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Abstract

In this paper, we study monotone set functions defined as the composition of an additive measure with a strictly increasing 
function. This function is a unary operator in continuous-valued logic, called the tau function, and it is a generator function-based 
parametric mapping. We provide a necessary and sufficient condition for the equality of two tau functions that are induced by 
different generator functions. Using the tau function and its properties, we introduce a new monotone measure that we call the 
tau-additive measure. This measure is computationally simple and it can be viewed as an upper or lower probability depending 
on the parameter settings of the tau function. We present the parameter-dependent submodularity and supermodularity of the tau-
additive measure and show how this measure can be constructed from a set function on a finite set. This procedure is analogous to 
how the well-known lambda-additive measure can be constructed, but our method is computationally simpler. We demonstrate that 
the tau-additive measure can be used to approximate the lambda-additive measure. Lastly, exploiting these theoretical results, we 
present an application in the area of human resource management.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is a well-known fact that fuzzy measures (also known as monotone measures, non-additive measures or capac-
ities) play an important role in many areas of science. This is why there has been a steady interest in them. Without 
claiming completeness, see, e.g., the publications [1–8].

One of the most widely applied class of monotone measures is the class of λ-additive measures (Sugeno λ-
measures) [9]. There are many theoretical and practical articles related to this class of monotone measures, see, e.g.
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[10–14]. In previous articles of ours, we presented the so-called ν-additive measure, which may be viewed as an alter-
native to lambda-additive measure (see [15,16]). We also provided the general Poincaré-formula for lambda-additive 
measures and some inequalities related to these measures (see [16–18]).

In our study, we sought to construct a flexible monotone measure that could be applied in solving a wide range 
of problems and may be treated as a new alternative to lambda-additive measure. For this purpose, we constructed 
the tau-additive measure, which is a composition of an appropriate T -transformation (i.e., a continuous and strictly 
increasing mapping on the interval [0, 1] with the range [0, 1]) and an additive measure. In our approach, the T -
transformation is a generator function-based parametric transformation called the tau function. This function is also 
known as a unary operator in continuous-valued logic.

The tau function is generator function-dependent and it has two parameters, ν and ν0, whose values are in the 
interval (0, 1). These features of the tau transformation make the tau-additive measure very flexible. On the one hand, it 
can be adjusted via the parameters of the tau function; and on the other hand, for fixed values of the parameters, various 
tau-additive measures can be obtained depending on the choice of the generator function of the tau transformation. 
Furthermore, we sought to find a monotone measure, which is computationally simple and, like the lambda-additive 
measure, can be treated as a parameter-dependent upper or lower probability measure. Here, we should remark that the 
tau transformation is mathematically simple and, depending on its parameter values, the corresponding tau-additive 
measure can be subadditive, superadditive or additive. As we will show, if the generator function of the tau function is 
that of the Dombi operators in continuous valued-logic (see [19,20]), then the form of the tau function becomes very 
simple, it is just the fraction of two first order polynomials. Since the tau function is generator function-dependent, it is 
an interesting question under what conditions two tau functions, which are induced by different generators, coincide. 
In our study, we will provide a necessary and sufficient condition for the identity of two tau functions that are induced 
by different generator functions.

Since λ-additive measures can be utilized in many areas, we attempted to construct a monotone measure that, 
besides having the above-mentioned properties, approximates the λ-additive measure well. We will demonstrate that 
using the generator function of the Dombi operators as generator of the tau function, with appropriate parameter 
settings, we can get a particular tau function that approximates the T -function in the additive representation of the 
λ-additive measure quite well.

As we will see later on, if we fix one of the parameters of a tau function, then we can change its shape by adjusting 
the value of the other parameter. The value of the λ parameter of a λ-additive measure lies in the interval (−1, ∞), 
and if λ > 0 (λ < 0, respectively), then the λ-additive measure is superadditive (subadditive, respectively). The ν and 
ν0 parameters of a tau-additive measure are both in the interval (0, 1), and if ν > ν0 (ν < ν0, respectively), then the 
tau-additive measure is superadditive (subadditive, respectively). That is, in the case of the λ-additive measure, zero 
value of λ does not divide the (−1, ∞) domain into two symmetric subdomains that correspond to the subadditive and 
superadditive properties of the measure. In the case of the tau-additive measure, if ν0 = 1

2 , then the intervals (0, 12 ) and 
( 1

2 , 1) are the two domains of ν that correspond to the subadditive and superadditive characteristic of the tau-additive 
measure, respectively. This also means that the value of parameter ν may be viewed as the ‘level of subadditivity or 
superadditivity’ when ν0 has a fixed value. Moreover, if we need to find the value of the λ parameter of a λ-additive 
measure numerically, for instance in a curve fitting problem, then we need to find the value of λ in the (−1, ∞)

interval. At the same time, in the case of the tau-additive measure, we can fix the value of ν0, and look for the value 
of ν in the (0, 1) interval. This can greatly simplify the numerical computations.

It is well known that if we have the values of a set function for n subsets of a finite set X such that these values are 
all non-negative, less than one, at least two of them are positive and the union of the subsets is X, then there exists 
a unique λ ∈ (−1, ∞) such that the corresponding λ-additive measure coincides with the set function at each subset 
in question (see Theorem 4.7 in [4]). We will show that the tau-additive measure has a similar property, which makes 
it suitable for modeling uncertainty. By means of an example, we will demonstrate how this property and the sub- or 
superadditivity of the tau-additive measure can be utilized in human resource management.

This paper is structured as follows. In Section 2, we briefly review some basic concepts, constructions and previous 
results that are connected with our study. The properties of the tau function important from a measure theoretical point 
of view are discussed in Section 3. The tau-additive measure and its most important features are then introduced in 
Section 4. Next, in Section 5, we show how the tau-additive measure can be used to approximate the lambda-additive 
measure. In Section 6, an application of the tau-additive measure in human resource management is presented. Lastly, 
the key findings and the main conclusions of this study are summarized in Section 7.
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2. Preliminaries

In this study, we will use the common notations ∩ and ∪ for the intersection and union operations over sets, 
respectively. Also, we will use the notation A for the complement of set A. Here, P(X) will denote the power set 
of a finite set X. Now, we will briefly review some basic concepts, constructions and previous results, which will be 
utilized later.

2.1. Set functions and monotone measures

A set function μ on a finite set X is non-negative, extended real-valued and zero at the empty set, i.e.,

μ : P(X) → [0,∞], μ(∅) = 0,

see, e.g., Chapter 2 in Denneberg’s book [21].

Definition 1. Let μ : P(X) → [0, ∞] be a set function on the finite set X. We say that μ is

monotone if A,B ∈P(X),A ⊆ B implies μ(A) ≤ μ(B)

submodular if A,B ∈P(X) implies μ(A ∪ B) ≤ μ(A) + μ(B) − μ(A ∩ B)

supermodular if A,B ∈P(X) implies μ(A ∪ B) ≥ μ(A) + μ(B) − μ(A ∩ B)

subadditive if A,B ∈P(X),A ∩ B = ∅ implies μ(A ∪ B) ≤ μ(A) + μ(B)

superadditive if A,B ∈P(X),A ∩ B = ∅ implies μ(A ∪ B) ≥ μ(A) + μ(B)

additive if μ is sub- and superadditive.

If a set function μ on a finite set X is additive with μ(X) = 1, then μ is a probability measure on X. Hereafter, a 
monotone measure μ on a finite set X will always be a monotone set function μ : P(X) → [0, 1] with μ(X) = 1.

Following Wang and Klir (see Section 4.4 in [4]), the T -function and the additive representability of a monotone 
measure are defined as follows.

Definition 2. We say that the mapping θ : [0, 1] → [0, 1] is a T -function if and only if θ is continuous and strictly 
increasing such that θ(0) = 0 and θ(1) = 1.

Definition 3. Let μ : P(X) → [0, 1] be a monotone measure on the finite set X. We say that μ is representable if there 
exists an additive measure m : P(X) → [0, 1] and a T -function θ : [0, 1] → [0, 1] such that

μ = θ ◦ m.

In this case, we say that the pair (m, θ) represents μ.

2.2. λ-additive measure

The λ-additive measure, which was proposed by Sugeno in 1974 [9], plays an important role in computer science.

Definition 4. The function Qλ :P(X) → [0, 1] is a λ-additive measure (Sugeno λ-measure) on the finite set X, if and 
only if Qλ satisfies the following requirements:

(1) Qλ(X) = 1
(2) For any A, B ∈ P(X) and A ∩ B = ∅,

Qλ(A ∪ B) = Qλ(A) + Qλ(B) + λQλ(A)Qλ(B), (1)

where λ ∈ (−1, ∞).
21
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It is a well-known fact that the lambda additive measure Qλ is representable (see, e.g., Section 4.4 in [4] or [12]). 
More precisely, Qλ = hλ ◦ μ for a uniquely determined additive measure μ : P(X) → [0, 1], where the T -function 
hλ : [0, 1] → [0, 1] is given by

hλ(x) =
⎧⎨
⎩

(1 + λ)x − 1

λ
, if λ 
= 0

x, if λ = 0,
(2)

and λ ∈ (−1, ∞).

2.3. The tau function

Later, in Section 4, we will construct a monotone measure called the tau-additive measure, which is represented 
by a T -function called the tau function. This function was first introduced by Dombi as a unary modifier operator in 
continuous-valued logic (see [22]), and it is defined as follows.

Definition 5 (Tau function). Let the continuous function f : [0, 1] → [0, ∞] be either

(a) strictly decreasing with f (1) = 0 and limx→0 f (x) = ∞ or
(b) strictly increasing with f (0) = 0 and limx→1 f (x) = ∞.

Let ν, ν0 ∈ (0, 1). We say that the mapping τν,ν0 : [0, 1] → [0, 1] is a tau function with the parameters ν, ν0, induced 
by function f , if and only if τν,ν0 is given by

τν,ν0(x) = f −1
(

f (ν0)
f (x)

f (ν)

)
. (3)

Here, the function f is called a generator function of τν,ν0 .

Remark 1. Note that in case (a) f is a generator function of a strict t-norm and in case (b) f is a generator function 
of a strict t-conorm. In both cases, f is uniquely determined up to a positive multiplicative constant (see [23]).

From now on, if f is strictly decreasing, then we will interpret f (0) = ∞ and f −1(∞) = 0. And if f is strictly 
increasing, then we will interpret f (1) = ∞ and f −1(∞) = 1.

Remark 2. Here, will make use of the extended real line [−∞, ∞] and we will employ the following conventions:

1

0
= ∞ and

1

∞ = 0,

e−∞ = 0, e∞ = ∞, ln(0) = −∞, and ln(∞) = ∞.

The following proposition states the most important properties of the tau function given in Definition 5.

Proposition 1. The function τν,ν0 stated in Definition 5 has the following properties:

(a) τν,ν0 is continuous in [0, 1], and if f is differentiable, then τν,ν0 is differentiable in (0, 1)

(b) τν,ν0 is strictly increasing in [0, 1], τν,ν0(0) = 0 and τν,ν0(1) = 1
(c) τν,ν0(ν) = ν0
(d) For any x ∈ (0, 1),

(d1) if ν = ν0, then τν,ν0(x) = x

(d2) if ν < ν0, then τν,ν0(x) > x

(d3) if ν > ν0, then τν,ν0(x) < x

(e) If ν < ν0 (ν > ν0, respectively), then τν,ν0 is strictly concave (convex, respectively) in the interval [0, 1].

Proof. These properties immediately follow from Definition 5. �
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Notice that it immediately follows from Proposition 1 that the function τν,ν0 satisfies the requirements for a T -
function.

Other properties of the tau function, which are important from a measure theoretical point of view, will be discussed 
in the next section.

3. The tau function from a measure theoretical point of view

Here, we will demonstrate some important additional properties of the tau function. We will make use of these 
properties in Section 4, where the tau-additive measure will be presented.

We should emphasize that the tau function is generator function-dependent. That is, for fixed values of the param-
eters ν and ν0, we can obtain various τν,ν0 functions depending on the choice of its generator function f . This means 
that treating the tau function as a T -function, we can generate flexible monotone measures. Namely, these monotone 
measures can be adjusted not just through the values of the parameters ν and ν0, but via the generator function f
as well. The following examples show how a particular tau function can be derived from a given generator function. 
Note that in both examples, we will use the conventions shown in Remark 2.

Example 1. Let us consider the function fα : [0, 1] → [0, 1], which is given by

fα(x) =
(

1 − x

x

)α

(4)

with a parameter α 
= 0. In continuous-valued logic, this function is known as the generator function of the Dombi 
operators (see [19,20]). We see that if α > 0 (α < 0, respectively), then fα is a generator function of a strict t-norm 
(strict t-conorm, respectively).

Now, let ν, ν0 ∈ (0, 1). Based on Eq. (4), we have

f −1
α (x) = 1

1 + xα

and noting the definition for a tau function in Definition 5, after direct calculation, we get that the tau function induced 
by fα is

τν,ν0(x) = f −1
α

(
fα(ν0)

fα(x)

fα(ν)

)
= 1

1 + 1−ν0
ν0

ν
1−ν

1−x
x

, (5)

where x ∈ [0, 1]. Notice that here τν,ν0 is independent of α. Fig. 1 shows example plots of tau functions induced by 
the generator function fα .

Example 2. In a similar way, it can be shown that if f (x) = − ln(x), x ∈ [0, 1], then the corresponding tau function is

τν,ν0(x) = ν
ln(x)
ln(ν)

0 .

The tau function is generator function-dependent. Therefore, it is interesting to ask under what conditions two tau 
functions induced by different generators coincide. Now, we will provide the necessary and sufficient condition for the 
identity of two tau functions, which have the same parameter values, but are induced by different generator functions.

Theorem 1. Let f and g be generator functions of strict t-norms or strict t-conorms. Let the tau functions τν,ν0,f and 
τν,ν0,g be induced by the generator functions f and g, respectively, where ν, ν0 ∈ (0, 1) and ν 
= ν0. Then,

τν,ν0,f (x) = τν,ν0,g(x) (6)

holds for any x ∈ (0, 1) if and only if there exists a pair (α, β) with α 
= 0 and β > 0 such that

f (x) = βgα(x) (7)

holds for any x ∈ (0, 1).
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Fig. 1. Example plots of tau functions for f (x) = 1−x
x , x ∈ [0,1].

Proof. Let ν 
= ν0. If for some α 
= 0 and β > 0, Eq. (7) holds for any arbitrarily fixed x ∈ (0, 1), then using Defini-
tion 5, after direct calculation we arrive at Eq. (6).

Now, we will show that under the conditions of this theorem, if Eq. (6) holds for an arbitrary x ∈ (0, 1), then there 
exist α 
= 0 and β > 0 such that Eq. (7) holds. Suppose that Eq. (6) holds for any x ∈ (0, 1), where ν, ν0 ∈ (0, 1) and 
ν 
= ν0. Then, by noting the definition for a tau function, we have

f −1
(

f (ν0)
f (x)

f (ν)

)
= g−1

(
g(ν0)

g(x)

g(ν)

)
(8)

for any x ∈ (0, 1). Let the function F : (0, ∞) → (0, ∞) be given by

F(x) = f
(
g−1(x)

)
. (9)

Then, f (ν0), f (x) and f (ν) can be written as

f (ν0) = F(g(ν0)), f (x) = F(g(x)) and f (ν) = F(g(ν)), (10)

where x ∈ (0, 1). Next, let the variable X and the constants Y0 and Z0 be given by

X = g(x), Y0 = g(ν0) and Z0 = g(ν). (11)

Notice that X, Y0, Z0 ∈ (0, ∞) and F(X), F(Y0), F(Z0) ∈ (0, ∞). Using Eq. (9), Eq. (10) and Eq. (11), Eq. (8) can 
be written as

F(Y0)

F (Z0)
F (X) = F

(
Y0

Z0
X

)
. (12)

Now let

a = Y0

Z0
and b = F(Y0)

F (Z0)
.

Here, a and b are always positive. Noting that f and g are strictly monotonic functions, F is also strictly monotonic. 
Therefore, taking into account the condition that ν 
= ν0, we get a 
= 1 and b 
= 1. Using a and b, from Eq. (12) we 
have the functional equation

F(aX) − bF(X) = 0,

where a, b, X > 0. It is known (see [24]) that the solution of this functional equation is

F(X) = θ(ln(X))X
ln(b)
ln(a) , (13)

where θ is a periodic function with a period of ln(a). Here, F is a strictly monotonic function with the range (0, ∞), 
so the periodic function θ is necessarily a constant function, i.e., θ(ln(x)) = β , where β > 0 is a constant. Hence, 
from Eq. (13), we have
24



T. Jónás, H.S. Bakouch and J. Dombi Fuzzy Sets and Systems 430 (2022) 19–35
F(X) = βXα, (14)

where α = ln(b)
ln(a)


= 0. Using Eq. (14), the definition of F in Eq. (9) and the definition of X in Eq. (11), we have

F(X) = F(g(x)) = f
(
g−1 (g(x))

)
= f (x)

and

F(X) = βXα = β(g(x))α.

That is,

f (x) = βgα(x). � (15)

Now, we will show that the inverse of a tau function is a tau function as well. More precisely, a tau function can 
be inverted by swapping its parameter values (ν and ν0). This property of the tau function allows us to define the 
tau-additive measure in a different way as we will show later in Remark 3 in Section 4. We will also see that the tau-
additive measure is a composition of a tau function and an additive measure. Thus, using the result of the following 
proposition makes it very simple to express the additive measure, which along with a tau function represents a tau-
additive measure, in terms of the tau-additive measure itself.

Proposition 2. Let ν, ν0 ∈ (0, 1) and let τν,ν0 be a tau function induced by a generator function f . The inverse of τν,ν0

is the tau function τν0,ν . That is

τ−1
ν,ν0

(x) = τν0,ν(x) (16)

for any x ∈ [0, 1].
Proof. Using the definition for a tau function in Definition 5, inverting τν,ν0 leads to

τ−1
ν,ν0

(x) = f −1
(

f (ν)
f (x)

f (ν0)

)
(17)

for any x ∈ [0, 1]. Noting again Definition 5, Eq. (17) means that Eq. (16) holds for any x ∈ [0, 1]. �
Later, in Theorem 4, we will show how a tau-additive measure can be constructed using the values of a set function 

at subsets of a finite set. In the proof of Theorem 4, we will utilize the results of the following proposition.

Proposition 3. Let ν, ν0 ∈ (0, 1) and let τν,ν0 be a tau function induced by a generator function f . For any arbitrary 
fixed x ∈ (0, 1) and also fixed ν0 ∈ (0, 1), the inverse function of τν,ν0 is a strictly increasing function of ν.

Proof. Let x ∈ (0, 1) and ν0 ∈ (0, 1) have arbitrarily fixed values. Here, we will distinguish two cases: (a) f is a 
strictly increasing function; (b) f is a strictly decreasing function.

(a) In this case, f is strictly increasing. Therefore, if ν1 < ν2, then

f −1
(

f (ν1)
f (x)

f (ν0)

)
< f −1

(
f (ν2)

f (x)

f (ν0)

)
,

which, based on Eq. (17), means that τ−1
ν1,ν0

(x) < τ−1
ν2,ν0

(x).
(b) Now, f is strictly decreasing. Hence, if ν1 < ν2, then

f (ν1)
f (x)

f (ν0)
> f (ν2)

f (x)

f (ν0)
.

Next, applying f −1 to both sides of the last inequality, we get

f −1
(

f (ν1)
f (x)

f (ν0)

)
< f −1

(
f (ν2)

f (x)

f (ν0)

)
,

which, noting Eq. (17), means that τ−1
ν ,ν (x) < τ−1

ν ,ν (x). �

1 0 2 0
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The result of the following theorem is important as it can be used to show that the tau-additive measure can be 
submodular or supermodular depending on its parameter settings.

Theorem 2. Let ν, ν0 ∈ (0, 1) and let τν,ν0 be a tau function according to Definition 5. For any x, y, z ∈ [0, 1], if 
z ≤ min(x, y) and x + y − z ≤ 1, then

(a) if ν > ν0, then

τν,ν0(x + y − z) ≥ τν,ν0(x) + τν,ν0(y) − τν,ν0(z) (18)

(b) if ν < ν0, then

τν,ν0(x + y − z) ≤ τν,ν0(x) + τν,ν0(y) − τν,ν0(z).

Proof. Here, we will prove case (a), and the proof of case (b) can be given in a similar way.
Without loss of generality, we may assume that x ≤ y. Since 0 ≤ z ≤ min(x, y), there exists an a ≥ 0 such that 

z = x − a ≥ 0. Noting that x + y − z ≤ 1, we also have x + y − (x − a) ≤ 1, and so y + a ≤ 1. That is, using 
the condition that x, y, z ∈ [0, 1], we have that x − a, x, y, y + a ∈ [0, 1]. Based on Proposition 1, τν,ν0 is strictly 
increasing, τν,ν0(0) = 0, τν,ν0(1) = 1 and for a ν > ν0, τν,ν0 is strictly convex in [0, 1]. Therefore, we have

τν,ν0(y + a) − τν,ν0(y) ≥ τν,ν0(x) − τν,ν0(x − a),

from which we get

τν,ν0(x + y − (x − a)) ≥ τν,ν0(x) + τν,ν0(y) − τν,ν0(x − a). (19)

Noting the fact that z = x − a, from Eq. (19), we get Eq. (18). �
The following corollary, which follows from Theorem 2, can be used to show that a tau-additive measure can be 

subadditive or superadditive depending on its parameter values.

Corollary 1. Let ν ∈ (0, 1) and let τν,ν0 be a tau function according to Definition 5. For any x, y ∈ [0, 1], if x + y ≤ 1, 
then

(a) if ν > ν0, then

τν,ν0(x + y) ≥ τν,ν0(x) + τν,ν0(y)

(b) if ν < ν0, then

τν,ν0(x + y) ≤ τν,ν0(x) + τν,ν0(y).

Proof. We get the statement of this corollary by applying Theorem 2 with z = 0 and noting that τν,ν0(0) = 0. �
4. The tau-additive measure

Now, we will introduce the tau-additive measure and show that it can be represented by the tau function.

Definition 6. We say that the set function μτν,ν0
: P(X) → [0, 1] is a tau-additive measure on the finite set X if and 

only if μτν,ν0
satisfies the following requirements:

(1) μτν,ν0
(X) = 1

(2) For any A, B ∈ P(X) and A ∩ B = ∅,

μτν,ν0
(A ∪ B) = τν,ν0

(
τ−1
ν,ν0

(μτν,ν0
(A)) + τ−1

ν,ν0
(μτν,ν0

(B))
)

, (20)

where τν,ν0 is a tau function with parameters ν, ν0 ∈ (0, 1).
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Remark 3. Noting Proposition 2, Eq. (20) can alternatively be written as

μτν,ν0
(A ∪ B) = τν,ν0

(
τν0,ν(μτν,ν0

(A)) + τν0,ν(μτν,ν0
(B))

)
.

The following lemma demonstrates that the tau-additive measure can be represented by the tau-function τν,ν0.

Lemma 1. The tau-additive measure μτν,ν0
: P(X) → [0, 1] on a finite set X, where ν, ν0 ∈ (0, 1), is represented by 

the tau-function and an additive measure.

Proof. Here, μτν,ν0
is a tau-additive measure, and so, applying τ−1

ν,ν0
to both sides of Eq. (20), we have

τ−1
ν,ν0

(
μτν,ν0

(A ∪ B)
)

= τ−1
ν,ν0

(μτν,ν0
(A)) + τ−1

ν,ν0
(μτν,ν0

(B)) (21)

for any A, B ∈ P(X). Now, let

m = τ−1
ν,ν0

◦ μτν,ν0
. (22)

Based on Eq. (21), m is an additive measure on X. Moreover, τ−1
ν,ν0

(1) = 1 and μτν,ν0
(X) = 1 imply m(X) = 1. 

Therefore, m is a probability measure on X. We know that τν,ν0 is a T -function, and from Eq. (22) we have

μτν,ν0
= τν,ν0 ◦ m,

which means that μτν,ν0
can be represented by the probability measure m and the T -function τν,ν0 . �

Remark 4. Based on Lemma 1, a tau-additive measure μτν,ν0
can always be represented by the pair (P r, τν,ν0), where 

Pr is a probability measure and τν,ν0 is the same tau function as that in μτν,ν0
. That is, we have

μτν,ν0
= τν,ν0 ◦ Pr (23)

and

Pr = τ−1
ν,ν0

◦ μτν,ν0
. (24)

This means that we can always create a tau-additive measure from a probability measure, and a probability measure 
from a tau-additive measure.

4.1. The properties of the tau-additive measure

Here, we will describe the main properties of the tau-additive measure. Noting Proposition 1 and the definition for 
a tau-additive measure in Definition 6, we immediately get the following proposition.

Proposition 4. Let μτν,ν0
be a tau-additive measure on a finite set X, and let μτν,ν0

be represented by the probability 
measure Pr . Then, for any ν, ν0 ∈ (0, 1), μτν,ν0

is a monotone measure on X. Also, for any A ∈P(X),

(a) if ν = ν0, then μτν,ν0
(A) = Pr(A)

(b) if ν < ν0, then μτν,ν0
(A) ≥ Pr(A)

(c) if ν > ν0, then μτν,ν0
(A) ≤ Pr(A).

We should mention that, based on Proposition 4, the tau-additive measure μτν,ν0
may be viewed as an upper or a 

lower probability measure depending on the values of its parameters.
Now, we will show how to compute the tau-additive measure of the union of n pairwise disjoints sets.

Proposition 5. Let μτν,ν0
be a tau-additive measure on a finite set X. For any A1, A2, . . . , An ∈P(X) pairwise disjoint 

sets,

μτν,ν0

(
n⋃

Ai

)
= τν,ν0

(
n∑

τ−1
ν,ν0

(μτν,ν0
(Ai))

)
. (25)
i=1 i=1
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Proof. We will prove Eq. (25) by induction. Taking into account the definition for a tau-additive measure in Defini-
tion 6, we immediately have that Eq. (25) holds for n = 2. Now, let us assume that Eq. (25) holds for any n > 2. Then, 
noting the associativity of the set union operation, Definition 6 and the inductive condition that Eq. (25) holds for n, 
we can write

μτν,ν0

(
n+1⋃
i=1

Ai

)
= μτν,ν0

((
n⋃

i=1

Ai

)
∪ An+1

)
=

= τν,ν0

(
τ−1
ν,ν0

(
μτν,ν0

(
n⋃

i=1

Ai

))
+ τ−1

ν,ν0
(μτν,ν0

(An+1))

)
=

= τν,ν0

(
τ−1
ν,ν0

(
τν,ν0

(
n∑

i=1

τ−1
ν,ν0

(μτν,ν0
(Ai))

))
+ τ−1

ν,ν0
(μτν,ν0

(An+1))

)
=

= τν,ν0

(
n+1∑
i=1

τ−1
ν,ν0

(μτν,ν0
(Ai))

)
,

which is Eq. (25) for n + 1. �
The following proposition concerns the tau-additive measure of the difference of two sets.

Proposition 6. Let μτν,ν0
be a tau-additive measure on a finite set X. For any A, B ∈ P(X), if A ⊆ B , then

μτν,ν0
(B \ A) = τν,ν0

(
τ−1
ν,ν0

(μτν,ν0
(B)) − τ−1

ν,ν0
(μτν,ν0

(A))
)

. (26)

Proof. Let Pr be a probability measure on the set X. Then, based on Lemma 1, Eq. (24) holds. Since Pr is a 
probability measure, for any A, B ∈P(X), A ⊆ B , we have

Pr(B \ A) = Pr(B) − Pr(A). (27)

Using Eq. (24), Eq. (27) can be written as

τ−1
ν,ν0

(μτν,ν0
(B \ A)) = τ−1

ν,ν0
(μτν,ν0

(B)) − τ−1
ν,ν0

(μτν,ν0
(A)).

Since both sides of this equation are non-negative, applying τν,ν0 to both sides leads to Eq. (26). �
The following proposition describes how the tau-additive measure of a complement set can be computed.

Proposition 7. Let μτν,ν0
be a tau-additive measure on a finite set X. For any A ∈P(X)

μτν,ν0
(A) = τν,ν0

(
1 − τ−1

ν,ν0
(μτν,ν0

(A))
)

, (28)

where A is the complement set of A (i.e. A = X \ A).

Proof. Noting the fact that τ−1
ν,ν0

(μτν,ν0
(X)) = 1 and applying Proposition 6 with B = X, we get Eq. (28). �

The following proposition may be viewed as the law of total tau-additive measure.

Proposition 8. Let μτν,ν0
be a tau-additive measure on a finite set X. If B1, B2, . . . , Bn are pairwise disjoint subsets 

of X such that 
⋃n

i=1 Bi = X, then for any A ∈P(X),

μτν,ν0
(A) = τν,ν0

(
n∑

τ−1
ν,ν0

(μτν,ν0
(A ∩ Bi))

)
. (29)
i=1
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Proof. Let μτν,ν0
be represented by the probability measure Pr , i.e., Eq. (24) holds. Pr is a probability measure, and 

so, using the law of total probability, we have

Pr(A) =
n∑

i=1

Pr(A ∩ Bi). (30)

With Eq. (24), Eq. (30) can be written as

τ−1
ν,ν0

(μτν,ν0
(A)) =

n∑
i=1

τ−1
ν,ν0

(μτν,ν0
(A ∩ Bi)).

Now, applying τν,ν0 to both sides of the last equation, we get Eq. (29). �
Here, we will demonstrate that the tau-additive measure can be submodular or supermodular, depending on the 

value of parameter ν. This characteristic of the tau-additive measure is important from an uncertainty modeling point 
of view.

Theorem 3. Let μτν,ν0
be a tau-additive measure on a finite set X.

(a) If ν > ν0, then μτν,ν0
is supermodular.

(b) If ν < ν0, then μτν,ν0
is submodular.

Proof. Here, we will prove case (a), the proof of case (b) being similar to that of case (a).
The supermodularity of μτν,ν0

means that for any A, B ∈P(X),

μτν,ν0
(A ∪ B) ≥ μτν,ν0

(A) + μτν,ν0
(B) − μτν,ν0

(A ∩ B). (31)

Let μτν,ν0
be represented by the probability measure Pr , i.e., Eq. (23) holds. Then Eq. (31) is equivalent to

τν,ν0(P r(A ∪ B)) ≥ τν,ν0(P r(A)) + τν,ν0(P r(B)) − τν,ν0(P r(A ∩ B)). (32)

Noting the Poincaré formula of probability theory, Eq. (32) is equivalent to

τν,ν0(P r(A) + Pr(B) − Pr(A ∩ B)) ≥
≥ τν,ν0(P r(A)) + τν,ν0(P r(B)) − τν,ν0(P r(A ∩ B)).

(33)

Since Pr is a monotone measure, we have Pr(A ∩ B) ≤ min(P r(A), Pr(B)). Now, let

x = Pr(A), y = Pr(B), z = Pr(A ∩ B).

Then x, y, z ∈ [0, 1], z ≤ min(x, y) and x + y − z ≤ 1. Therefore, noting Theorem 2, ν > ν0 implies

τν,ν0(x + y − z) ≥ τν,ν0(x) + τν,ν0(y) − τν,ν0(z).

This also means that if ν > ν0, then Eq. (33) holds. Since Eq. (33) and Eq. (31) are equivalent, if ν > ν0, then Eq. (31)
holds as well. �

It is well known that every submodular (supermodular, respectively) measure is subadditive (superadditive, respec-
tively) (see, e.g., [21]). Therefore, it readily follows from Theorem 3 that a tau-additive measure μτν,ν0

is superadditive 
if ν > ν0, and it is subadditive if ν < ν0. This property can also be proved by exploiting the result of Corollary 1. And 
the following is an immediate consequence of the subadditivity or superadditivity of the tau-additive measure.

Corollary 2. Let μτν,ν0
be a tau-additive measure on a finite set X. Then for any A ∈P(X),

(a) if ν > ν0, then 1 ≥ μτν,ν0
(A) + μτν,ν0

(A).

(b) If ν < ν0, then 1 ≤ μτν,ν (A) + μτν,ν (A).

0 0
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Proof. Noting that A ∩ A = ∅ and μτν,ν0
(A ∪ A) = 1, by applying Theorem 3 with B = A, we immediately get (a) 

and (b) of this corollary. �
The result of the following proposition will be utilized in Section 6, where we will present an application of the 

tau-additive measure in human resource management. Namely, we will show how the tau-additive measure can be 
utilized to model the effect of team merging on team performance.

Proposition 9. Let μτν,ν0
be a tau-additive measure on a finite set X. For any A1, A2, . . . , An ∈P(X) pairwise disjoint 

sets, the following hold:

(a) If ν > ν0, then

μτν,ν0

(
n⋃

i=1

Ai

)
≥

n∑
i=1

μτν,ν0
(Ai) (34)

(b) If ν < ν0, then

μτν,ν0

(
n⋃

i=1

Ai

)
≤

n∑
i=1

μτν,ν0
(Ai)

Proof. Here, we will prove case (a) by induction. The proof of case (b) can be provided in a similar way. Exploiting 
the result of Theorem 3, we know that if ν > ν0, then Eq. (34) holds for n = 2. Now, suppose that Eq. (34) holds for 
any n > 2. Then, using the case for n = 2, the associativity of the set union operation and the inductive condition, we 
can write

μτν,ν0
(A1 ∪ A2 ∪ · · · ∪ An+1) = μτν,ν0

((A1 ∪ A2 ∪ · · · ∪ An) ∪ An+1) ≥
≥ μτν,ν0

(A1 ∪ A2 ∪ · · · ∪ An) + μτν,ν0
(An+1) ≥

≥ μτν,ν0
(A1) + μτν,ν0

(A2) + · · · + μτν,ν0
(An+1). �

(35)

4.2. Construction of a tau-additive measure from a set function

Constructing a tau-additive measure is an interesting problem. In this part, we will describe how a tau-additive 
measure can be constructed on a finite set. Later, in Section 6, we will present an application connected with the 
results presented here.

It is well known that the λ-additive measure has the following property (see Theorem 4.7 in [4]). If X is a non-
empty finite set, μ : P(X) → [0, 1] is a set function on X, A1, A2, . . . , An are pairwise disjoint subsets of X such that ⋃n

i=1 Ai = X, μ(Ai) < 1 for i = 1, 2, . . . , n and there are at least two subsets, Ai and Aj , satisfying μ(Ai), μ(Aj ) >
0, i, j ∈ {1, 2, . . . , n}, then μ is a λ-additive measure on X and the value of the parameter λ ∈ (−1, ∞) is uniquely 
determined by the equation

1 + λ =
n∏

i=1

(1 + λμ(Ai)) . (36)

This is an important property of the λ-additive measure as it tells us how it can be constructed on finite set. Now, we 
will show that the tau-additive measure has a similar property, which allows us to construct a particular tau-additive 
measure on a finite set.

Theorem 4. Let X be a non-empty finite set and let A1, A2, . . . , An be pairwise disjoint subsets of X such that ⋃n
i=1 Ai = X. Let μ : P(X) → [0, 1] be a set function that satisfies the following requirements:

(a) μ(X) = 1
(b) 0 ≤ μ(Ai) < 1 for any i ∈ {1, 2, . . . , n}
(c) there are at least two sets, Ai1 and Ai2 , i1, i2 ∈ {1, 2, . . . , n}, i1 
= i2, such that μ(Ai1), μ(Ai2) > 0.
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Then, for any arbitrary fixed ν0 ∈ (0, 1), μ is a tau-additive measure with some parameter ν ∈ (0, 1), and the value of 
ν is uniquely determined by the equation

1 = τν,ν0

(
n∑

i=1

τ−1
ν,ν0

(μ(Ai))

)
. (37)

Proof. Since μ(X) = 1, Eq. (37) can be written as

μ

(
n⋃

i=1

Ai

)
= τν,ν0

(
n∑

i=1

τ−1
ν,ν0

(μ(Ai))

)
. (38)

Therefore, for an arbitrary fixed ν0 ∈ (0, 1), μ is a tau-additive measure with some parameter ν. Now, we will show 
that under the condition of this theorem, Eq. (37) uniquely determines the value of ν; that is, Eq. (37) has exactly one 
solution for ν in (0, 1) when the value of ν0 ∈ (0, 1) is fixed. Applying τ−1

ν,ν0
to both sides of Eq. (37), we get

τ−1
ν,ν0

(1) =
n∑

i=1

τ−1
ν,ν0

(μ(Ai)), (39)

which is equivalent to Eq. (37). Noting the fact that τ−1
ν,ν0

(1) = 1, the equation

1 =
n∑

i=1

τ−1
ν,ν0

(μ(Ai)) (40)

is equivalent to Eq. (38) and Eq. (37). Now, we will show that under the condition of this theorem, Eq. (40) has exactly 
one solution. Let

gi(ν) = τ−1
ν,ν0

(μ(Ai)) (41)

for i = 1, 2, . . . , n, and let

g(ν) =
n∑

i=1

gi(ν). (42)

Then, Eq. (40) can be written as

1 = g(ν).

Noting the condition that 0 ≤ μ(Ai) < 1, the properties of the tau function, Proposition 2 and Proposition 3, gi in Eq. 
(41) is a continuous function of ν and

(a) if μ(Ai) = 0, then gi(ν) = 0 for any ν ∈ (0, 1)

(b) if μ(Ai) > 0, then gi is a strictly increasing function of ν with the range (0, 1), where ν ∈ (0, 1).

Since function g in Eq. (42) is a sum of continuous functions, it is continuous as well. Taking into account the fact that 
there are at least two sets, Ai1 and Ai2 , i1, i2 ∈ {1, 2, . . . , n}, i1 
= i2, such that μ(Ai1), μ(Ai2) > 0, based on (a) and 
(b), the function g(ν) = ∑n

i=1 gi(ν) is a strictly increasing, continuous function with the range (0, r), where r ≥ 2. 
Therefore, there exists exactly one ν ∈ (0, 1) such that g(ν) = 1. �

As we pointed out above, when constructing a λ-additive measure, we need to solve Eq. (36) for λ. This equation 
can be solved numerically. In this case, we need to find the value of λ in the (−1, ∞) interval. At the same time, 
based on Theorem 4, we can construct a tau-additive measure by fixing the value of ν0 and solving Eq. (40) for ν. 
Since ν ∈ (0, 1), the numerical solution of Eq. (40) for ν is simpler than that of Eq. (36) for λ. Furthermore, exploiting 
Theorem 4 and the results that will be described in Section 5, we can easily construct an approximate λ-additive 
measure on a finite set.
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5. The tau-additive measure as an approximation to lambda-additive measure

Here, we will show how the lambda-additive measure can be approximated by the tau-additive measure.
Now, let us consider the tau function in Eq. (5) with the parameter ν0 = 1

2 ; that is,

τν(x) = τν,ν0(x)∣∣ν0= 1
2

= 1

1 + ν
1−ν

1−x
x

, (43)

where x ∈ [0, 1]. Notice that in this case, ν0 drops out from Eq. (43), and so, we can use the simplified τν notation 
instead of τν,ν0 . Next, let the tau-additive measure be represented by the tau function in Eq. (43) and the additive 
measure μ; that is, μτν = τν ◦ μ.

Now, consider the

λ =
(

ν

1 − ν

)2

− 1 (44)

bijective mapping, or alternatively, its inverse transformation

ν =
√

1 + λ

1 + √
1 + λ

, (45)

where λ ∈ (−1, ∞) and ν ∈ (0, 1). This also means, that λ = 0 corresponds to ν = 1
2 . After direct calculation, we can 

see that if Eq. (44) or Eq. (45) holds, then

hλ

(
1

2

)
= τν

(
1

2

)
, (46)

where hλ is the T -function in the additive representation of the λ-additive measure (see Eq. (2)). Also, the first 
derivatives of hλ and τν at x = 1

2 are

dhλ(x)

dx
∣∣x= 1

2

= (1 + λ)x ln(1 + λ)

λ
∣∣x= 1

2

=
√

1 + λ ln(1 + λ)

λ

and
dτν(x)

dx
∣∣x= 1

2

= ν(1 − ν)

((2ν − 1)x − ν)2 ∣∣x= 1
2

= 4ν(1 − ν).

Since hλ and τν are continuous functions in (0, 1), λ = 0 corresponds to ν = 1
2 , and

lim
λ→0

dhλ(x)

dx
∣∣x= 1

2

= lim
λ→0

√
1 + λ ln(1 + λ)

λ
= 1

and

lim
ν→ 1

2

dτν(x)

dx
∣∣x= 1

2

= lim
ν→ 1

2

4ν(1 − ν) = 1,

we get that if Eq. (44) (or equivalently, Eq. (45)) holds, and λ ≈ 0, (or equivalently ν ≈ 1
2 ), then the first derivatives 

of hλ and τν at x = 1
2 are approximately equal. Therefore, using this observation and Eq. (46), we may conclude 

that if Eq. (44) (or equivalently, Eq. (45)) holds, and λ ≈ 0, (or equivalently ν ≈ 1
2 ), then τν approximates hλ quite 

well around x = 1
2 . Moreover, it can be shown numerically that if Eq. (44) (or equivalently, Eq. (45)) holds, then for 

ν ∈ (0.25, 0.75) (or equivalently, λ ∈ (−8/9, 8)),

max
x∈(0,1)

|hλ(x) − τν(x)| ≤ 0.0304.

Fig. 2 shows examples of how a tau-additive measure can approximate a lambda-additive measure. In practical appli-
cations of the lambda-additive measure, the value of parameter λ is typically not much greater and not much less than 
zero. In such cases, the tau-additive measure can be used as an alternative to the lambda-additive measure.

It should be added that hλ is an exponential function, while τν is a fraction of first order polynomials, which is an 
advantage when numerical computations need to be performed.
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Fig. 2. Lambda-additive measures approximated by tau-additive measures.

6. A demonstrative example in human resource management

Here, we will present an example of the application of the tau-additive measure in the area of human resource 
management. Namely, we will show how the tau-additive measure can be utilized to model the effect of team merging 
on team performance. This example is an application of Theorem 4, which tells us how to construct a tau-additive 
measure on a finite set, and of Proposition 9, which is about the sub- and superadditivity of the tau-additive measure.

Let A1, . . . , An be n pairwise disjoint groups of people (teams) and let X = ⋃n
i=1 Ai be the universe of groups. 

Suppose that we have the value of μ(Ai) for all i = 1, . . . , n, where μ : P(X) → [0, 1] is a set function. Here, we 
interpret μ as a performance measure; that is, μ(Ai) expresses the performance of team Ai . Let us assume that there 
are at least two teams whose performance is positive. This means that ν satisfies the conditions (a), (b) and (c) of 
Theorem 4. Therefore, exploiting the results of Theorem 4, for any arbitrarily fixed ν0 ∈ (0, 1), μ is a tau-additive 
measure with some parameter ν, and the value of ν is uniquely determined by Eq. (40). This equation can be solved 
numerically, e.g., by using the bisection method. Once we have the value of ν, we can compare it with ν0. So, based 
on Proposition 9, for any arbitrarily fixed index set {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n},

(a) if ν > ν0, then

μ(Ai1 ∪ Ai2 ∪ · · · ∪ Aik ) ≥ μ(Ai1) + μ(Ai2) + · · · + μ(Aik ), (47)

(b) if ν < ν0, then

μ(Ai1 ∪ Ai2 ∪ · · · ∪ Aik ) ≤ μ(Ai1) + μ(Ai2) + · · · + μ(Aik ). (48)

This means that if ν > ν0, then uniting some teams into one, the performance of the united team is at least as good as 
the performance sum of the individual teams. Also, ν < ν0 implies that merging some teams into one, the performance 
of the merged team is at most as good as the performance sum of the individual teams.

Now, let ν0 = 1
2 and let the generator function of the tau function be that of the Dombi operators. In this case, we 

get the one-parameter tau function τν given by Eq. (43). If we use the above method with τν , then, noting Eq. (40)
and Proposition 2, we need to solve the equation

1 =
n∑

i=1

τ−1
ν,ν0

(μ(Ai)) =
n∑

i=1

1

1 + 1−ν
ν

1−μ(Ai)
μ(Ai)

(49)

for ν ∈ (0, 1). Based on the value of ν, we know that if ν > 1
2 (ν < 1

2 , respectively), then μ is superadditive 
(subadditive, respectively) and Eq. (47) (Eq. (48), respectively) holds for any {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}. Since 
ν = 1

2 symmetrically separates the domains (0, 12) and ( 1
2 , 1), which correspond to the subadditive and superadditive 

tau-additive measures, respectively, the value of ν may be viewed as an indicator of sub- or superadditivity of μ. 
Furthermore, if ν ∈ (0.25, 0.75), then, based on the results described in Section 5, the set function μ is approximately 
a λ-additive measure with the λ parameter value found using Eq. (44). Recall that the numerical solution of Eq. (49)
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means that we need to find a particular value of the parameter ν in the interval (0, 1). This task is computationally 
simpler than finding the solution of Eq. (36) for λ ∈ (−1, ∞). Therefore, we can first find the value of ν and then, 
using Eq. (44), we can find the corresponding λ.

Remark 5. It is worth noting that the so-called ν-additive measure can be also used for modeling the effect of team 
merging on team performance. For more details, see [16] or Chapter 2 in [15].

7. Conclusions

In our study, we introduced a new monotone measure called the tau-additive measure, as the composition of an 
appropriate T -transformation and an additive measure. In our approach, the T -transformation is a generator function-
based parametric function, called the tau function, which is also known as a unary operator in continuous-valued 
logic. Owing to the properties of the tau function, the tau-additive measure is very flexible. It can be adjusted via 
the parameters of the tau function and various tau-additive measures can be obtained depending on the choice of the 
generator function of the tau transformation. We should add that the tau-additive measure can be viewed as an upper 
or lower probability depending on the parameter values of the tau function.

Since the tau function is generator function-dependent, we provided a necessary and sufficient condition for the 
identity of two tau functions that are induced by different generator functions (see Theorem 1).

We demonstrated that using the generator function of the Dombi operators as generator of the tau function, we can 
get a particular tau function that approximates the T -function in the additive representation of the λ-additive measure 
quite well. In this case, the tau-function is a fraction of two first order polynomials and its parameters lie in the interval 
(0, 1), while the T -function of a lambda-additive measure is an exponential function with λ ∈ (−1, ∞). This means 
that the tau-additive measure is computationally less complex and it is easier to apply in practice than the λ-additive 
measure. Therefore, the tau-additive measure may be viewed as a viable alternative to the lambda additive measure.

As a key result of our study (see Theorem 4), we described how a tau-additive measure can be constructed on a finite 
set. We pointed out that this procedure is similar to how a lambda-additive measure can be constructed, but in the case 
of the tau-additive measure, the procedure is computationally much simpler than that for the lambda-additive measure. 
This property of the tau-additive measure and the fact that it can be sub- or supermodular depending on the parameter 
values of the tau function (see Theorem 2 and 3) together allow us to effectively utilize the tau-additive measure in 
uncertainty modeling. We demonstrated this capacity of the tau-additive measure by the means of an example in the 
area of human resource management. And of course our results can be utilized for uncertainty modeling in other areas 
as well.
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