

Available online at www.sciencedirect.com

Fuzzy Sets and Systems 396 (2020) 163-167

www.elsevier.com/locate/fss

Short communication

Lower and upper bounds for the probabilistic Poincaré formula using the general Poincaré formula for λ -additive measures

József Dombi^a, Tamás Jónás^{b,*}

^a Institute of Informatics, University of Szeged, Szeged, Hungary ^b Institute of Business Economics, Eötvös Loránd University, Budapest, Hungary

Received 11 January 2020; received in revised form 10 March 2020; accepted 27 March 2020 Available online 30 March 2020

Abstract

Following our previous paper Dombi and Jónás (2019) [16], we will now present new inequalities using the general Poincaré formula for λ -additive measures. These inequalities represent bounds for the well-known Poincaré formula of probability theory. © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: *\lambda*-additive measure; Poincaré formula

1. Introduction

It is a familiar fact that the monotone (fuzzy) measures have been applied in many areas of science (see, e.g. [1–5]). The λ -additive measures (Sugeno λ -measures) [6], which are a specific class of monotone measures, play an important role in describing and modeling uncertainty (see, e.g. [7–11]). It is well known that the λ -additive measure is strongly connected with the belief- and plausibility measures and these may be viewed as lower- and upper probabilities, respectively (see, e.g. [12–14]). In [15], we presented the general formula for the λ -additive measure of the union of *n* sets, which we called the general Poincaré formula for λ -additive measures. Using this formula, we introduced novel inequalities for λ -additive measures in [16]. Following these results, by applying the general Poincaré formula for λ -additive measures, we will now present bounds for the well-known Poincaré formula of probability theory.

2. Preliminaries

In this study, we will use the common notations \cap and \cup for the intersection and union operations over sets, respectively. Also, will use the notation \overline{A} for the complement of set A, and $\mathcal{P}(X)$ will denote the power set of the set X.

* Corresponding author.

https://doi.org/10.1016/j.fss.2020.03.020

E-mail addresses: dombi@inf.u-szeged.hu (J. Dombi), jonas@gti.elte.hu (T. Jónás).

^{0165-0114/© 2020} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The familiar Poincaré formula of probability theory is

$$Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \le i_{1} < \dots < i_{k} \le n} (-1)^{k-1} a_{k}, \tag{1}$$

where Pr is a probability measure on the set $X, A_1, \ldots, A_n \in \mathcal{P}(X)$ and $a_k = Pr(A_{i_1} \cap \cdots \cap A_{i_k})$.

The λ -additive measures were first proposed by Sugeno in 1974 [6].

Definition 1. The function $Q_{\lambda} : \mathcal{P}(X) \to [0, 1]$ is a λ -additive measure (Sugeno λ -measure) on the finite set X, iff Q_{λ} satisfies the following requirements:

(1) $Q_{\lambda}(X) = 1$

,

(2) For any $A, B \in \mathcal{P}(X)$ and $A \cap B = \emptyset$,

$$Q_{\lambda}(A \cup B) = Q_{\lambda}(A) + Q_{\lambda}(B) + \lambda Q_{\lambda}(A)Q_{\lambda}(B),$$

where $\lambda \in (-1, \infty)$ and $\mathcal{P}(X)$ is the power set of *X*.

Note that if X is an infinite set, then the continuity of function Q_{λ} is also required. From now on, here Q_{λ} will always denote a λ -additive measure on X.

In an earlier paper (see [15]), we introduced the general Poincaré formula for λ -additive measures, which is given by Eq. (2). This formula allows us to compute the λ -additive measure of the union of *n* sets.

Proposition 1. If X is a finite set, Q_{λ} is a λ -additive measure on X, $\lambda \in (-1, \infty)$, $\lambda \neq 0, A_1, \ldots, A_n \in \mathcal{P}(X)$ and $n \geq 2$, then

$$Q_{\lambda}\left(\bigcup_{i=1}^{n} A_{i}\right) = \frac{1}{\lambda}\left(\prod_{k=1}^{n} \left(\prod_{1 \le i_{1} < \dots < i_{k} \le n} \left(1 + \lambda c_{\lambda,k}\right)\right)^{(-1)^{k-1}} - 1\right),\tag{2}$$

where $c_{\lambda,k} = Q_{\lambda} (A_{i_1} \cap \cdots \cap A_{i_k}).$

Proof. See the proof of Theorem 1 in [15]. \Box

Note that we also gave an elementary proof of Proposition 1 in [17], and we proved the following Proposition in [16]:

Proposition 2. If X is a finite set, Q_{λ} is a λ -additive measure on X, $\lambda \in (-1, \infty)$, $\lambda \neq 0, A_1, \ldots, A_n \in \mathcal{P}(X)$ and $n \geq 2$, then

$$Q_{\lambda}\left(\bigcap_{i=1}^{n} A_{i}\right) = \frac{1}{\lambda}\left(\prod_{k=1}^{n} \left(\prod_{1 \le i_{1} < \dots < i_{k} \le n} \left(1 + \lambda d_{\lambda,k}\right)\right)^{(-1)^{k-1}} - 1\right),\tag{3}$$

where $d_{\lambda,k} = Q_{\lambda} (A_{i_1} \cup \cdots \cup A_{i_k}).$

Proof. See the proof of Proposition 2 in [16]. \Box

We will also utilize the following proposition.

Proposition 3. Let X be a finite set, $Pr : \mathcal{P}(X) \to [0, 1]$ a probability measure on the set X and for any $\lambda \in (-1, \infty)$, let the function $h_{\lambda} : [0, 1] \to [0, 1]$ be given by

$$h_{\lambda}(x) = \begin{cases} \frac{(1+\lambda)^{x}-1}{\lambda}, & \text{if } \lambda \neq 0\\ x, & \text{if } \lambda = 0. \end{cases}$$

Then, the set function $Q_{\lambda} : \mathcal{P}(X) \to [0, 1]$, which is given by

$$Q_{\lambda} = h_{\lambda} \circ Pr, \tag{4}$$

is a λ -additive measure on the set X, and for any $A \in \mathcal{P}(X)$

(a) if
$$\lambda < 0$$
, then $Q_{\lambda}(A) \ge Pr(A)$

- (b) if $\lambda = 0$, then $Q_{\lambda}(A) = Pr(A)$
- (c) if $\lambda > 0$, then $Q_{\lambda}(A) \leq Pr(A)$.

Proof. For the proof that the set function Q_{λ} in Eq. (4) is a λ -additive measure, see [9] or the proof of Theorem 4.11 in [3].

Let $A \in \mathcal{P}(X)$. Since $Pr(A) \in [0, 1]$, by noting Bernoulli's inequality, we have

$$(1+\lambda)^{Pr(A)} \le 1 + \lambda Pr(A) \tag{5}$$

for any uniquely determined $\lambda \in (-1, \infty)$. Next from Eq. (5), we have

$$\frac{(1+\lambda)^{Pr(A)}-1}{\lambda} \ge Pr(A), \quad \text{if } \lambda < 0 \tag{6}$$

$$\frac{(1+\lambda)^{Pr(A)}-1}{\lambda} \le Pr(A), \quad \text{if } \lambda > 0 \tag{7}$$

Next, by noting Eq. (4), from Eq. (6) and Eq. (7) we get statement (a) and (c), respectively. Also, statement (b) trivially follows from Eq. (4). \Box

Remark 1. Note that Eq. (4) means that the λ -additive measure Q_{λ} is represented by the (Pr, h_{λ}) pair (see [9]).

3. Bounds for the probabilistic Poincaré formula

Utilizing the results above, we can state the following theorem.

Theorem 1. Let X be a finite set and let $Pr : \mathcal{P}(X) \to [0, 1]$ be a probability measure on the set X. Then, there exists a λ -additive measure $Q_{\lambda} : \mathcal{P}(X) \to [0, 1]$ such that

1) if $\lambda > 0$, then for any $A_1, A_2, \ldots, A_n \in \mathcal{P}(X)$ and $n \ge 2$,

$$\frac{1}{\lambda} \left(\prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} (1 + \lambda c_{\lambda,k}) \right)^{(-1)^{k-1}} - 1 \right) \le \\
\le \sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} (-1)^{k-1} a_k \le \\
\le 1 - \frac{1}{\lambda} \left(\prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} (1 + \lambda \overline{d}_{\lambda,k}) \right)^{(-1)^{k-1}} - 1 \right);$$
(8)

and

2) if $\lambda < 0$, then for any $A_1, A_2, \ldots, A_n \in \mathcal{P}(X)$ and $n \ge 2$,

$$1 - \frac{1}{\lambda} \left(\prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} (1 + \lambda \overline{d}_{\lambda,k}) \right)^{(-1)^{k-1}} - 1 \right) \le$$

$$\le \sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} (-1)^{k-1} a_k \le$$

$$\le \frac{1}{\lambda} \left(\prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} (1 + \lambda c_{\lambda,k}) \right)^{(-1)^{k-1}} - 1 \right),$$
(9)

where a_k , $c_{\lambda,k}$ and $\overline{d}_{\lambda,k}$ are respectively given by $a_k = Pr(A_{i_1} \cap \cdots \cap A_{i_k})$, $c_{\lambda,k} = Q_\lambda(A_{i_1} \cap \cdots \cap A_{i_k})$ and $\overline{d}_{\lambda,k} = Q_\lambda(\overline{A}_{i_1} \cup \cdots \cup \overline{A}_{i_k})$.

Proof. Here, we will prove Eq. (8). Note that the proof of Eq. (9) is similar to that of Eq. (8). Let the function $h_{\lambda}: [0, 1] \rightarrow [0, 1]$ be given by

$$h_{\lambda}(x) = \frac{(1+\lambda)^{x} - 1}{\lambda},\tag{10}$$

where $\lambda \in (-1, \infty)$ and $\lambda \neq 0$. Now, let $\lambda > 0$. Then, based on Proposition 3, the set function $Q_{\lambda} : \mathcal{P}(X) \to [0, 1]$ given by $Q_{\lambda} = h_{\lambda} \circ Pr$ is a λ -additive measure and for any $B \in \mathcal{P}(X)$

$$Q_{\lambda}(B) \le Pr(B). \tag{11}$$

Now, let λ' be given by

$$\lambda' = -\frac{\lambda}{1+\lambda}.$$
(12)

Then, based on Corollary 4.5 in [3], the dual measure $Q_{\lambda'}$ of Q_{λ} , which is given by

$$Q_{\lambda'}(A) = 1 - Q_{\lambda}(\overline{A}) \tag{13}$$

for any $A \in \mathcal{P}(X)$, is also a λ additive measure with the parameter λ' . Notice that Eq. (12) is a bijection; and as $\lambda > 0$, we have $-1 < \lambda' < 0$. Then, based on Proposition 3, the set function $Q_{\lambda'} : \mathcal{P}(X) \to [0, 1]$ given by $Q_{\lambda'} = h_{\lambda'} \circ Pr$ is a λ -additive measure and for any $B \in \mathcal{P}(X)$

$$Pr(B) \le Q_{\lambda'}(B). \tag{14}$$

Next, by noting Eq. (11), Eq. (13) and Eq. (14), we have

$$Q_{\lambda}(B) \le Pr(B) \le 1 - Q_{\lambda}(B) \tag{15}$$

for any $B \in \mathcal{P}(X)$, $\lambda > 0$. Now, let $B = \bigcup_{i=1}^{n} A_i$. Then, by utilizing the De Morgan law, from Eq. (15), we have

$$Q_{\lambda}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq Pr\left(\bigcup_{i=1}^{n} A_{i}\right) \leq 1 - Q_{\lambda}\left(\bigcap_{i=1}^{n} \overline{A}_{i}\right).$$
(16)

Here, by noting the probabilistic Poincaré formula in Eq. (1), the general Poincaré formula for λ -additive measures in Eq. (2) (see Proposition 1), and Eq. (3) (see Proposition 2), from Eq. (16), we get Eq. (8).

Remark 2. Because $\lim_{\lambda \to 0} \frac{(1+\lambda)^x - 1}{\lambda} = x$, we see that $\lim_{\lambda \to 0} Q_\lambda(B) = \lim_{\lambda \to 0} h_\lambda(Pr(B)) = Pr(B).$

So, the inequalities in Eq. (8) and Eq. (9) furnish sharp (i.e. small) approximation intervals for the midterm in case λ is very close to zero.

Remark 3. Eq. (15) and Eq. (16) represent a well-known property of the λ -additive measure. Namely, if $\lambda > 0$, then the λ -additive measure Q_{λ} is a belief measure, and its dual measure, which is given by $1 - Q_{\lambda}(\overline{A})$ for any $A \in \mathcal{P}(X)$, is a plausibility measure (see Theorem 4.21 in [3]).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] E. Pap, Null-Additive Set Functions, vol. 337, Kluwer Academic Pub., 1995.
- [2] E. Pap, Pseudo-additive measures and their applications, in: Handbook of Measure Theory, Elsevier, 2002, pp. 1403–1468.
- [3] Z. Wang, G.J. Klir, Generalized Measure Theory, IFSR International Series in Systems Science and Systems Engineering, vol. 25, Springer US, 2009.
- [4] L. Jin, R. Mesiar, R.R. Yager, Melting probability measure with OWA operator to generate fuzzy measure: the crescent method, IEEE Trans. Fuzzy Syst. (2018), https://doi.org/10.1109/TFUZZ.2018.2877605.
- [5] M. Grabisch, Set Functions, Games and Capacities in Decision Making, 1st ed., Springer Publishing Company, Incorporated, 2016.
- [6] M. Sugeno, Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.
- [7] C. Magadum, M. Bapat, Ranking of students for admission process by using Choquet integral, Int. J. Fuzzy Math. Archive 15 (2018) 105–113.
- [8] M.A. Mohamed, W. Xiao, Q-measures: an efficient extension of the Sugeno λ-measure, IEEE Trans. Fuzzy Syst. 11 (2003) 419-426.
- [9] I. Chitescu, Why λ -additive (fuzzy) measures?, Kybernetika 51 (2015) 246–254.
- [10] X. Chen, Y.-A. Huang, X.-S. Wang, Z.-H. You, K.C. Chan, FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model, Oncotarget 7 (2016) 45948–45958, https://doi.org/10.18632/oncotarget.10008.
- [11] A.K. Singh, Signed λ-measures on effect algebras, in: Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, Springer India, 2018, pp. 1–7.
- [12] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Mathematics in Science and Engineering, vol. 144, Academic Press, Inc., Orlando, FL, USA, 1980, pp. 125–150.
- [13] W. Spohn, The Laws of Belief: Ranking Theory and Its Philosophical Applications, Oxford University Press, 2012.
- [14] T. Feng, J.-S. Mi, S.-P. Zhang, Belief functions on general intuitionistic fuzzy information systems, Inf. Sci. 271 (2014) 143–158, https:// doi.org/10.1016/j.ins.2014.02.120.
- [15] J. Dombi, T. Jónás, The general Poincaré formula for λ -additive measures, Inf. Sci. 490 (2019) 285–291, https://doi.org/10.1016/j.ins.2019. 03.059.
- [16] J. Dombi, T. Jónás, Inequalities for λ-additive measures based on the application of the general Poincaré formula for λ-additive measures, Fuzzy Sets Syst. (2019), https://doi.org/10.1016/j.fss.2019.09.007.
- [17] J. Dombi, T. Jónás, An elementary proof of the general Poincaré formula for λ-additive measures, Acta Cybern. 24 (2019) 173–185, https:// doi.org/10.14232/actacyb.24.2.2019.1.