weight vector is normalized; i.e. for
∑n

i=1 wi =

1,

oν,w(x) = f −1

(
n∑

i=1

wif (xi)

)
. (11)

For future application, we introduce a threshold-based operator
in the following way.

Definition 7. Let w ∈ Rn, x = (x1, . . . , xn) ∈ [0, 1]n, ν =

(ν1, . . . νn) ∈ [0, 1]n and let f : [0, 1] → [0, 1] be a strictly
increasing bijection. Let us define the threshold-based nilpotent
operator by

oν,w(x) = f −1

[
n∑

i=1

wi (f (xi) − f (νi)) + f (ν)

]
=
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Fig. 1. Nilpotent conjunction and disjunction followed by their approximations using the squashing function.

Table 1
The most important two-variable operators ow(x).

w1 w2 C ow(x, y) for f (x) = x Notation

Logical operators

Disjunction 1 1 0 f −1
[f (x) + f (y)] [x + y] d(x, y)

Conjunction 1 1 −1 f −1
[f (x) + f (y) − 1] [x + y − 1] c(x, y)

Implication −1 1 1 f −1
[f (y) − f (x) + 1] [y − x + 1] i(x, y)

Multicriteria decision tools

Arithmetic mean 0.5 0.5 0 f −1
[ f (x)+f (y)

2

] x+y
2 m(x, y)

Preference −0.5 0.5 0.5 f −1
[ f (y)−f (x)+1

2

] y−x+1
2 p(x, y)

Aggregative operator 1 1 −0.5 f −1
[
f (x) + f (y) −

1
2

] [
x + y −

1
2

]
a(x, y)

= f −1

[
n∑

i=1

wif (xi) + C

]
, (12)

where

C = f (ν) −

n∑
i=1

wif (νi). (13)

Note that for f (x) = x, (12) gives the functions modeled by
perceptrons in neural networks:[

n∑
i=1

wixi + C

]
. (14)

Based on Eqs. (7) to (9), it is easy to see that the conjunction, the
disjunction and also the aggregative operator can be expressed in
this form. The most commonly used operators for n = 2 and for
special values of wi and C , also for f (x) = x, are listed in Table 1.

Now let us focus on the unary (1-variable) case, examined
in [9], which also plays an important role in the nilpotent neural
model. The unary operators are mainly used to construct mod-
ifiers and membership functions by using a generator function.
The membership functions can be interpreted as modeling an in-
equality [29]. Note that non-symmetrical membership functions
can also be constructed by connecting two unary operators with
a conjunction [9,10].

Definition 8. Let x ∈ [0, 1], α, γ ∈ R and let f : [0, 1] → [0, 1],
a strictly increasing bijection. Then

oα,γ (x) := f −1
[αf (x) + γ ]. (15)

Remark 5. Note that as shown in [9], Eq. (15) composed by the
(weighted) arithmetic mean operator as an inner function, yields
to Eq. (12).

Table 2
The most important unary operators oα,γ (x).

γ oα,γ (x) for f (x) = x Notation

Possibility 0 f −1
[αf (x)] [αx] τP (x)

Necessity 1 − α f −1
[αf (x) − (α − 1)] [αx − (α − 1)] τN (x)

Sharpness α−1
2 f −1

[αf (x) −
(α−1)

2 ] [αx −
(α−1)

2 ] τS (x)

The most important unary operators for special γ values are
listed in Table 2.

Our attention can now be turned to the cutting function. The
main drawback of the cutting function in the nilpotent operator
family is the lack of differentiability, which would be necessary
for numerous practical applications. Although most fuzzy applica-
tions (e.g. embedded fuzzy control) use piecewise linear member-
ship functions owing to their easy handling, there are areas where
the parameters are learned by a gradient-based optimization
method. In this case, the lack of continuous derivatives makes the
application impossible. For example, the membership functions
have to be differentiable for each input in order to fine-tune a
fuzzy control system by a simple gradient-based technique. This
problem could be easily solved by using the so-called squashing
function, which provides a solution to the above-mentioned prob-
lem by a continuously differentiable approximation of the cutting
function.

The squashing function given in Definition 9 is a continuously
differentiable approximation of the generalized cutting function
by means of sigmoid functions (see Fig. 2).

Definition 9. The squashing function [9,28,30] is defined as

S(β)a,λ(x) =
1

λβ
ln

1 + eβ(x−(a−λ/2))

1 + eβ(x−(a+λ/2)) =
1

λβ
ln

σ
(−β)
a+λ/2(x)

σ
(−β)
a−λ/2(x)

.
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Fig. 2. Squashing functions for a = 0.5, λ = 1, for different β values (β1 = 1,
β2 = 2, β3 = 5, and β4 = 50).

where x, a, λ, β ∈ R and σ
(β)
d (x) denotes the logistic function:

σ
(β)
d (x) =

1
1 + e−β·(x−d) . (16)

By increasing the value of β , the squashing function ap-
proaches the generalized cutting function. In other words, β
shows the accuracy of the approximation, while the parameters
a and λ determine the center and width. The error of the ap-
proximation can be upper bounded by c/β , which means that by
increasing the parameter β , the error decreases by the same order
of magnitude. The derivatives of the squashing function are easy
to calculate and can be expressed by sigmoid functions and itself:

∂S(β)a,λ(x)
∂x

=
1
λ

(
σ

(β)
a−λ/2(x) − σ

(β)
a+λ/2(x)

)
(17)

∂S(β)a,λ(x)
∂a

=
1
λ

(
σ

(β)
a+λ/2(x) − σ

(β)
a−λ/2(x)

)
(18)

∂S(β)a,λ(x)
∂λ

= −
1
λ
S(β)a,λ(x) +

1
2λ

(
σ

(β)
a+λ/2(x) + σ

(β)
a−λ/2(x)

)
(19)

The squashing function defined above is an approximation of
the rectifier (rectified linear unit, ReLU) for x ≤ 1, with the benefit
of having an upper bound. Being bounded from above makes the
use of continuous logic possible. Also note the significant differ-
ence between the properties of the squashing function and the
sigmoid. Using sigmoids, nilpotent logic can never be modeled.
The fact that on the other hand, ReLu can approximate the cutting
function, may offer an interpretation to its effectiveness and
success. The fact that the squashing function is differentiable and
its derivatives can be expressed by sigmoids improves efficiency
in applications. An illustration of the nilpotent conjunction and
disjunction operators with their soft approximations using the
squashing function is shown in Fig. 1. Note that not only logical
operators but also multicriteria decision tools, like the prefer-
ence operator can be described similarly. This means that our
model offers a unified framework, in which logic and multicriteria
decision tools cooperate and supplement each other.

4. Nilpotent logic-based interpretation of neural networks

The results on nilpotent logical systems discussed in Section 3
offer a new approach to designing neural networks using contin-
uous logic, since membership functions (representing the truth

Fig. 3. Nilpotent neural model.

value of an inequality), and also nilpotent logical operators can
be modeled by perceptrons. Whether for image classification or
for multicriteria decision support, structured logical rules can
contribute to the performance of a deep neural network. Given
that the network has to find a region in the decision space
or in an image, after designing the architecture appropriately,
the network only has to find the parameters of the boundary.
Here, we propose creating basic building blocks by applying the
nilpotent logical concept in the perceptron model and also in the
neural architecture.

Boolean units and multilayer perceptrons have a long history.
Logical gates (such as the AND, NOT and OR gates) are the basis
of any modern-day computer. It is well known that any Boolean
function can be composed using a multi-layer perceptron. As
examples, the conjunction and the disjunction are illustrated in
Fig. 6. Note that for the XOR gate, an additional hidden layer is
also required. It can be shown that a network of linear classifiers
that fires if the input is in a given area with arbitrary complex
decision boundaries can be constructed with only one hidden
layer and a single output. This means that if a neural network
learns to separate different regions in the n-dimensional space
having n input values, each node in the first layer can separate
the space into two half-spaces by drawing one hyperplane, while
the nodes in the hidden layers can combine them using logical
operators.

In Fig. 5, some basic types of neural networks are shown with
two input values, finding different regions of the plane. Generally
speaking, each node in the neural net represents one threshold
and therefore it can draw one line in the picture. The line may
be diagonal if the nodes receives both of the inputs i1 and i2. The
line has to be horizontal or vertical if the node only receives one
of the inputs. The deeper hidden levels are responsible for the
logical operations.

From several perspectives, as mentioned in the Introduction,
a continuous logical framework can provide a more sophisticated
and effective approach to this problem than a Boolean can.

Among continuous logical systems, the nilpotent logical
framework described above is well-suited for the neural concept
architecture when it comes to implementing logical rules. For the
sake of simplicity, henceforth we assume that for the generator
function f (x) = x holds and we design the neural network archi-
tecture in the following way. In the first layer, the perceptrons
model membership functions as truth values of inequalities, such
as
n∑

i=1

wixi − b > 0; (20)
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Fig. 4. Nilpotent perceptron model.

Fig. 5. Basic types of neural networks with two input values using logical
operators in the hidden layer used to find different regions of the plane.

representing a half-space bounded by a hyperplane in the deci-
sion space (see Fig. 4). Here, the weights wi and the bias b are to
be learned. The truth value of this inequality can be modeled by[

n∑
i=1

wixi − b

]
; (21)

or to avoid the vanishing gradient problem, the cutting function
can be approximated by the so-called squashing function, by the
differentiable approximation of the cutting function

S

(
n∑

i=1

wixi − b

)
. (22)

The parameters of the squashing function in (22) now have a
context-dependent semantic meaning.

Since the nilpotent logical operators also represent inequali-
ties and therefore have the same structure (compare with Eq. (14),
and see also Table 1 and Fig. 4), in the hidden layers, we can
apply them on the clusters created in the first layer (see Fig. 3).
Here, the weights and biases characterize the type of the log-
ical operator. As an illustration, the perceptron models of the
conjunction and of the disjunction can be seen in Fig. 6. This
means that for a given logical operator, the weights and the
bias can be frozen. The squashing function plays the role of
the activation function in all of the layers. The backpropagation
algorithm needs to be adjusted: the error function is calculated
based on all of the weights and biases (frozen and learnable), but
the backpropagation leaves the frozen layers out. Moreover, in
this nilpotent model, the conjunction, the disjunction, and the
aggregation differ only in a translation parameter; i.e. the weights
are equal for all of them and only the biases are different. This
fact makes it possible for the network to learn the type of logical
operators just by learning the bias.

To illustrate the model, two basic examples are given.

Fig. 6. Perceptron model of the conjunction and the disjunction.

Fig. 7. Perceptron model classifying a circle with radius r .

Example 1. As an example, let us assume that a network needs
to find positive examples that lie inside a triangular region. This
means that we should design the network to conjunct three half-
planes, and to find the parameters of the boundary lines. The
output values for a triangular domain using nilpotent logic and
its continuous approximation are illustrated in Fig. 8.

Example 2. The flow chart and the model for the logical expres-
sion

‘‘((x > 0) AND (y > 0)) OR ((x < 0) AND (y < 0))’’

can be seen in Fig. 10. Here, x < 0 is modeled by NOT (x > 0).
Note that
[[x + y − 1] + [(1 − x) + (1 − y) − 1]] =

= [[x + y − 1] + [−x − y + 1]] ,

therefore the bias for the negated inputs is +1. The weights and
biases for the logical operators are listed in Table 3.

Additionally, taking into account the fact that the area inside
or outside a circle is described by an inequality containing the
squares of the input values, it is also possible to construct a novel
type of unit by adding the square of each input into the input
layer (see Fig. 7). This way, the polygon approximation of the
circle can be eliminated. For an illustration, see Fig. 9. Note that
by modifying the weights, an arbitrary conic section can also be
described.

Choosing the right activation function for each layer is crucial
and may have a significant impact on metric scores and the
training speed of the neural model. In the model introduced in
this Section, the smooth approximation of the cutting function is
a natural choice for the activation function in the first layer as
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Fig. 8. Output values for a triangular domain using nilpotent logic and its continuous approximation for different parameter values.

Fig. 9. Output values for a circular region using nilpotent logic (a), and its
differentiable approximation (b).

well as in the hidden layers, where the logical operators work.
Although there are a vast number of activation functions (e.g. lin-
ear, sigmoid, tanh, or the recently introduced Rectified Linear Unit
(ReLU) [31], exponential linear unit (ELU) [32], sigmoid-weighted
linear unit (SiLU) [33]) considered in the literature, most of them
are introduced based on some desired properties, without any
theoretical background. The parameters are usually fitted only on
the basis of experimental results. The squashing function stands
out of the other candidates by having a theoretical background
thanks to the nilpotent logic which lies behind the scenes.

To sum up, on the one hand, this structure leads to a dras-
tic reduction in the number of parameters to be learned, and
on the other hand, it supports the interpretation, making the
debugging process manageable. Given the logical structure, the
parameters to be learned are located in the first layer. The choice
of the activation functions in the first layer as well as in the
hidden, logical layers, have a sound theoretical background. De-
signing the network architecture appropriately, arbitrary regions
can be described as intersections and unions of polyhedra in
the decision space. Moreover, multicriteria decision tools can
also be integrated with given weights and thresholds. Note that
the weights and biases in the hidden layers define the type of
operator to be used. These parameters can also be learned in a
more sophisticated model to be examined in future work.

5. Playground examples

To illustrate our model with some simple examples, we ex-
tended the Tensorflow Playground with the squashing function
(β = 50, λ = 1, a = 0.5) as activation function and modified the
backpropagation algorithm according to the frozen weights in the
hidden layers.

5.1. XOR

Let us first consider an example of a particular data set based
on Example 2. An image of a generated set of data is shown in

Fig. 10. Nilpotent neural structure representing the expression (x >

0) AND (y > 0) OR (x < 0) AND (y < 0).

Table 3
Weights and biases for modeling the XOR logical gate.

x > 0 w1 = 1 w2 = 0 b = 0 [x]

y > 0 w1 = 0 w2 = 1 b = 0 [y]

x AND y w1 = 1 w2 = 1 b = −1 [x + y − 1]

x OR y w1 = 1 w2 = 1 b = 0 [x + y]

NOT (x) w1 = −1 w2 = 0 b = 1 [1 − x]

NOT (y) w1 = 0 w2 = −1 b = 1 [1 − y]

(NOT (x)) AND w1 = −1 w2 = −1 b = 1 [−x − y + 1]

(NOT (y))

Fig. 11. Orange data points have a value of −1 and blue points
have a value of +1. Here, the target variable is positive when x
and y are both positive or both negative. In a logical network:

• If (x1 > 0) AND (x2 > 0) THEN predict +1
• If (x1 < 0) AND (x2 < 0) THEN predict +1
• Else predict −1

An efficient neural network can be built to make predictions
for this logical expression even without using the cross feature
x ∗ y. For the structure and for the frozen weights and biases, see
Table 3.

According to our model, the smooth approximation of the
cutting function called the squashing function is a natural choice
for the activation function in the first layer as well as in the
hidden layers, where the logical operators are used. If we design
this logical structure before training, an interpretation of the
network naturally emerges.
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Table 4
Weights and biases for modeling the preference operator.

x > y w1 = 0.5 w2 = −0.5 b = 0.5
[ x−y+1

2

]
y > −x w1 = 0.5 w2 = 0.5 b = 0.5

[ x+y+1
2

]
x < y w1 = −0.5 w2 = 0.5 b = 0.5

[
−x+y+1

2

]
y < −x w1 = −0.5 w2 = −0.5 b = 0.5

[
−x−y+1

2

]

Fig. 11. Nilpotent neural network block designed for modeling XOR. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Notice how the neurons in the hidden layer reveal the logical
structure of the network (Fig. 11), assisting the interpretability of
the neural model.

5.2. Preference

Another image of a generated set of data is shown in Fig. 12.
Orange data points have a value of −1 and blue points have a
value of +1. Here, the network has to learn the parameters of the
straight lines separating the different regions. The target variable
is positive when both x > y and y > −x hold or where both x < y
and y < −x hold. In a logical network:

• If (x > y) AND (y > −x) THEN predict +1
• If (x < y) AND (y < −x) THEN predict +1
• Else predict −1

The network structure is illustrated in Fig. 12. Here, the ex-
pression x > y is modeled by the preference operator p(x, y) (see
Tables 1 and 4). Notice how the neurons in the hidden layer reveal
the logical structure of the network (see Fig. 12), assisting the
interpretability of the neural model.

Remark 6. Networks can also be readily designed for finding
concave regions. For example, see Fig. 13.

Remark 7. Note that the frequently used min and max operators
can also be modeled by a similar network, based on Eqs. (4) and
(5).

6. Conclusions

In this study, we suggested interpreting neural networks by
using continuous nilpotent logic and multicriteria decision tools
to reduce the black-box nature of the neural models, aiming at
the interpretability and improved safety of machine learning. We
introduced the main concept and the basic building blocks of the
model to lay the foundations for the future steps of the appli-
cation. In our model, membership functions (representing truth

Fig. 12. Nilpotent neural network block designed for modeling preference. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 13. Nilpotent neural network block designed for finding a concave region.

values of inequalities), and also nilpotent operators are modeled
by perceptrons. The network architecture is designed prior to
training. In the first layer, the parameters of the membership
functions are needed to be learned, while in the hidden layers, the
nilpotent logical operators work with given weights and biases.
Based on previous results, a rich asset of logical operators with
rigorously examined properties is available. A novel type of neural
unit was also introduced by adding the square of each input to the
input layer (see Fig. 7) to describe the inside or the outside of a
circle without polygon approximation.

The theoretical basis offers a straightforward choice of activa-
tion functions: the cutting function or its differentiable approx-
imation, the squashing function. Both functions represent truth
values of soft inequalities, and the parameters have a semantic
meaning. Our model also seems to provide an explanation for the
great success of the rectified linear unit (ReLU).

Note that in case of deep neural networks, the computational
complexity of the nilpotent neural model corresponds to the
complexity of the traditional architecture, in other words, better
interpretability can be achieved without an increase of computa-
tion time. Moreover, thanks to the simple structure of the model,
more complex tasks can be described by using significantly less
parameters and layers, which can result in a drastic decrease
of computational complexity. To give an illustrative example,
consider a classification problem, where the positive examples
are represented in the area between two concentric circles. The
network has to find the parameters of these circles. By designing
the network using the model introduced in our work, there are
only a few parameters to be found (the two radii and the coordi-
nates of the center), whereas using a traditional neural network,
the computation is much more demanding.

There is still some limitations of the proposed model. Han-
dling overlapping regions in classification problems still remains
a major difficulty, as well as the exponential increase of test data
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needed in 3- or more dimensional learning problems. Another
limitation is of course, that a-priori information is needed to
design the architecture in an appropriate way.

The concept was illustrated with some toy examples taken
from an extended version of the tensorflow playground. The
implementation of this hybrid model in deeper networks (by
combining the building blocks introduced here) and its applica-
tion e.g. in multicriteria decision making or image classification,
illustrated with simulations and formal comparison of results is
left for future work.

Beyond classification, this model is also well aligned with
white-box machine learning, linear regression and decision trees.
To further our research, we are planning to provide a detailed
discussion on this topic as well.
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