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Abstract

Following our previous paper Dombi and Jónás (2019) [16], we will now present new inequalities using the general Poincaré 
formula for λ-additive measures. These inequalities represent bounds for the well-known Poincaré formula of probability theory.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is a familiar fact that the monotone (fuzzy) measures have been applied in many areas of science (see, e.g. [1–5]). 
The λ-additive measures (Sugeno λ-measures) [6], which are a specific class of monotone measures, play an important 
role in describing and modeling uncertainty (see, e.g. [7–11]). It is well known that the λ-additive measure is strongly 
connected with the belief- and plausibility measures and these may be viewed as lower- and upper probabilities, 
respectively (see, e.g. [12–14]). In [15], we presented the general formula for the λ-additive measure of the union of n
sets, which we called the general Poincaré formula for λ-additive measures. Using this formula, we introduced novel 
inequalities for λ-additive measures in [16]. Following these results, by applying the general Poincaré formula for 
λ-additive measures, we will now present bounds for the well-known Poincaré formula of probability theory.

2. Preliminaries

In this study, we will use the common notations ∩ and ∪ for the intersection and union operations over sets, 
respectively. Also, will use the notation A for the complement of set A, and P(X) will denote the power set of the set 
X.
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The familiar Poincaré formula of probability theory is

Pr

(
n⋃

i=1

Ai

)
=

n∑
k=1

∑
1≤i1<···<ik≤n

(−1)k−1ak, (1)

where Pr is a probability measure on the set X, A1, . . . , An ∈ P(X) and ak = Pr
(
Ai1 ∩ · · · ∩ Aik

)
.

The λ-additive measures were first proposed by Sugeno in 1974 [6].

Definition 1. The function Qλ :P(X) → [0, 1] is a λ-additive measure (Sugeno λ-measure) on the finite set X, iff Qλ

satisfies the following requirements:

(1) Qλ(X) = 1
(2) For any A, B ∈P(X) and A ∩ B = ∅,

Qλ(A ∪ B) = Qλ(A) + Qλ(B) + λQλ(A)Qλ(B),

where λ ∈ (−1, ∞) and P(X) is the power set of X.

Note that if X is an infinite set, then the continuity of function Qλ is also required. From now on, here Qλ will 
always denote a λ-additive measure on X.

In an earlier paper (see [15]), we introduced the general Poincaré formula for λ-additive measures, which is given 
by Eq. (2). This formula allows us to compute the λ-additive measure of the union of n sets.

Proposition 1. If X is a finite set, Qλ is a λ-additive measure on X, λ ∈ (−1, ∞), λ 
= 0, A1, . . . , An ∈ P(X) and 
n ≥ 2, then

Qλ

(
n⋃

i=1

Ai

)
= 1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λcλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ , (2)

where cλ,k = Qλ

(
Ai1 ∩ · · · ∩ Aik

)
.

Proof. See the proof of Theorem 1 in [15]. �
Note that we also gave an elementary proof of Proposition 1 in [17], and we proved the following Proposition in 

[16]:

Proposition 2. If X is a finite set, Qλ is a λ-additive measure on X, λ ∈ (−1, ∞), λ 
= 0, A1, . . . , An ∈ P(X) and 
n ≥ 2, then

Qλ

(
n⋂

i=1

Ai

)
= 1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λdλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ , (3)

where dλ,k = Qλ

(
Ai1 ∪ · · · ∪ Aik

)
.

Proof. See the proof of Proposition 2 in [16]. �
We will also utilize the following proposition.

Proposition 3. Let X be a finite set, Pr : P(X) → [0, 1] a probability measure on the set X and for any λ ∈ (−1, ∞), 
let the function hλ : [0, 1] → [0, 1] be given by
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hλ(x) =
⎧⎨
⎩

(1 + λ)x − 1

λ
, if λ 
= 0

x, if λ = 0.

Then, the set function Qλ : P(X) → [0, 1], which is given by

Qλ = hλ ◦ Pr, (4)

is a λ-additive measure on the set X, and for any A ∈P(X)

(a) if λ < 0, then Qλ(A) ≥ Pr(A)

(b) if λ = 0, then Qλ(A) = Pr(A)

(c) if λ > 0, then Qλ(A) ≤ Pr(A).

Proof. For the proof that the set function Qλ in Eq. (4) is a λ-additive measure, see [9] or the proof of Theorem 4.11 
in [3].

Let A ∈P(X). Since Pr(A) ∈ [0, 1], by noting Bernoulli’s inequality, we have

(1 + λ)Pr(A) ≤ 1 + λP r(A) (5)

for any uniquely determined λ ∈ (−1, ∞). Next from Eq. (5), we have

(1 + λ)Pr(A) − 1

λ
≥ Pr(A), if λ < 0 (6)

(1 + λ)Pr(A) − 1

λ
≤ Pr(A), if λ > 0 (7)

Next, by noting Eq. (4), from Eq. (6) and Eq. (7) we get statement (a) and (c), respectively. Also, statement (b) trivially 
follows from Eq. (4). �
Remark 1. Note that Eq. (4) means that the λ-additive measure Qλ is represented by the (P r, hλ) pair (see [9]).

3. Bounds for the probabilistic Poincaré formula

Utilizing the results above, we can state the following theorem.

Theorem 1. Let X be a finite set and let Pr : P(X) → [0, 1] be a probability measure on the set X. Then, there exists 
a λ-additive measure Qλ :P(X) → [0, 1] such that

1) if λ > 0, then for any A1, A2, . . . , An ∈P(X) and n ≥ 2,

1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λcλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ ≤

≤
n∑

k=1

∑
1≤i1<···<ik≤n

(−1)k−1ak ≤

≤ 1 − 1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λdλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ ;

(8)

and
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2) if λ < 0, then for any A1, A2, . . . , An ∈P(X) and n ≥ 2,

1 − 1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λdλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ ≤

≤
n∑

k=1

∑
1≤i1<···<ik≤n

(−1)k−1ak ≤

≤ 1

λ

⎛
⎜⎝ n∏

k=1

⎛
⎝ ∏

1≤i1<···<ik≤n

(
1 + λcλ,k

)⎞⎠
(−1)k−1

− 1

⎞
⎟⎠ ,

(9)

where ak , cλ,k and dλ,k are respectively given by ak = Pr
(
Ai1 ∩ · · · ∩ Aik

)
, cλ,k = Qλ

(
Ai1 ∩ · · · ∩ Aik

)
and dλ,k =

Qλ

(
Ai1 ∪ · · · ∪ Aik

)
.

Proof. Here, we will prove Eq. (8). Note that the proof of Eq. (9) is similar to that of Eq. (8). Let the function 
hλ : [0, 1] → [0, 1] be given by

hλ(x) = (1 + λ)x − 1

λ
, (10)

where λ ∈ (−1, ∞) and λ 
= 0. Now, let λ > 0. Then, based on Proposition 3, the set function Qλ : P(X) → [0, 1]
given by Qλ = hλ ◦ Pr is a λ-additive measure and for any B ∈P(X)

Qλ(B) ≤ Pr(B). (11)

Now, let λ′ be given by

λ′ = − λ

1 + λ
. (12)

Then, based on Corollary 4.5 in [3], the dual measure Qλ′ of Qλ, which is given by

Qλ′(A) = 1 − Qλ(A) (13)

for any A ∈P(X), is also a λ additive measure with the parameter λ′. Notice that Eq. (12) is a bijection; and as λ > 0, 
we have −1 < λ′ < 0. Then, based on Proposition 3, the set function Qλ′ : P(X) → [0, 1] given by Qλ′ = hλ′ ◦ Pr is 
a λ-additive measure and for any B ∈ P(X)

P r(B) ≤ Qλ′(B). (14)

Next, by noting Eq. (11), Eq. (13) and Eq. (14), we have

Qλ(B) ≤ Pr(B) ≤ 1 − Qλ(B) (15)

for any B ∈P(X), λ > 0. Now, let B = ⋃n
i=1 Ai . Then, by utilizing the De Morgan law, from Eq. (15), we have

Qλ

(
n⋃

i=1

Ai

)
≤ Pr

(
n⋃

i=1

Ai

)
≤ 1 − Qλ

(
n⋂

i=1

Ai

)
. (16)

Here, by noting the probabilistic Poincaré formula in Eq. (1), the general Poincaré formula for λ-additive measures in 
Eq. (2) (see Proposition 1), and Eq. (3) (see Proposition 2), from Eq. (16), we get Eq. (8). �
Remark 2. Because lim

λ→0

(1+λ)x−1
λ

= x, we see that

lim
λ→0

Qλ(B) = lim
λ→0

hλ(P r(B)) = Pr(B).

So, the inequalities in Eq. (8) and Eq. (9) furnish sharp (i.e. small) approximation intervals for the midterm in case λ
is very close to zero.
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Remark 3. Eq. (15) and Eq. (16) represent a well-known property of the λ-additive measure. Namely, if λ > 0, then 
the λ-additive measure Qλ is a belief measure, and its dual measure, which is given by 1 −Qλ(A) for any A ∈P(X), 
is a plausibility measure (see Theorem 4.21 in [3]).
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