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Abstract

In this short communication, we will present a connection between two well-known representations of the strong negations 
(involutive negations). Namely, we will provide a necessary and sufficient condition for the equality of Trillas and Dombi forms of 
negations. We will also show a connection between the additive generators of nilpotent and strict triangular norms.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Preliminaries

Here, we will give a brief overview of the concepts that we will utilize later. The Archimedean triangular norms (t-
norms in short) and triangular conorms (t-conorms in short) as well as their strict and nilpotent classes play important 
roles in continuous-valued logic (for more details see [1] or [2]). These norms are defined as follows.

Definition 1. We say that a continuous t-norm T : [0, 1] → [0, 1] (t-conorm S : [0, 1] → [0, 1], respectively) is 
Archimedean, if T (x, x) < x (S(x, x) > x, respectively) holds for any x ∈ (0, 1).

Definition 2. We say that a continuous Archimedean t-norm T (t-conorm S, respectively) is a strict t-norm (strict 
t-conorm, respectively), if T (x, y) < T (x, z) whenever x ∈ (0, 1] and y < z (if S(x, y) < S(x, z) whenever x ∈ [0, 1)

and y < z, respectively).

Another important class of Archimedean t-norms and t-conorms is the class of nilpotent t-norms and nilpotent 
t-conorms.
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Definition 3. We say that a continuous Archimedean t-norm T (t-conorm S, respectively) is a nilpotent t-norm (nilpo-
tent t-conorm, respectively), if there exists x, y ∈ (0, 1) such that T (x, y) = 0 (S(x, y) = 1, respectively).

The Archimedean t-norms and t-conorms can be represented as follows (see [3]).

Theorem 1. A function T : [0, 1] → [0, 1] (S : [0, 1] → [0, 1], respectively) is a continuous Archimedean t-norm (t-
conorm, respectively) if and only if there exists a continuous, strictly decreasing (increasing, respectively) function 
t : [0, 1] → [0, ∞] (s : [0, 1] → [0, ∞], respectively) with t (1) = 0 (s(0) = 0, respectively), which is uniquely deter-
mined up to a positive constant multiplier, such that for any x, y ∈ [0, 1],

T (x, y) = t−1 (min(t (x) + t (y), t (0)))

(S(x, y) = s−1 (min(s(x) + s(y), s(1))) , respectively).

In Theorem 1, the function t (s, respectively) is called an additive generator function of the Archimedean t-norm 
(t-conorm, respectively). Using Theorem 1, the strict t-norms, strict t-conorms and the nilpotent t-norms and nilpotent 
t-conorms can be characterized as follows (see [4]).

Theorem 2. The following are valid.

(a) A t-norm T is strict if and only if t (0) = ∞ holds for each continuous additive generator t of T .
(b) A t-norm T is nilpotent if and only if t (0) < ∞ holds for each continuous additive generator t of T .
(c) A t-conorm S is strict if and only if s(1) = ∞ holds for each continuous additive generator s of S.
(d) A t-conorm S is nilpotent if and only if s(1) < ∞ holds for each continuous additive generator s of S.

Remark 1. We will operate on the extended real line and use the conventions 1
0 = ∞, 1

∞ = 0, e−∞ = 0 and ln(0) =
−∞.

Here, we will use the following definition of a strong negation (see, e.g., Definition 1.2 in Fodor and Rubens [5], 
or Definition 11.3 in Klement et al. [1]).

Definition 4. We say that η : [0, 1] → [0, 1] is a strong negation if and only if η satisfies the following requirements:
(a) η is continuous (Continuity)
(b) η(0) = 1, η(1) = 0 (Boundary conditions)
(c) η(x) < η(y) for x > y (Monotonicity)
(d) η(η(x)) = x for any x ∈ [0,1] (Involution).

Remark 2. It should be added that the requirements (a) and (b) in Definition 4 can be omitted (see Theorem 3.1 in the 
book of Klir and Yuan [6]).

1.1. Two representations of strong negations

Here, we will make use of the concept of automorphism of the interval [a, b].

Definition 5. We say that ϕ : [a, b] → [a, b] is an automorphism of [a, b] if and only if ϕ is a continuous, strictly 
increasing function with the boundary conditions ϕ(a) = a and ϕ(b) = b.

It is worth noting that according to Maes and De Baets (see [7]), the strict negations and automorphisms are 
prevalently used to fuzzify the Boolean negation.

Trillas in 1979 presented the following representation theorem of strong negations (see [8]).

Theorem 3 (Trillas representation). The function n : [0, 1] → [0, 1] is a strong negation if and only if for any x ∈
[0, 1],
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n(x) = g−1 (1 − g(x)) , (1)

where g : [0, 1] → [0, 1] is an automorphism of [0, 1].

If Eq. (1) holds, then we say that the strong negation n is induced by g. Noting Theorem 1 and Theorem 2, the 
function g is an additive generator of a nilpotent t-conorm. Moreover, if the function g∗ is given by g∗(x) = 1 − g(x), 
x ∈ [0, 1], then g∗ is strictly decreasing, g∗(0) = 1 and g∗(1) = 0. That is, g∗ is an additive generator of a nilpotent 
t-norm. On the other hand, after direct calculation, we get that

g−1∗ (1 − g∗(x)) = g−1 (1 − g(x)) = n(x), x ∈ [0,1],
which means that the strong negation n can be induced by g∗ as well. That is, Eq. (1) may be viewed as a represen-
tation of strong negations for the nilpotent class of t-norms and t-conorms. It is worth adding that if a function t (s, 
respectively) is an additive generator of a nilpotent t-norm (t-conorm, respectively), then the function gt(x) = t (x)

t (0)

(gs(x) = s(x)
s(1)

, respectively) is a generator of a strong negation according to Eq. (1).
Another representation theorem of strong negations was presented by Dombi in 2011 (see [9]).

Theorem 4 (Dombi representation). The function ηA : [0, 1] → [0, 1] is a strong negation if and only if for any x ∈
[0, 1],

ηA(x) = f −1
(

A

f (x)

)
, (2)

where f : [0, 1] → [0, ∞] is an additive generator function of some strict t-norm or strict t-conorm, A ∈R and A > 0.

If Eq. (2) holds, then we say that the strong negation ηA is induced by f . Since f is an additive generator of a strict 
t-norm or strict t-conorm, Eq. (2) may be treated as a representation of strong negations for the strict class of t-norms 
and t-conorms. It is worth noting that if f is an additive generator of a strict t-norm (t-conorm, respectively), and f∗
is given by f∗(x) = 1

f (x)
, x ∈ [0, 1], then f∗ is an additive generator of a strict t-conorm (t-norm, respectively) and 

after direct calculation, we get

f −1∗
(

A

f∗(x)

)
= f −1

(
A

f (x)

)
= ηA(x), x ∈ [0,1].

2. Connection between the Trillas and Dombi representations of strong negations

Here, using the generator functions of Trillas and Dombi representations of strong negations, we will present a 
necessary and sufficient condition for the equality of these representations.

Theorem 5. Let g : [0, 1] → [0, 1] be an automorphism of [0, 1] and let f : [0, 1] → [0, ∞] be an additive generator 
function of a strict t-norm or strict t-conorm. Let the strong negations n : [0, 1] → [0, 1] and ηA : [0, 1] → [0, 1] be 
given by Eq. (1) and Eq. (2), respectively, where A > 0. Then, for any x ∈ [0, 1],

ηA(x) = n(x) (3)

if and only if

f (x) = √
Aeh(x) (4)

with some strictly monotonic function h : [0, 1] → [−∞, ∞], where

h(x) = �(g(x),1 − g(x)) (5)

and � : R2 → [−∞, ∞] is an antisymmetric two-variable function, i.e., �(p, q) = −�(q, p) for any p, q ∈ R.
3
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Proof. We will utilize the following result (see [10]). A function y : R → R satisfies the equation

y(x)y(a − x) = b2 (6)

with some constants a, b ∈ R if and only if

y(x) = ±be�(x,a−x), (7)

where � is an antisymmetric two-variable function on R, i.e., �(x, z) = −�(z, x) for any x, z ∈R.

Proof of necessity. Let us assume that the conditions of the theorem hold and Eq. (3) holds for any x ∈ [0, 1]. This 
means that we have

f −1
(

A

f (x)

)
= g−1 (1 − g(x)) (8)

for any x ∈ [0, 1]. Applying f to both sides of Eq. (8), we get

A

f (x)
= f

(
g−1 (1 − g(x))

)
. (9)

Now, let the function F : [0, 1] → [0, ∞] and the variable X be given by

F(x) = f
(
g−1(x)

)
and X = g(x), (10)

for any x ∈ [0, 1], respectively. Then, X ∈ [0, 1], F(X) = F(g(x)) = f (x) and so Eq. (9) can be written as

F(X)F(1 − X) = A. (11)

Noting Eq. (6), the solution of the functional equation in Eq. (11) is

F(X) = √
Ae�(X,1−X), (12)

which, based on Eq. (10) is equivalent to

f (x) = √
Ae�(g(x),1−g(x)), (13)

where x ∈ [0, 1] and � : R2 → [−∞, ∞] is an antisymmetric two-variable function. Now, let h(x) = �(g(x), 1 −
g(x)), where x ∈ [0, 1]. Then, from Eq. (13) we get Eq. (4) and since g : [0, 1] → [0, 1] is a strictly increasing function 
and f : [0, 1] → [0, ∞] is a strictly monotonic function, based on Eq. (13), h is necessarily a strictly monotonic 
function with the range [−∞, ∞].
Proof of sufficiency. Suppose that the conditions of the theorem hold. Let us assume that Eq. (4) holds for any x ∈
[0, 1], with a strictly monotonic function h : [0, 1] → [−∞, ∞], where h is given by h(x) = � (g(x),1 − g(x)) and 
� : R2 → [−∞, ∞] is an antisymmetric two-variable function. That is, we have Eq. (13) for any x ∈ [0, 1]. Here 
again, let the function F : [0, 1] → [0, ∞] and the variable X be given by Eq. (10), where x ∈ [0, 1]. Using the 
function F and the variable X, from Eq. (13), we get Eq. (12). Next, based on the introduction, note that regarding 
Eq. (6), we know that the function F is the solution of the functional equation in Eq. (11). Using F and X, Eq. (11)
can be written as

f (x)f
(
g−1 (1 − g(x))

)
= A,

for any x ∈ [0, 1], from which Eq. (8) (and Eq. (3)) follows. �
The following corollary may be viewed as a practical application of Theorem 5.

Corollary 1. Let g : [0, 1] → [0, 1] be an automorphism of [0, 1], and let the function f be given by

f (x) = √
A

(
g(x)

1 − g(x)

)c

, (14)

for any x ∈ [0, 1], where A, c ∈R are arbitrarily fixed constants, A > 0 and c �= 0. Then,
4
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(a) f is an additive generator function of a strict t-norm or a strict t-conorm
(b) the strong negation n : [0, 1] → [0, 1] induced by the function g according to Eq. (1) and the strong negation 

ηA : [0, 1] → [0, 1] induced by the function f according to Eq. (2) are equal for any x ∈ [0, 1].

Proof. Noting Eq. (14) with A > 0, c �= 0, and the fact that g is an automorphism of [0, 1], we immediately get that 
f is a strictly monotonic function on [0, 1] with the range [0, ∞]. If c < 0, then f is strictly decreasing, f (0) = ∞
and f (1) = 0, i.e., f is an additive generator of a strict t-norm. If c > 0, then f is strictly increasing, f (0) = 0 and 
f (1) = ∞, i.e., f is an additive generator of a strict t-conorm. This means that (a) holds.

Now, let �(x, y) = c (ln(x) − ln(y)) for any x, y ∈ R and let h(x) = � (g(x),1 − g(x)) for any x ∈ [0, 1]. Then,

h(x) = ln

(
g(x)

1 − g(x)

)c

for any x ∈ [0, 1], and h is strictly monotonic with the range [−∞, ∞]. Therefore, noting Theorem 5, we have that 
for any x ∈ [0, 1], if

f (x) = √
Aeh(x) = √

A

(
g(x)

1 − g(x)

)c

, (15)

then ηA(x) = n(x). This means that (b) holds. �
Certainly, it can also be verified via direct calculation that if Eq. (14) holds, then ηA(x) = n(x) holds for any 

x ∈ [0, 1].

3. Conclusions

In this short communication, using the generator functions of Trillas and Dombi representations of strong negations, 
we presented a necessary and sufficient condition for the equality of these representations. Furthermore, since an 
additive generator of an Archimedean triangular norm is uniquely determined up to a positive constant multiplier, Eq. 
(15) may be viewed as a connection between the additive generators of the nilpotent and strict triangular norms.
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