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This paper presents a novel approach to the weighted aggregation and to determination of weights in 

an aggregation procedure. In our study, we introduce the concept of a weighted aggregation system that 

consists of two components: (1) a weighting transformation and (2) an aggregation operator, both in- 

duced by a common generator function. We provide the necessary and sufficient condition for the form 

of a generator function-based weighted aggregation system. We show that the weighted quasi-arithmetic 

means on the non-negative extended real line are none other than the aggregation functions induced by 

weighted aggregation systems, i.e., these means are compositions of an n -ary aggregation operator and n 

weighting transformations ( n ∈ N , n ≥ 1 ). Next, using weighted quasi-arithmetic means on the unit inter- 

val, we introduce a new, expectation level-based weight determination method and a scoring procedure. 

In this method, the decision-maker’s expectation levels for the input variables are directly transformed 

into weights by making use of the generator function of a weighted quasi-arithmetic mean. We utilize 

this mean as a scoring function to evaluate the decision alternatives. Lastly, by the means of illustrative 

numerical examples, we present a novel decision model, in which the expectation levels can be even 

intervals, i.e., the weights are also intervals. Finally, we get an interval-valued score for each alternative. 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

There are many decision making problems that require the in- 

orporation of importance into the final decision. For example, 

n a fuzzy inference method, the activation levels of the fuzzy 

ule antecedents may be viewed as importance that determine the 

eights of the rule consequences in the output. That is, this out- 

ut may be treated as a result of a weighted aggregation proce- 

ure. Calvo, Mesiar, & Yager (2004) described a general method of 

ncorporating quantitative weights into aggregation (see also Calvo 

 Mesiar, 2001 ). Their method is founded on the so-called strong 

dempotent property of the aggregation operators. Qualitative as- 

ects of weighted aggregation arise when importance of a single 

riterion needs to be aggregated. The qualitative weighted aggrega- 

ions are discussed, e.g., in Dubois & Prade (1985) ; Dubois, Prade, 

ico, & Teheux (2017) ; Fodor & Roubens (1994) ; Yager (2001) . 

ager (2001) introduced the so-called relevancy transformation 

RET operator), which is an operation that obtains the effective rule 
∗ Corresponding author. 
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utput from the rule relevancy and the rule consequent in a fuzzy 

nference system. 

The quasi-arithmetic means, treated as extended aggregation 

unctions were introduced by Kolmogorov (1930) and Nagumo 

1930) . The weighted quasi-arithmetic means may be viewed as 

eneralizations of the quasi-arithmetic means. These aggregation 

unctions are of great importance in various areas (see, e.g., Calvo 

t al., 2004; Grabisch, Marichal, Mesiar, & Pap, 2011; Matkowski, 

010; Mesiar & Špirková, 2006; Wadbro & Hägg, 2015; Yoshida, 

011 ). The ordered weighted averaging operator and the quasi- 

rdered weighted averaging function also play a key role in op- 

rational research and decision making (see, e.g., Hou et al., 2021; 

eón-Castro, Espinoza-Audelo, Merigó, Herrera-Viedma, & Herrera, 

020; Maldonado, Merigó, & Miranda, 2018; Mesiar, Stup ̌nanová, & 

ager, 2018 ). 

Determining the appropriate weights of criteria or attributes is 

n important topic in multi-criteria decision making. This is why 

his topic has been attracting a lot of attention in recent years (see, 

.g., de Almeida, de Almeida, Costa, & de Almeida-Filho, 2016; Beli- 

kov, Gmez, James, Montero, & Rodrguez, 2017; Corrente, Figueira, 

reco, & Słowi ́nski, 2017; Keshavarz-Ghorabaee, Amiri, Zavadskas, 

urskis, & Antucheviciene, 2018; Liu & Wan, 2019; Lolli et al., 2019; 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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i & Liao, 2019; Zargini et al., 2020; Žižovi ́c & Pamucar, 2019; Zol-

ani, Yazdani, & Zavadskas, 2018 ). 

.1. Motivations 

Here, we will briefly summarize our research motivations. 

ased on the studied literature, we can see the following char- 

cteristics of the above-mentioned methods and approaches. The 

eighted quasi-arithmetic means, the ordered weighted averaging 

perator and the quasi-ordered weighted averaging function are 

rucial aggregation methods. All these methods are treated as av- 

rages or means, in which the weights have a role of expressing 

mportance. However, we may also look at the weights from the 

erspective of their transformation role. Namely, we may consider 

hese aggregation methods as being two-step procedures. First, the 

eights applied to the variables transform their values, and then 

hese transformed variable values are aggregated into the final out- 

ut. Thus, these weighted aggregation functions may be viewed as 

ompositions of an aggregation operation and weighting transfor- 

ations. In our study, we will look at the weighted aggregation 

unctions from this point of view. 

The methods used for determining the weights of criteria or 

ttributes intend to obtain information about the importance of 

hese criteria or attributes. Then, the obtained information is ex- 

ressed in terms of weights. In our study, we address the ques- 

ion of whether we can treat the weights as ‘descriptors’ of the 

ecision-maker’s expectation levels (expectations in short). 

In practice, the weighted version of an aggregation method is 

ften intuitively determined. This approach is based on the pre- 

umption that the weighting and the aggregation are indepen- 

ent and so various weighted aggregation functions can be derived 

rom an aggregation operator. Using the following example, we will 

how that this presumption is generally not valid and it may lead 

o inconsistencies. Let us consider the 

(x 1 , x 2 ) = 1 − (1 − x 1 )(1 − x 2 ) = x 1 + x 2 − x 1 x 2 

perator, where x 1 , x 2 ∈ [0 , 1] . Note that this is the product (proba-

ilistic) disjunction operator in continuous-valued logic. Let w 1 and 

 2 be two weights, w 1 , w 2 ∈ [0 , 1] . Then, intuitively, we may link

he weighted aggregation function 

 (w 1 , w 2 , x 1 , x 2 ) = w 1 x 1 + w 2 x 2 − w 1 w 2 x 1 x 2 

r 

 (w 1 , w 2 , x 1 , x 2 ) = x w 1 

1 
+ x w 2 

2 
− x w 1 

1 
x w 2 

2 

r 

 (w 1 , w 2 , x 1 , x 2 ) = w 1 x 1 + w 2 x 2 − x w 1 

1 
x w 2 

2 

o the aggregation operator o. This example highlights the fact that 

t is not always obvious how to identify the appropriate weighted 

ggregation function for an aggregation operator. In this study, we 

hall present a consistent approach in which the aggregation op- 

rator and the weighting method belong to each other and so 

he weighted aggregation function can be unambiguously deter- 

ined. Later, we will see that this can be achieved by defining 

he weighted aggregation function as a composition of an aggrega- 

ion operator and weighting transformations; and both the aggre- 

ation operator and the weighting transformation operator are in- 

uced by the same generator function. In Section 4.2 , we will show 

hat the appropriate weighted aggregation function corresponding 

o the above aggregation operator o is different from all the above- 

entioned intuitive suggestions. 

In a practical decision-making procedure, the expectations of a 

ecision-maker play an important role. On the one hand, the ex- 

ectations may be viewed as importance weights, on the other 
581 
and, the levels of expectations also represent the decision- 

aker’s preferences. In our study, we seek to find a method that 

an establish a connection between the expectation levels and the 

eights. After identifying this connection, we can treat the weights 

nd the expectations as being interchangeable. We should add that, 

o the best of our knowledge, the literature lacks methods that can 

irectly translate decision-maker’s expectation levels into quantita- 

ive weights. Since in many situations, the decision-maker’s expec- 

ations are represented by intervals, we aim to present a procedure 

hat can treat the expectation intervals as inputs and results in an 

nterval-valued score for each assessed decision alternative. 

.2. Contribution of this study 

In our study, we present a novel approach to weighted aggre- 

ation and to the determination of weights in an aggregation pro- 

edure. 

It is well known that the weighted quasi-arithmetic means are 

haracterized by the continuity, strictly increasing monotonicty, 

dempotency and bisymmetry properties (see, e.g., Theorem 4 in 

rabisch et al., 2011 ). In our approach, we introduce the concept of 

 weighted aggregation system which consists of two elements: (1) 

 weighting transformation and (2) an aggregation operator. These 

wo elements are both induced by a common generator function. 

hen, we show the necessary and sufficient condition for the forms 

f generator function-based weighting transformation and aggre- 

ation operator in a weighted aggregation system. Setting appro- 

riate requirements for a weighted aggregation system allows us 

o have a new representation of weighted quasi-arithmetic means. 

amely, we show that the weighted quasi-arithmetic means on the 

on-negative extended real line are none other than compositions 

f an n -ary aggregation operator and n weighting transformations 

 n ∈ N , n ≥ 1 ). We should add that our weighting transformation is

imilar to Yager’s relevancy transformation (RET) (see Yager, 2001 ), 

hich is used to obtain the effective rule output from the rule rel- 

vancy and the rule consequent in a fuzzy system. In our approach, 

e consider the weighting transformation – as well as the aggre- 

ation operator – being induced by a common generator. We also 

emonstrate that the generator functions of strict triangular norms 

r strict triangular conorms induce weighted aggregation systems 

n the unit interval. Here, we show that the weighted aggregation 

unction of such a system is a weighted quasi-arithmetic mean on 

0,1] with a single annihilator element 0 or 1. 

In this paper, we present an expectation level-based weight 

etermination and scoring procedure that utilizes the weighted 

uasi-arithmetic means on the unit interval. In this method, we 

btain the decision-makers expectation level for each input vari- 

ble of a decision making procedure. Next, we translate these 

xpectation levels to weights using the generator function of a 

eighted quasi-arithmetic mean and then we use this mean as a 

coring function to evaluate the decision alternatives. It is worth 

entioning that, to the best of our knowledge, our method of 

eight determination is unique. Furthermore, we present two nu- 

erical examples of how our method can be used in practice. In 

he first example, the expectations levels are real-valued scalars, 

hile in the second one, the decision-maker’s expectations are 

nterval-valued quantities. In the latter case, we obtain an interval- 

alued score for each decision alternative. The proposed techniques 

ay also be viewed as novel methods in multi-criteria decision 

aking. 

This study is structured as follows. After some preliminary top- 

cs in Section 2 , a general approach to weighted aggregation sys- 

ems is presented in Section 3 . Next, in Section 4 , we present the

onnections between the weighted quasi-arithmetic means and the 

ggregation functions induced by weighted aggregation systems on 

he non-negative extended real line. Here, we also describe the 
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Table 1 

Values and weights. 

Patient Symptoms 

s 1 . . . s n 

p 1 x 1 , 1 . . . x 1 ,n 
p 2 x 2 , 1 . . . x 2 ,n 

. 

. 

. 
. 
. 
. 

. 

. 

. 

p m x m, 1 . . . x m,n 

Diagnosis Symptoms 

s 1 . . . s n 
d 1 w 1 , 1 . . . w 1 ,n 

d 2 w 2 , 1 . . . w 2 ,n 

. 

. 

. 

. 

. 

. 

. 

. 

. 

d l w l, 1 . . . w l,n 
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eighted aggregation systems induced by strict logical operators. 

n Section 5 , we introduce an expectation level-based weighting 

nd scoring procedure that utilizes the weighted quasi-arithmetic 

eans on the unit interval. In this section, we present two illustra- 

ive numerical examples of how our method can be applied in the 

ractice of multi-criteria decision making. Lastly, the main conclu- 

ions, the limitations of our method and our future research ideas 

re summarized in Section 6 . 

. Preliminaries 

First we would like to clarify what the weighting of criteria 

eans. In real-life decision making problems, not just the magni- 

ude of each attribute needs to be considered, but also its degree 

f importance (i.e., its weight). Let us assume that we measure var- 

ous symptoms of patients, and based on the measured values, we 

ould like to give diagnoses. We should take into account the fact 

hat the symptoms may have a different significance (weights, de- 

rees of importance) for various types of health problems. 

The left hand side part of Table 1 shows the patients from p 1 to

p m 

and the measured values of their symptoms x i, j , ( i = 1 , 2 , . . . , m ,

j = 1 , 2 , . . . , n ). The right hand side part of this table shows the de-

ree of importance of the jth symptom in the k th diagnosis, i.e., 

he weight w k, j ( k = 1 , 2 , . . . , l). In practice, it is quite normal that

he same symptom has different significance in different diagnoses, 

hich means that there is no unique set of weights for the symp- 

oms. 

Another example is the buying of a car. In this case, the pa- 

ameters of a car may also have various degrees of importance de- 

ending on whether we wish to buy a sports car or a family car. 

hat is, in this manner, there is no so-called best car. The best car 

xists only for a given set of weights. 

In decision procedures, one of the main tasks is to find proper 

eights. It is customarily supposed that there exists a unique set 

f weights. The previous examples suggest that this presumption 

s generally not valid. 

Now, we will give a mathematical description of the above 

oncept. Suppose that we have the attributes a 1 , a 2 , . . . , a n , which

haracterize an entity. Let the variables x 1 , x 2 , . . . , x n and the

eights w 1 , w 2 , . . . , w n be the inputs of a decision procedure. Here,

e interpret the value of variable x i and the value of weight 

 i as the utility value and the importance value of the i th at- 

ribute, respectively, in the preference system of a decision-maker. 

n practice, there are two well-known weighed aggregation meth- 

ds, called the weighted arithmetic mean and the weighted geo- 

etric mean, which are: 

n 
 

i =1 

w i x i (weighted arithmetic mean) (1) 
582 
n 
 

i =1 

x w i 

i 
(weighted geometric mean) . (2) 

We will use the common notation R for the real line and R 

or the extended real line, i.e., R = [ −∞ , ∞ ] . Here, we suppose

hat x i ∈ R + , where R + is the non-negative extended real line, i.e., 

 + = [0 , ∞ ] , i ∈ { 1 , 2 , . . . , n } . Note that based on Klement, Mesiar, &

ap (2013) and Grabisch et al. (2011) , here we adopt the following 

onventions: 

1 

0 

= ∞ , 
1 

∞ 

= 0 , + ∞ + (−∞ ) = −∞ and 0 · (±∞ ) = 0 , 

or any x ∈ R : 

 + ∞ = ∞ and x − ∞ = −∞ 

or any x ∈ R \ { 0 } : 

 · ∞ = 

{
∞ , if x > 0 

−∞ , if x < 0 

and ∞ 

x = 

{
∞ , if x > 0 

0 , if x < 0 

 

−∞ = 0 , e ∞ = ∞ , ln (0) = −∞ , and ln (∞ ) = ∞ . 

e should add that these conventions can be overwritten by re- 

ults of particular limits. Also, we shall assume that w i ∈ [0 , 1] for

ny i ∈ { 1 , 2 , . . . , n } and 

∑ n 
i =1 w i = 1 . We observe that there are two

ypes of operations underlying both the weighted arithmetic and 

he weighted geometric means given by Eqs. (1) and (2) , respec- 

ively. One of these operations transforms the x i value to an x ′ 
i 
∈ R + 

alue, while the other aggregates the transformed x ′ 
i 

values into 

 value in R + . We will call the operation that transforms x i to x ′ 
i 

he weighting transformation. And, we will call the operation that 

ggregates the x ′ 
i 

values the aggregation operation. The weighting 

ransformation ω : [0 , 1] × R + → R + is a continuous function of a 

eight w and a variable x . That is, x ′ is given by 

 

′ = ω(w, x ) . 

he aggregation operator o is an o : R 

n 
+ → R + mapping. For the 

eighted arithmetic and the weighted geometric means, the 

eighting transformations are given by 

 

′ 
i = ω(w i , x i ) = w i x i (3) 

nd 

 

′ 
i = ω(w i , x i ) = x w i 

i 
, (4) 

espectively, where w i ∈ [0 , 1] and x i ∈ R + . The aggregation opera-

ions o for the weighted arithmetic mean and the weighted geo- 

etric mean are given by 

(x ′ 1 , x ′ 2 , . . . , x ′ n ) = 

n ∑ 

i =1 

x ′ i (5) 

(x ′ 1 , x ′ 2 , . . . , x ′ n ) = 

n ∏ 

i =1 

x ′ i , (6) 

espectively, x ′ 
i 
∈ R + . 

Based on this line of thinking, we can state that the operator 

air (ω, o) form a weighted aggregation system. Here, we seek to 

eneralize the concept of a weighted aggregation system. In or- 

er to find the general requirements for a weighted aggregation 

ystem (ω, o) , first we study the weighting transformation opera- 

ion and the aggregation operation of the weighted arithmetic and 

he weighted geometric means. The weighting transformations of 

hese two aggregations, given by Eqs. (3) and (4) , have the follow- 

ng properties: 
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Weighted arithmetic mean Weighted geometric mean 

(a) for any w ∈ (0 , 1) , for any w ∈ (0 , 1) , 

x 1 < x 2 implies wx 1 < wx 2 x 1 < x 2 implies x w 1 < x w 2 

(b) 1 x = x, 0 x = 0 x 1 = x, x 0 = 1 

(c) w (x 1 + x 2 ) = wx 1 + wx 2 (x 1 x 2 ) 
w = x w 1 x 

w 
2 

(d) (w 1 + w 2 ) x = w 1 x + w 2 x x w 1 + w 2 = x w 1 x w 2 

(e) (w 1 w 2 ) x = w 1 (w 2 x ) x w 1 w 2 = (x w 2 ) w 1 , 

where x, x 1 , x 2 ∈ R + , w, w 1 , w 2 ∈ [0 , 1] and w 1 + w 2 ≤ 1 . The ag-

regation operator o for these two methods, given by Eqs. (5) and 

6) , have the following properties: 

(a) o is non-decreasing in each variable 

(b) If the arity of o is one, then o(x ′ ) = x ′ for any x ′ ∈ R + . 

. A general approach to weighted aggregation systems 

From now on, we will suppose that the domain of the weighted 

ggregation is the non-negative extended real line R + . Following 

he properties of the weighted arithmetic mean and weighted geo- 

etric mean, the general requirements for a weighted aggregation 

ystem are as follows. 

efinition 1. Let n ∈ N , n ≥ 1 . We say that the mapping o : R 

n 
+ →

 + is an aggregation operator if and only if o satisfies the following 

equirements: 

(o1) Continuity 

o is continuous for every bounded input vector of R 

n 
+ . 

(o2) Monotonicity 

o is strictly increasing in each of its arguments for every 

bounded input vector of R 

n 
+ . 

(o3) Identity when the arity of o is one. 

For any x ∈ R + : 

o(x ) = x. 

Note that the aggregation operator o is defined for any n ∈ N , 

 ≥ 1 arity. 

Now, we will generalize requirements (a)–(e), that we identified 

or the weighted arithmetic and geometric means. 

efinition 2 (weighted aggregation system) . Let n ∈ N , n ≥ 1 and

et o : R 

n 
+ → R + be an aggregation operator given by Definition 1 . 

e say that the mapping ω : [0 , 1] × R + → R + , called the weight-

ng transformation, and the aggregation operator o form a 

eighted aggregation system (ω, o) if and only if ω satisfies the 

ollowing requirements: 

( ω1) Continuity 

ω(w, x ) is continuous in w and x , where w ∈ [0 , 1] , x ∈ R + 
and x < ∞ . 

( ω2) Monotonicity in x 

For any w ∈ (0 , 1) and x 1 , x 2 ∈ R + : 

x 1 < x 2 implies ω(w, x 1 ) < ω(w, x 2 ) 

( ω3) Neutrality 

For any x ∈ R + : 

ω(1 , x ) = x 

( ω4) Multiplicative property 

For any w 1 , w 2 ∈ [0 , 1] , w 1 + w 2 ≤ 1 and x ∈ R + : 

ω(w 1 w 2 , x ) = ω(w 1 , ω(w 2 , x )) 

 ωo1) Distributivity of ω over o

For any w ∈ [0 , 1] and x 1 , x 2 , . . . , x n ∈ R + : 
ω(w, o(x 1 , x 2 , . . . , x n )) = o(ω(w, x 1 ) , ω(w, x 2 ) , . . . , ω(w, x 2 )) o

583 
 ωo2) Additive property 

For any w 1 , w 2 , . . . , w n ∈ [0 , 1] , 
∑ n 

i =1 w i ≤ 1 and x ∈ R + : 

ω 

( 

n ∑ 

i =1 

w i , x 

) 

= o(ω(w 1 , x ) , ω(w 2 , x ) , . . . , ω(w n , x )) . 

Using the concept of a weighted aggregation system, we inter- 

ret the weighted aggregation function induced by a weighted ag- 

regation system as follows. 

efinition 3. Let n ∈ N , n ≥ 1 and let (ω, o) be a weighted aggre-

ation system with the weighting transformation ω : [0 , 1] × R + → 

 + and the aggregation operator o : R 

n 
+ → R + . We say that the 

unction A ω,o : [0 , 1] n × R 

n 
+ → R + , which is given by 

 ω,o (w , x ) = o(ω(w 1 , x 1 ) , ω(w 2 , x 2 ) , . . . , ω(w n , x n )) , (7)

s the aggregation function induced by the weighted aggrega- 

ion system (ω, o) , where w = (w 1 , w 2 , . . . , w n ) , w i ≥ 0 , 
∑ n 

i =1 w i =
 and x = (x 1 , x 2 , . . . , x n ) . 

. Weighted quasi-arithmetic means as aggregation functions 

nduced by weighted aggregation systems 

Following Grabisch et al. (2011) , we define the weighted quasi- 

rithmetic mean on R + as follows (see also Daróczy & Páles, 2003 ). 

efinition 4. Let n ∈ N , n ≥ 1 . We say that the function M f, w 

:

 

n 
+ → R + is a weighted quasi-arithmetic mean on R + if there ex- 

sts a function f : R + → R , which is continuous and strictly mono- 

onic on R , and a real valued vector w = (w 1 , w 2 , . . . , w n ) ∈ (0 , 1)

atisfying 
∑ n 

i =1 w i = 1 such that 

 f, w 

(x ) = f −1 

( 

n ∑ 

i =1 

w i f (x i ) 

) 

, (8) 

olds for any x 1 , x 2 , . . . , x n ∈ R + . 

We will say that the function f in Eq. (8) is a generator func- 

ion of the weighted quasi-arithmetic mean M f, w 

. We can see by 

irect calculation that M f, w 

is uniquely determined up to a positive 

ultiplier of f . 

.1. Representing weighted quasi-arithmetic means on the 

on-negative extended real line 

Here, we will show that any weighted quasi-arithmetic mean 

n R + can be represented by a weighted aggregation system. 

roposition 1. Let n ∈ N , n ≥ 1 and let f : R + → R be a continuous

nd strictly monotonic function on R , and let the function o f : R 

n 
+ →

 + be given by 

 f (x 1 , x 2 , . . . , x n ) = f −1 

( 

n ∑ 

i =1 

f (x i ) 

) 

. (9) 

hen, o f satisfies the requirements for an aggregation operator given 

y Definition 1 . 

roof. With Eq. (9) and Definition 1 , the proof is 

traightforward. �

emark 1. Note that Eq. (9) is a characterization of associative 

unctions. The necessary and sufficient conditions for characteri- 

ation of associative functions can be found in Section 6.2 in Aczél 

1966) . The function f in Proposition 1 is called a generator func- 

ion of o f , and f is determined up to a multiplicative constant. 

The following theorem gives a sufficient condition for the form 

f a generator function-based weighting transformation ω f such 
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hat the (ω f , o f ) pair satisfies the definition for a weighted aggre-

ation system. 

heorem 1. Let n ∈ N , n ≥ 1 and let the function o f : R 

n 
+ → R + be

iven by Eq. (9) , where f is a generator function of o f . If the function

 f : [0 , 1] × R + → R + is given by 

 f (w, x ) = f −1 ( w f (x ) ) , (10) 

hen the pair (ω f , o f ) satisfies the requirements for a weighted ag- 

regation system given in Definition 2 . 

roof. Based on Proposition 1 , the function o f satisfies the re- 

uirements for an aggregation operator given by Definition 1 . 

ence, to show that (ω f , o f ) is a weighted aggregation system, we

eed to demonstrate that ω f satisfies the requirements from ω1 

o ω4 and ωo1 and ωo2 in Definition 2 . Recall that f : R + → R is

 continuous and strictly monotonic function on R . 

( ω1) Since f is a continuous function on R , ω f is continuous in w 

and in every x ∈ R + , x < ∞ . 

( ω2) As f is a strictly monotonic function, ω f is strictly increasing 

in x . 

( ω3) For any x ∈ R + , we have ω(1 , x ) = f −1 ( 1 f (x ) ) = x ; that is, ω
satisfies ( ω3). 

( ω4) Using Eq. (10) , for any w 1 , w 2 ∈ [0 , 1] , w 1 + w 2 ≤ 1 and x ∈
R + , we can write 

ω f (w 1 w 2 , x ) 

= f −1 (w 1 w 2 f (x )) = f −1 (w 1 f ( f −1 (w 2 f (x )))) = 

= f −1 (w 1 f (ω f (w 2 , x ))) = ω f (w 1 , ω f (w 2 , x ))) . 

 ωo1 ) With Eqs. (9) and (10) , for any w ∈ [0 , 1] and x 1 , x 2 , . . . , x n ∈
R + , we can write 

ω f (w, o f (x 1 , x 2 , . . . , x n )) = f −1 

( 

w f 

( 

f −1 

( 

n ∑ 

i =1 

f (x i ) 

) ) ) 

= 

= f −1 

( 

n ∑ 

i =1 

w f (x i ) 

) 

= f −1 

( 

n ∑ 

i =1 

f 
(

f −1 ( w f (x i ) ) 
)) 

= 

= f −1 

( 

n ∑ 

i =1 

f 
(
ω f (w, x i ) 

)) 

= o f (ω f (w, x 1 ) , ω f (w, x 2 ) , . . . , ω f (w, x n )) . 

 ωo2 ) With Eqs. (9) and (10) , for any w 1 , w 2 , . . . , w n ∈ [0 , 1] ,∑ n 
i =1 w i ≤ 1 and x ∈ R + , we can write 

ω f 

( 

n ∑ 

i =1 

w i , x 

) 

= f −1 

( ( 

n ∑ 

i =1 

w i 

) 

f (x ) 

) 

= f −1 

( 

n ∑ 

i =1 

w i f (x ) 

) 

= 

= f −1 

( 

n ∑ 

i =1 

f 
(

f −1 ( w i f (x ) ) 
)) 

= f −1 

( 

n ∑ 

i =1 

f 
(
ω f (w i , x ) 

)) 

= 

= o f (ω f (w 1 , x ) , ω f (w 2 , x ) , . . . , ω f (w n , x )) . 

�

We should add that the weighting transformation ω f is simi- 

ar to Yager’s RET operator which can be used in rule-based fuzzy 

ystems to obtain the output of a rule by considering its rele- 

ancy and its consequent (see Yager, 2001 ). The two main differ- 

nces between the RET operator and the weighting transforma- 
584 
ion are as follows. (1) Yager’s RET operator is a binary opera- 

or taking values from I 2 to I, while the weighting transformation 

 f is a [0 , 1] × R + → R + binary operator. That is, if ω f were a

0 , 1] × [0 , 1] → [0 , 1] mapping, then it would be a RET operator

ith I = [0 , 1] . (2) The weighting transformation ω f is generator-

ependent, while in Yager’s paper, the RET operator is interpreted 

s a function that fulfills certain requirements, but not induced by 

 generator. 

emark 2. It should be emphasized that the elements of a 

eighted aggregation system (ω f , o f ) induced by the generator 

unction f belong to each other. That is, both the aggregation oper- 

tor o f and the weighting transformation ω f depend on a common 

enerator function. 

Here, we shall give the necessary and sufficient condition for 

he form of a generator function-based weighting transforma- 

ion ω f such that the (ω f , o f ) pair satisfies the definition for a

eighted aggregation system. We will show that from the require- 

ents in Definition 2 , only two, namely, (ω3) and (ωo2) , are the 

ecessary conditions for a weighted aggregation system. 

heorem 2. Let n ∈ N , n ≥ 1 and let o f : R 

n 
+ → R + be an aggrega-

ion operator given by Eq. (9) , where f is a generator function of o f .

he pair (ω f , o f ) satisfies the requirements (ω3) and (ωo2) for a 

eighted aggregation system given in Definition 2 if and only if the 

unction ω f : [0 , 1] × R + → R + has the form given by Eq. (10) . 

roof. Based on Theorem 1 , if ω f has the form given by Eq. (10) ,

hen the pair (ω f , o f ) satisfies all the requirements for a weighted

ggregation system given in Definition 2 . Therefore, (ω f , o f ) satis- 

es the requirements (ω3) and (ωo2) for such a system as well. 

Conversely, let us assume that (ω f , o f ) satisfies the require- 

ents (ω3) and (ωo2) for a weighted aggregation system given 

n Definition 2 . Let x ∈ R + have an arbitrary fixed value. Then, not- 

ng the definition of o f in Eq. (9) and the assumption that (ω f , o f )

atisfies the requirement (oω2) in Definition 2 , we have 

 f 

( 

n ∑ 

i =1 

w i , x 

) 

= f −1 

( 

n ∑ 

i =1 

f 
(
ω f (w i , x ) 

)) 

. (11) 

ow, let the function g : [0 , 1] × R + → R be given by 

(w, x ) = f (ω f (w, x )) . (12) 

hen, Eq. (11) can be written as 

 

( 

n ∑ 

i =1 

w i , x 

) 

= 

n ∑ 

i =1 

g(w i , x ) . (13) 

ince x ∈ R + has a fixed value, the variables in Eq. (13) are 

 1 , w 2 , . . . , w n . Noting the Cauchy functional equation, the solution 

f Eq. (13) is 

(w, x ) = c x w, (14) 

here c x is a constant, which depends on the fixed value of x . 

ext, from Eq. (12) and Eq. (14) , we have 

f (ω f (w, x )) = c x w. (15) 

ince the pair (ω f , o f ) satisfies the requirement (ω3) for a 

eighted aggregation system given in Definition 2 , from Eq. (15) , 

e have 

f (ω f (1 , x )) = f (x ) = c x . (16) 

sing Eqs. (15) and (16) , we can write 

f (ω f (w, x )) = w f (x ) , (17) 

hich means that ω f has the form given by Eq. (10) . �
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Table 2 

Weighting transformations, aggregation operators and weighted aggregation func- 

tions induced by some generator functions. 

f (x ) ω f (w, x ) o f (x ) A ω f ,o f (w , x ) 

x wx 
n ∑ 

i =1 

x i 
n ∑ 

i =1 

w i x i 

ln (x ) x w 
n ∏ 

i =1 

x i 
n ∏ 

i =1 

x w i 
i 

x 2 
√ 

w x 
n ∑ 

i =1 

x 2 
i 

n ∑ 

i =1 

w i x 
2 
i 

x −1 x 
w 

1 
n ∑ 

i =1 

1 
x i 

1 
n ∑ 

i =1 

w i 
x i 

x α (α 
 = 0) w 

1 
α x 

(
n ∑ 

i =1 

x α
i 

) 1 
α

(
n ∑ 

i =1 

w i x 
α
i 

) 1 
α

e αx (α 
 = 0) 1 
α ln ( w e αx ) 1 

α ln 

(
n ∑ 

i =1 

e αx i 

)
1 
α ln 

(
n ∑ 

i =1 

w i e 
αx i 

)
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Based on the above results, we will introduce the concept of 

he weighting aggregation system induced by a generator function. 

efinition 5. Let n ∈ N , n ≥ 1 and let f : R + → R be a continuous

nd strictly monotonic function on R , let the aggregation operator 

 f : R 

n 
+ → R + be given by Eq. (9) and let the weighting transfor- 

ation ω f : [0 , 1] × R + → R + be given by Eq. (10) . We say that the

eighted aggregation system (ω f , o f ) is induced by the generator 

unction f . 

Suppose we have the weighted aggregation system (ω f , o f ) in- 

uced by a generator function f . Then, using Definition 3 , the 

eighted aggregation function induced by (ω f , o f ) is 

 ω f ,o f (w , x ) = o f (ω f (w 1 , x 1 ) , ω f (w 2 , x 2 ) , . . . , ω f (w n , x n )) = 

= f −1 

( 

n ∑ 

i =1 

w i f (x i ) 

) 

, (18) 

here w i ≥ 0 , 
∑ n 

i =1 w i = 1 . 

heorem 3. The function M f, w 

: R 

n 
+ → R + is a weighted quasi- 

rithmetic mean on R + if and only if there exists a function f : R + →
 , which is continuous and strictly monotonic on R , and a real valued 

ector w = (w 1 , w 2 , . . . , w n ) ∈ (0 , 1) satisfying 
∑ n 

i =1 w i = 1 such that

 f, w 

(x ) = A ω f ,o f (w , x ) , (19) 

olds for any x 1 , x 2 , . . . , x n ∈ R + , where A ω f ,o f : [0 , 1] n × R 

n 
+ → R + is

he weighted aggregation function induced by the weighted aggrega- 

ion system (ω f , o f ) according to Eq. (18) . 

roof. Taking into account Eq. (18) and the definition for a 

eighted quasi-arithmetic mean in Definition 4 , the proof is 

traightforward. �

Table 2 contains some well-known weighted quasi-arithmetic 

ean operators represented by weighted aggregation systems. 

.2. Weighted aggregation systems induced by strict logical operators 

Now, we will briefly describe those weighted aggregation sys- 

ems that are induced by generator functions of strict triangular 

orms (t-norms for short) and strict triangular conorms (t-conorms 

or short). First, we will show that such systems indeed exist. 

Let the function f : [0 , 1] → R + be continuous and either 

(a) strictly decreasing with f (1) = 0 and f (0) = ∞ or 

(b) strictly increasing with f (0) = 0 and f (1) = ∞ . 

Note that f is uniquely determined up to a positive multiplica- 

ive constant, and in case (a) f is a generator function of a strict t- 

orm and in case (b) f is a generator function of a strict t-conorm 
585 
see Klement et al., 2013 ). Let n ∈ N , n ≥ 1 . It can be easily verified

hat the operator o : [0 , 1] n → [0 , 1] , which is given by 

 f (x 1 , x 2 , . . . , x n ) = f −1 

( 

n ∑ 

i =1 

f (x i ) 

) 

, (20) 

atisfies the requirements for an aggregation operator given by 

efinition 1 . Also note that o f is an n -ary strict t-norm (case (a))

r strict t-conorm (case (b)). 

Next, let the function ω f : [0 , 1] × [0 , 1] → [0 , 1] be given by 

 f (w, x ) = f −1 ( w f (x ) ) . (21) 

hen, similar to the proof of Theorem 1 , it can be verified that the

air (ω f , o f ) with ω f and o f given by Eqs. (20) and (21) , respec-

ively, satisfies the requirements for a weighted aggregation system 

iven in Definition 2 . 

It can be readily verified that if f is a generator function of a 

trict t-norm (strict t-conorm, respectively), then the weighted ag- 

regation function A ω f ,o f induced by (ω f , o f ) is a weighted quasi- 

rithmetic mean on [0,1] with a single annihilator element 0 (1, 

espectively). 

xample 1. If the generator function f : [0 , 1] → R + is f (x ) =
ln (1 − x ) , then 

 f (x 1 , x 2 ) = 1 − (1 − x 1 )(1 − x 2 ) = x 1 + x 2 − x 1 x 2 , 

here (x 1 , x 2 ) ∈ [0 , 1] 2 , and 

 f (w, x ) = 1 − (1 − x ) w , 

here x ∈ [0 , 1] . Therefore, the weighted aggregation function, 

hich is a weighted quasi-arithmetic mean as well, induced by 

ω f , o f ) is 

 ω f ,o f (w 1 , w 2 , x 1 , x 2 ) = 1 − (1 − x 1 ) 
w 1 (1 − x 2 ) 

w 2 , 

here x 1 , x 2 , w 1 , w 2 ∈ [0 , 1] . Notice that o f is the same aggrega-

ion operator as the aggregation operator o in Section 1.1., but 

he appropriate weighted aggregation function A ω f ,o f is different 

rom the three intuitively suggested weighted aggregation func- 

ions in Section 1.1. In our approach, the aggregation operator and 

he weighting transformation are both induced by a common gen- 

rator function. Therefore, this approach results in a consistent way 

f weighting. 

. Expectation levels, weights and the weighted 

uasi-arithmetic means as scoring functions on the unit 

nterval 

Now, let f : [0 , 1] → R + be a continuous and strictly monotonic

unction. Here, we assume that the image of f is R + or a subinter- 

al of R + , i.e., f is not necessarily a generator of a strict t-norm 

r strict t-conorm. For example, f can be given by f (x ) = x or 

f (x ) = x 2 , where x ∈ [0 , 1] . 

Suppose that the decision-maker has an expectation level νi ∈ 

0 , 1) for the value of variable x i ∈ (0 , 1) , i = 1 , 2 , . . . , n , n ∈ N , n ≥
 . Here, νi expresses the importance of x i based on the decision- 

aker’s preferences, i.e., the greater the value of νi is, the higher 

he importance of x i is. Note that a higher importance value does 

ot necessarily imply a higher weight value. For example, in the 

eighted geometric mean, a lower weight value corresponds to a 

igher importance. In this case, a greater value of expectation level 

hould correspond to a lower weight value. 

Let t f : (0 , 1) → (0 , 1) be a function that transforms an expecta-

ion level νi to a weight w i . Then, t f needs to satisfy the following

equirements: 

(R1) 
∑ n 

i =1 t f (νi ) = 1 
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Table 3 

Expectations of a decision maker for the values of car attributes. 

Attribute: Engine power Max. speed Fuel consumption Trunk capacity 

Unit of measure: HP kilometers/hour kilometers/liter liter 

Range: [50,300] [140,240] [5,25] [100,600] 

Expected value: 150 210 20 400 
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Table 4 

Computation results. 

i: 1 2 3 4 

νi : 0.4 0.7 0.75 0.6 

f (νi ) : 0.9163 0.3567 0.2877 0.5108 

w i = 

f (νi ) ∑ 4 
j=1 f (ν j ) 

: 0.4423 0.1722 0.1389 0.2466 
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(R2) If f is strictly decreasing, then for any νi > ν j , t f (νi ) < t f (ν j )

If f is strictly increasing, then for any νi > ν j , t f (νi ) > t f (ν j ) ,

here i, j ∈ { 1 , 2 , . . . , n } . 
It can be easily verified that the function t f : (0 , 1) → (0 , 1)

iven by 

 f (νi ) = 

f (νi ) ∑ n 
j=1 f (ν j ) 

, (22) 

atisfies the requirements (R1) and (R2). Then, using w i = t f (νi ) 

nd Eq. (8) , the weighted quasi-arithmetic mean on [0,1] induced 

y f with the weights w 1 , w 2 , . . . , w n can be written as 

 f, w 

(x ) = f −1 

( 

n ∑ 

i =1 

w i f (x i ) 

) 

= f −1 

(∑ n 
i =1 f (νi ) f (x i ) ∑ n 

i =1 f (νi ) 

)
. (23) 

ere, M f, w 

(x ) may be treated as a scoring function that assigns 

 scoring value to the particular input vector x = (x 1 , x 2 , . . . , x n ) ∈
0 , 1) n using the weight vector w = (w 1 , w 2 , . . . , w n ) ∈ (0 , 1) n . No-

ice that in our approach, the weights are directly derived from the 

ecision-makers expectation levels. 

.1. Illustrative examples 

In this section, by the means of two numerical examples, we 

ill show how our method can be applied in practice. In the first 

xample, we will demonstrate how the assessment of the alter- 

atives can be performed using the decision-maker’s expectation 

evels for the attributes of the assessed entities. Here, the expec- 

ation levels are simple real-valued scalars. In the second example, 

e show how our method can be adapted to the case where the 

ecision-maker’s expectations are interval-valued quantities. 

xample 2. Suppose that cars are characterized by the following 

our attributes: (1) engine power, (2) max. speed, (3) fuel con- 

umption and (4) trunk capacity. Table 3 shows the unit of mea- 

ure and the range for each of these attributes. This table also in- 

ludes the expectation of a decision-maker for the value of each 

ttribute. 

Let a 1 , a 2 , a 3 and a 4 denote the attributes (1) Engine power, (2)

ax. speed, (3) Fuel consumption and (4) Trunk capacity, respec- 

ively, and let νi be the normalized expected value of attribute a i : 

1 = 

150 − 50 

250 

= 0 . 4 , ν2 = 

210 − 140 

100 

= 0 . 7 

3 = 

20 − 5 

20 

= 0 . 75 , ν4 = 

400 − 100 

500 

= 0 . 6 . 

Let the generator function f : [0 , 1] → R + be given by 

f (x ) = − ln (x ) , 

.e., f is a generator function of the product t-norm. The inverse 

unction of f is 

f −1 (x ) = e −x . 

sing Eq. (22) , we can compute the value of the weight w i : 

 i = 

f (νi ) ∑ 4 
j=1 f (ν j ) 

= 

ln (νi ) ∑ 4 
j=1 ln (ν j ) 
586 
or i = 1 , 2 , 3 , 4 (see Table 4 ). Notice that the greater the expected

alue is, the smaller the corresponding weight is. This finding is 

n line with the fact that, in the current case, the weighted quasi- 

rithmetic mean is 

 f, w 

(x ) = 

4 ∏ 

i =1 

x w i 

i 
, (24) 

here x i ∈ (0 , 1) , and so weights for the variables with higher im-

ortance (i.e., with higher expected values) are smaller than those 

or the variables with lower importance (i.e., with lower expected 

alues). 

We can easily verify that 
∑ 4 

i =1 w i = 1 . 

Now, suppose that five cars with the attributes in Table 5 are 

ffered to the decision-maker. 

Since we have found the weight vector w = (w 1 , w 2 , w 3 , w 4 ) ,

e can compute the value of the weighted quasi-arithmetic mean 

 f, w 

(x ) for each alternative in Table 5 by utilizing Eq. (24) and the

orresponding variable vector x = (x 1 , x 2 , x 3 , x 4 ) . 

Using the values of the weighted quasi-arithmetic means as 

coring values, the preference order of the offered cars (from the 

ost preferred to the least preferred) is: 

ar 1, Car 3, Car 2, Car 5, Car 4 . 

xample 3. Let us assume that for the value of each car attribute 

n Example 2 , a decision-maker can provide an interval that ex- 

resses his or her expectation for the attribute value. Assume that 

he decision-maker’s expected intervals are given in Table 6 . 

That is, in this case, instead of the normalized expected value 

i , we have the interval [ νi,l , νi,u ] , i = 1 , 2 , . . . , n . Here, νi,l and νi,u 

tand for a lower and for an upper normalized expected value for 

he attribute a i , respectively, where νi,l ≤ νi,u . Then, following the 

rocedure described in Example 2 and noting that f (x ) = − ln (x ) , 

he lower weight value w i,l and the upper weight value w i,u for 

ach attribute can be computed as follows: 

 i,l = 

f (νi,l ) ∑ 4 
j=1 f (ν j,l ) 

, w i,u = 

f (νi,u ) ∑ 4 
j=1 f (ν j,u ) 

. 

he corresponding lower and upper normalized expected values 

i,l and νi,u , respectively, and the computed lower and upper 

eight values w i,l and w i,u , respectively, are shown for each at- 

ribute in Table 7 . 

Notice that here the aggregation function is strictly decreas- 

ng ( f (x ) = − ln (x ) ), therefore, a greater expectation level implies

 lower weight both in the lower and upper cases. Recall that the 

eights are derived from expectation levels using a generator func- 

ion. That is, a weight represents a generator function-dependent 

mportance. Here, we have two sets of weights, namely the lower 

nd upper weights. The value of a weight tell us the importance 

f the corresponding attribute after considering the set of weights 
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Table 5 

Alternatives and their scoring values. 

Car a 1 a 2 a 3 a 4 x 1 x 2 x 3 x 4 M f, w (x ) 

Car 1 170 220 23 450 0.48 0.80 0.90 0.70 0.6277 

Car 2 130 190 18 350 0.32 0.50 0.65 0.50 0.4257 

Car 3 280 230 7 300 0.92 0.90 0.10 0.40 0.5484 

Car 4 80 170 24 580 0.12 0.30 0.95 0.96 0.3127 

Car 5 130 150 18 400 0.32 0.10 0.65 0.60 0.3375 

Table 6 

Expectation intervals of a decision maker for the values of car attributes. 

Attribute: Engine power Max. speed Fuel consumption Trunk capacity 

Unit of measure: HP kilometers/hour kilometers/liter liter 

Range: [50,300] [140,240] [5,25] [100,600] 

Expectation: [140,160] [180,230] [15,22] [350,450] 

Table 7 

Computation results. 

i: 1 2 3 4 

νi,l : 0.36 0.4 0.5 0.5 

f (νi,l ) : 1.0217 0.9163 0.6931 0.6931 

w i,l = 

f (νi,l ) ∑ 4 
j=1 f (ν j,l ) 

: 0.3073 0.2756 0.2085 0.2085 

νi,u : 0.44 0.9 0.85 0.7 

f (νi,u ) : 0.8210 0.1054 0.1625 0.3567 

w i,u = 

f (νi,u ) ∑ 4 
j=1 f (ν j,u ) 

: 0.5679 0.0729 0.1124 0.2467 
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Fig. 1. Scoring intervals. 
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decision making. 
hat the weight in question belongs to. Therefore, an upper weight 

alue may be less than the corresponding lower weight value. For 

xample, in the case of the second attribute, the lower normalized 

xpected value is 0.4. This is not much different from the other 

ower normalized expected values and the corresponding weight 

alue is 0.2756. Nevertheless, the upper normalized expected value 

or this attribute is 0.9, which is the highest among the upper 

ormalized expected values, and so, because a strictly decreasing 

enerator function is utilized, this attribute has the lowest weight 

alue (0.0729) among all the upper weight values. In this case, the 

pper weight value is less than the lower weight value. However, 

ere we should not compare them with each other as they belong 

o two different sets of weights. 

Once the lower and upper weights for each attribute have been 

dentified, we can use them to evaluate the alternatives in Table 5 . 

or each alternative in Table 5 , we compute the lower value of 

he weighted quasi-arithmetic mean function M l = M f, w l 
(x ) us- 

ng the vector of lower weights w l = (w 1 ,l , w 2 ,l , w 3 ,l , w 4 ,l ) and

he upper value of the weighted quasi-arithmetic mean func- 

ion M u = M f, w u 
(x ) using the vector of upper weights w u =

w 1 ,u , w 2 ,u , w 3 ,u , w 4 ,u ) : 

 l = M f, w l 
(x ) = 

4 ∏ 

i =1 

x 
w i,l 

i 
, M u = M f, w u 

(x ) = 

4 ∏ 

i =1 

x 
w i,u 

i 
, 

here x = (x 1 , x 2 , x 3 , x 4 ) is the variable vector corresponding to

he alternative. Note that based on the above comments on the 

alues of weights, the value of M l may be greater than the value 

f M u . Therefore, we shall treat M l and M u as being the two end-

oints of the scoring interval. That is, we have the [ M l , M u ] scoring

nterval if M l ≤ M u , and we have the [ M u , M l ] scoring interval if

 u ≤ M l . These scoring intervals are numerically given in Table 8 . 

ig. 1 shows the plots of the scoring intervals. 

In this case, the scores are interval-valued quantities, and so the 

reference order of the offered cars can be obtained by ranking in- 

ervals. There are effective methods that utilize probability-based 

reference measures to rank intervals (see, e.g. Dombi & Jónás, 

020; Huynh, Nakamori, & Lawry, 2008; Kundu, 1997; Yue, 2016 ). 
587 
The main implications of our weight determination and scor- 

ng method can be summarized as follows. In the presented proce- 

ure, the attribute weights are obtained directly from the informa- 

ion on the decision-maker’s expectation levels. This feature makes 

he method easy-to-use in practice. It is worth adding that, as we 

emonstrated in Example 3 , our method can be easily adapted 

o the case where the decision-maker’s expectations are interval- 

alued quantities. An advantage of our method is that it preserves 

ts simplicity in this case as well. 

. Conclusions, limitations and future research plans 

The chief results of this study can be summarized as follows. 

• We presented the concept of weighted aggregation system 

which consists of a weighting transformation and an aggrega- 

tion operator. 
• We proved that the weighted aggregations functions induced by 

generator function-based weighted aggregation systems are the 

weighted quasi-arithmetic means on the non-negative extended 

real line. This means that we presented a new representation of 

the weighted quasi-arithmetic means on the non-negative ex- 

tended real line. 
• Next, we provided the necessary and sufficient condition for 

the form of a generator function-based weighting transforma- 

tion such that this transformation along with the corresponding 

generator function-based aggregation operator satisfy the defi- 

nition for a weighted aggregation system. 
• We demonstrated that the generator functions of strict trian- 

gular norms or strict triangular conorms induce weighted ag- 

gregation systems on the unit interval. We also pointed out 

that the weighted aggregation functions of these system are 

weighted quasi-arithmetic means on [0,1] with a single anni- 

hilator element 0 or 1. 
• Utilizing the weighted quasi-arithmetic means on [0,1], we pre- 

sented a novel, expectation level-based weight determination 

and scoring method in which the decision-makers expectation 

levels are directly transformed into weights. 
• By the means of illustrative numerical examples, we showed 

how our method can be applied in the practice of multi-criteria 
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Table 8 

Alternatives and their scoring intervals. 

Car a 1 a 2 a 3 a 4 x 1 x 2 x 3 x 4 Scoring interval 

Car 1 170 220 23 450 0.48 0.80 0.90 0.70 [0.5869,0.6815] 

Car 2 130 190 18 350 0.32 0.50 0.65 0.50 [0.3997,0.4604] 

Car 3 280 230 7 300 0.92 0.90 0.10 0.40 [0.4839,0.5827] 

Car 4 80 170 24 580 0.12 0.30 0.95 0.96 [0.2704,0.3669] 

Car 5 130 150 18 400 0.32 0.10 0.65 0.60 [0.3069,0.3718] 
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.1. Limitations 

We should mention that our approach has certain limitations. 

ince our procedure is generator function-dependent, the weights, 

he weighted aggregation functions and the scoring results all de- 

end on the choice of the generator function. Therefore, it is an 

nanswered question how the most suitable generator function 

or a decision making problem can be determined. Also note that 

he presented weight determination procedure is limited to those 

ases where the domain of each variable is a bounded interval and 

he variables can be normalized to the unit interval. 

We showed that if a weighting transformation is induced by 

he same generator as the aggregation operator, and this gen- 

rator is a continuous and strictly monotonic function f : R + → 

 −∞ , ∞ ] , then the corresponding weighted aggregation function is 

 weighted quasi-arithmetic mean on the non-negative extended 

eal line. We did not study whether the aggregation functions 

ther than the weighted quasi-arithmetic means can be repre- 

ented by utilizing a similar approach. 

.2. Future research plans 

A future research direction could be the investigation of how 

he most suitable generator function for a decision making prob- 

em can be determined. We should study if certain modifications to 

ur weighted aggregation systems can result in aggregation func- 

ions other than the weighted quasi-arithmetic means. Also, we 

hould note that there is a wide range of existing aggregation func- 

ions. A comparative analysis of the deficiencies of the existing 

ethods in the light of our method is taken into account as a fu- 

ure research avenue. 
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