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Abstract: Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in
various fields, including industry, household, and agriculture. The efficiency of their use in aqueous
environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as they
can decrease the concentration of the surfactant due to precipitation. To understand cation–sulfonate
interactions better, we study both NaLAS colloidal solutions in the presence of CaCl2 and precipitates
forming at higher salt concentrations. Upon addition of CaCl2, we find the surface tension and
critical micelle concentration of NaLAS to decrease significantly, in line with earlier findings for
alkylbenzylsulfonates in the presence of divalent cations. Strikingly, an increase in the surface tension
is discernible above 0.6 g L–1 NaLAS, accompanied by the decrease of apparent micelle sizes, which
in turn gives rise to transparent systems. Thus, there appears to be a second critical concentration
indicating another micellar equilibrium. Furthermore, the maximum salt tolerance of the surfactant
is 0.1 g L–1 Ca2+, above which rapid precipitation occurs yielding sparingly soluble CaLAS2·2H2O.

Keywords: linear alkylbenzene sulfonate; calcium; surface tension; CMC; critical concentration; pre-
cipitation

1. Introduction

One of the most commonly applied anionic surfactants are long-chain alkyl aryl
sulfonates [1], as they can be synthesized from cheap raw materials [1,2] and their design
can be tailored to the purpose of application. Among sulfonates, commercially available
sodium dodecyl benzenesulfonate (NaDBS) is by far the most studied. It is environmentally
advantageous for its faster biodegradation as compared to branched isomers owing to
its long aliphatic chain [3], which also results in a very low critical micelle concentration
(CMC), i.e., 1.2–2.9 mM [4–15]. Moreover, its ability to effectively decrease the interfacial
tension (IFT) between an apolar and polar phase, e.g., oil and water, has been reported in
earlier works [13,15–18].

The behavior of surfactants in an aqueous environment depends on a number of
physicochemical parameters, such as temperature and salt concentration. Sulfonates can be
tolerant to very high temperatures (up to 200 ◦C) as compared to sulfate detergents [1,19].
However, their usage is restricted to rather low-salinity systems due to their propensity
for precipitation [1,19–23]. Beside soap formation, salts have a large impact also on other
critical surfactant properties, such as adsorption [24–26], transport [27], as well as bubble
and foam stability [28,29]. Thus, understanding salt–surfactant interactions is indispensable
when assessing the efficiency of surfactants in altering certain physicochemical properties.

In particular, a marked decrease in the surface tension as well as CMC with increasing
salt concentration is observed at the presence of electrolytes at a fixed
temperature [5,9,12–15,30–35]. For NaDBS as well as other sulfonates, this stems from
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(1) the reduction of repulsive forces acting between negatively charged head-groups as a
result of cation–sulfonate interactions, and from (2) the decreased hydration of surfactant
molecules owing to strong cation hydration, which in turn promotes hydrophobic interac-
tions [14,15,31,34–36]. The interplay of these two effects leads to the well-known order of
‘salting-out’, observed first for proteins by Hofmeister [15,37].

As for DBS–, ions with higher charge density tend to salt out the surfactant at a
lower salt concentration. That is, they more readily induce micellization and, eventually,
precipitation [13,24,28–30]. Indeed, the order of NH4

+ < Na+ < Mg2+ < Ca2+ has been
found for precipitating NaDBS from an aqueous solution [15], which is a reversal of the
cationic Hofmeister series. The solubility of Ca2+ alkyl aryl sulfonates below CMC has
been quantified in terms of thermodynamic products [38–40]. Based on the thus-obtained
equilibrium solubility of Ca2+, ca. 1.3–1.7·10–4 M [38–40], the calcium salt has a markedly
lower solubility as compared to the Na+ one, 1.4–4.6·10–3 M [39,40].

The above examples illustrate the high propensity of Ca2+ for surfactant precipitation,
which may in turn lead to a significant loss of sulfonate surfactant. Thus, characterizing
Ca2+–surfactant interactions is important to describe the overall performance of a given
surfactant in industrial systems. To this end, we study the effect of CaCl2 on the properties
of sodium linear alkylbenzene sulfonate (NaLAS) aqueous solutions with varying cation
and surfactant concentrations in a wide range, both below and above CMC. We find upon
increasing the concentration of Ca2+ ions a marked decrease in the air–water surface ten-
sion as well as CMC in dilute solutions (0.01–0.1 g L–1 Ca2+). Interestingly, there appears
to be a second critical concentration at high surfactant concentrations, associated with
another chemical equilibrium. Further enhancement of the amount of CaCl2 yields the spar-
ingly soluble CaLAS2·2H2O salt, suggesting the maximum salt tolerance of NaLAS to be
~0.1 g L–1 Ca2+.

2. Materials and Methods
2.1. Materials

Calcium chloride dihydrate (CaCl2·2H2O, ACS reagent grade; VWR, Radnor, PA,
USA), magnesium chloride hexahydrate (MgCl2·6H2O, ACS reagent grade; Merck, Darm-
stadt, Germany), sodium ‘dodecylbenzensulfonate’ (NaDBS, technical grade; Sigma-Aldrich,
St Louis, MO, USA), ethylenediamine tetraacetic acid disodium salt dihydrate
(Na2EDTA·2H2O, analytical grade; Reanal, Budapest, Hungary), and methanol (HPLC
gradient grade; VWR, Radnor, PA, USA) were used as received. The metal-ion content of
the hydrated salts was checked by complexometric titration using Na2EDTA as titrant.

As for NaDBS, it is known to be composed of sulfonates with different chain lengths [34].
Thus, its exact composition was determined via high-performance liquid chromatography
coupled with mass spectrometry (HPLC-MS; for technical details, see below). Based on the
relative peak counts, the highest fraction is undecylbenzene sulfonate (43%) followed by
dodecylbenzene sulfonate (27%) with the average molar mass being 336.81 g mol–1 for the
sodium salt; see the mass spectrum in Figure 1. Therefore, this compound will be referred
to as sodium linear alkylbenzene sulfonate, NaLAS, throughout this work.
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Figure 1. Traces of the negative-ion-mode mass spectrum of an ~0.05 g L–1 sodium linear alkyl-
benzene solution. Peaks indicated follow the order of decyl- (CH3(CH2)9C6H4SO3

–, m/z = 297.2),
undecyl- (CH3(CH2)10C6H4SO3

–, m/z = 311.2), dodecyl- (CH3(CH2)11C6H4SO3
–, m/z = 325.2), and

tridecylbenzene sulfonate (CH3(CH2)12C6H4SO3
–, m/z = 339.2) anions. Based on the relative counts

(where the most intense peak of m/z = 311.2 was taken as 100%), the corresponding molar fractions
are 23.7%, 42.9%, 26.7%, and 6.8%, respectively.

2.2. Preparation of Aqueous Samples and Precipitates

All samples were made by using deionized water, which was produced by reverse
osmosis and was further purified by UV irradiation, using a Puranity TU3 UV/UF+ sys-
tem (VWR). Furthermore, samples were always freshly prepared before tensiometric and
dynamic light scattering (DLS) measurements, since long-term aggregation of micelles or
particle cohesion may alter the samples properties significantly.

First, solution with an appropriate concentration of Ca2+-ion (0.01–5.00 g L–1) was pre-
pared from CaCl2·2H2O. This solution was then filled into a volumetric flask containing the
necessary amount of solid NaLAS. The thus-obtained aqueous mixtures
(cNaLAS = 0.05–5.00 g L–1) were stirred for 24 h at room temperature. To avoid the in-
cidental adsorption of either Na+, Ca2+, Cl–, or LAS– ions onto the glass surface of the flask,
plastic vessels were used to store all colloidal solutions and filtrates. In case of precipitate
formation, the samples were filtered, washed with 20 mL water, and dried. In addition,
several precipitates were calcined at 900 ◦C for 24 h or at 1000 ◦C for 16 h under air in a
Nabertherm L9 furnace (Lilienthal, Germany).

2.3. Experimental Methods

The composition of the surfactant was deduced using a 1260 Infinity II HPLC setup
coupled to a G6125B LC-MSD (mass selective detection) from Agilent (Santa Clara, CF,
USA), applying electrospray ionization (ESI). For analysis, an ~0.05 g L–1 (50 ppm) NaLAS
aqueous solution was prepared and a water: methanol mixture at 85:15 volume ratio was
used as eluent. The mass spectrum was carried out in negative-ion mode, scanning the m/z
region of 150–445.

The surface tensions at the air–water interface and the critical micelle concentration
(CMC) values of a set of surfactant solutions with different electrolyte concentration were
determined at (25.0 ± 0.1) ◦C using a tensiometer (type K100; Krüss, Hamburg, Germany),
with the aid of the Wilhelmy plate method. In the tensiometer, a platinum–iridium ring
is suspended from a torsion balance, and the force (in mN m–1) required to pull the ring
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off the surface is measured. Here, additional experiments were performed for solutions
prepared from MgCl2·6H2O as described above.

The average micelle size in a set of samples was determined with a Malvern NanoZS
dynamic light scattering (DLS) instrument (Malvern, UK) operating with a 4 mW helium–
neon laser light source (λ = 633 nm). The measurements were performed in back-scattering
mode at 173◦ and at (25.0 ± 0.1) ◦C. The samples were stirred for 24 h prior to the measure-
ments. For each sample, three to four repetitions were carried out and the size was taken as
the arithmetic mean of the volume-averaged hydrodynamic diameters.

For several samples with varying cNaLAS (0.05–5.00 g L–1) at cCa2+ = 0.01 g L–1, the
apparent absorbance arising from light absorption and light scattering due to colloidal particles
was measured in the UV range (λ = 200–320 nm, 1 nm optical resolution) at (25.0 ± 0.1) ◦C,
using a Specord 210 PLUS spectrophotometer (Analytik Jena, Jena, Germany).

The X-ray diffractograms of the precipitated as well as calcined solids were obtained
using a MiniFlex II type diffractometer from Rigaku (Tokyo, Japan) in the 2θ = 4–60◦ range
with 4◦/min scanning speed, using CuKα radiation source (λ = 1.5418 Å).

FT-IR measurements were carried out using a JASCO FT/IR-4700 spectrometer (Tokyo,
Japan). Spectra were acquired between 4000 and 500 cm–1 by the accumulation of 256 scans
at a resolution of 4 cm–1. The spectrometer was equipped with a ZnGe attenuated total
reflectance accessory and deuterated triglycine sulfate detector.

The Ca2+:Na+ molar ratios in the solids were determined by energy-dispersive X-ray
(EDX) spectroscopy. To record the spectra, a Röntec QX2 spectrometer (Berlin, Germany)
equipped with Be window and coupled to a Hitachi S-4700 scanning electron microscope
(Tokyo, Japan) was used at 18 kV acceleration voltages. For each solid, spectra were taken
at least four different spots to obtain realistic representation of the elemental distribution.

3. Results and Discussion

We started our study with scoping experiments to separate the concentration regions
based on the appearance of precipitate. Accordingly, the samples can be divided into two
groups: at cCa2+ ≤ 0.1 g L–1 for all surfactant concentrations (0.01–5.00 g L–1), the solutions
are transparent or opalescent without the formation of filterable precipitates, whereas at
cCa2+ > 0.1 g L–1 for all surfactant concentrations, a solid appears immediately or after a few
hours of stirring (the total equilibration time was 1 day). In possession of this information,
we analyzed the colloidal and solid systems according to different aspects to get insights
into the behavior of the overall system.

3.1. Variation of the Surface Tension and CMC in the Colloidal Regime

First, we studied the effect of Ca2+-ion concentration on the CMC of the aqueous
samples via surface tension measurements, shown in Figure 2a. As for the pure surfactant,
a general trend shows a continuous decline in surface tension with increasing NaLAS
concentration until the CMC is reached, where the interface becomes saturated, and surface
tension remains almost constant. Upon addition of CaCl2, we find the surface tension
to decrease markedly. This observation is in line with earlier reports [13,33] and is often
elucidated in terms of formation of salt bridges: binding of Ca2+ ions screens the electro-
static repulsion between spatially adjacent head-groups, thus facilitating the migration of
surfactants to the air–water interface [15,34–36,41,42].

Regarding CMC, we obtained 668 mg L–1, i.e., 2.0 mmol L–1 for neat NaLAS, which
falls in the range published in the literature, 1.2–2.9 mM [4–15]. It is worth mentioning
that when the C12 chain is the dominant component, the CMC is around 1.5 mM [13]. The
higher value found here is consistent with the C11 component being the main fraction, since
decreasing alkyl chain length gives rise to higher CMC for a series of homologues [4,30].
When CaCl2 is present, we observe a marked reduction in the associated CMC, similar to
the surface tension: the value found for neat NaLAS, 668 mg L–1 (2.0 mmol L–1), decreases
to 7 mg L–1 (0.02 mmol L–1) in the presence of 0.1 g L–1 Ca2+, depicted in Figure 1b. In
fact, the decrease has a similar magnitude as found earlier [13]. Such variations have
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already been reported in the literature [9,13,15,33] and are attributed to the ‘salting-out’
effect: the decrease in electrostatic repulsions between surfactant molecules due to cation
binding promotes their aggregation, thus lowering the CMC [31,34]. Furthermore, salts
of higher valency render the physicochemical environment less hydrophilic for surfactant
molecules (due to the competition for water molecules), thereby having a pronounced
impact on the surface activity of LAS– ions and causing micellization at lower surfactant
concentrations [35]. It is also seen in Figure 2b that the decrease in CMC is exponential,
becoming minor above cCa2+ = 0.05 g L–1. Such variation of CMC can be expected on the
basis of theoretical considerations [30].
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Figure 2. (a) Surface tension (γ) as a function of sodium linear alkylbenzene sulfonate (NaLAS)
concentration, in the presence of CaCl2. Inset: zoomed region showing the onset of the in-
crease in γ; (b) Critical micelle concentration (CMC) in mg L–1 (left axis) and in mmol L–1 (right
axis), as a function of Ca2+-ion concentration. Experimental conditions: cCa2+ = 0–0.1 g L–1,
cNaLAS = 0.002–5.00 g L–1, T = (25.0 ± 0.1) ◦C.

Surprisingly, an increase is observed in the surface tension at higher NaLAS concen-
trations (>0.6 g L–1), only in the presence of Ca2+ ions (Figure 2a). Such an increase might
be indicative of a second CMC, corresponding to a transition from spherical to ellipsoidal,
cylindrical or rod-like aggregates, supported by both experiments and simulations for
neat surfactants [8,10,43,44]. In fact, a second CMC of 6.9 mM has been determined for
NaDBS [8]. The associated micellar shape transformation has been experimentally observed
in the presence of salts for both cationic and anionic surfactants [34,45–48]. However, the
appearance of this putative second CMC, based on the inset of Figure 2a, shifts to higher
surfactant concentrations with increasing electrolyte concentration, thereby showing the
opposite trend as for (the first) CMC. Consequently, in addition to the binding of Ca2+ ions
to the micelles [49], another chemical equilibrium might be at play: at high NaLAS con-
centrations with higher LAS–:Ca2+ molar ratios, smaller associates or even simple CaLAS+

ion-pairs might be formed. The latter is well known in the case of SO4
2– ion [50,51], which

is an oxygen donor-ligand, similar to sulfonate. In such a scenario, the more stable Ca2+-
bound micelles at higher salt concentrations would require higher surfactant concentration
to shift the equilibrium toward particle disaggregation, consistent with our observations.
Nevertheless, the present experimental data are not conclusive enough to elucidate this
phenomenon, which deserves further investigation.

To support these qualitative findings, we carried out tensiometric measurements also
in the presence of Mg2+. The concentration of Mg2+ in each sample, ranging from 0.006 to
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0.06 g L–1, was chosen such that it matches the concentration of Ca2+ in terms of molari-
ties. The obtained surface tension curves are shown in Figure S1a in the Supplementary
Materials. Accordingly, the Mg2+/LAS– systems possess the same features for the surface
tension as the Ca2+/LAS– ones, including the appearance of the second critical concentra-
tion (Figure S1a) and the steep decrease in the CMC (Figure S1b). However, one notable
difference is that even for 0.06 g L–1 Mg2+, the surface tension remains above 50 mN m–1

at the lowest surfactant concentration (~2 mg L–1), which is much higher than the value
of ~32 mN m–1 obtained for 0.1 g L–1 Ca2+ (Figure 1a). This difference suggests much
stronger cation–sulfonate interactions for the latter divalent ion, which in turn has a larger
effect on the structure of the surfactant monolayer at the air–water interface. Indeed, the
perturbation of the surface follows the order of Ca2+ > Mg2+ > Na+, as suggested by density
functional theory calculations [52].

3.2. Variation of the Average Particle Size at the Precipitation Boundary

The impact of the binding of Ca2+ ions on the average particle sizes in the colloidal
region has been probed by dynamic light scattering, depicted as volume-averaged aver-
age diameters in Figure 3a. In neat surfactant solutions, we obtained very large values
(~200 nm) for cNaLAS ≤ 0.3 g L–1, which seem to be inconsistent with previous experimental
and simulation results suggesting the diameter of NaDBS micelles to be 4–6 nm [34,53,54].
It is possible that the high values are experimental artefacts, probably associated with the
very low surfactant concentrations not suitable for DLS detection.
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Figure 3. (a) Volume-averaged particle diameter as a function of sodium linear alkylbenzene sul-
fonate (NaLAS) concentration, in the presence of CaCl2. The error bars correspond to the highest
error of the fit obtained within at least three measurements for each sample. The gray-colored
region refers to samples found opaque by visual inspection; (b) Apparent second ‘critical’ surfactant
concentration (cNaLAS,cr.) as a function of Ca2+-ion concentration, as estimated from surface tension
(full squares) and dynamic light scattering (empty squares) measurements. Experimental conditions:
cCa2+ = 0–0.1 g L–1, cNaLAS = 0.001–5.00 g L–1, T = (25 ± 0.1) ◦C.

In the concentration range of cNaLAS = 0.45–0.67 g L–1, the obtained diameters drop
significantly, which is in broad agreement with the determined CMC (668 mg L–1, Figure 2b).
At higher concentrations, we observe the diameter to further decrease, reaching ~5 nm at
cNaLAS = 1.1 g L–1. Such a continuous decline has already been observed for NaDBS, i.e.,
~16 nm (cNaDBS = 6.3 g L–1) to ~10 nm (cNaDBS = 69 g L–1), in the presence of 0.2 M NaCl [53].
However, this decrease was assigned to the breakdown of the Stokes–Einstein equation
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used to evaluate the DLS data. Indeed, the micelle size tends to increase with concentration
for surfactants as a result of increased aggregation [34,55]. Nevertheless, the diameters
obtained in this work agree qualitatively with the expected micellar dimensions [34,53,54].
We also note that the corresponding polydispersity indices are rather high (0.3–0.5; see
Figure S2), reflecting the somewhat broad size distribution of the surfactant owing to the
different alkyl chains.

In the presence of CaCl2, the samples become opaque already at low surfactant con-
centrations with particle diameters clearly exceeding ~200 nm. That is, dissolved species
aggregate to a high degree signaling the onset of precipitation, which in turn can be explained
by the very low thermodynamic solubility of alkyl aryl sulfonates [38–40]. This observation,
however, appears to contradict our surface tension measurements, where no precipitation
was observed. This contradiction can be resolved by the different timescales of the two exper-
iments: during surface tension measurements—carried out as titrations—the solution was
equilibrated only for a short time at each composition, whereas all samples were stirred for
one day prior to light scattering detection, allowing the particles to aggregate. This is in line
with a previous observation that precipitation starts only after several days at low metal-ion
concentrations [38]. In addition, the lowest surfactant concentrations might be problematic to
obtain accurate values with DLS.

Strikingly, the samples become transparent upon further increasing the surfactant
concentration, which is consistent with the well-known redissolution of poorly soluble
sulfonate salts in more concentrated surfactant solutions [38–40]. For instance, we observe
transparency at cCa2+ = 0.01 g L–1 and cNaLAS = 0.625 g L–1, which was confirmed by the drop
in the absorbance as well; see Figure S3. At a tenfold concentration of Ca2+, however, the
sample turns transparent only around cNaLAS = 5 g L–1. That is, higher Ca2+ concentrations
required larger amounts of surfactant for the cloudiness to disappear. This trend is similar
to the above regarding the reversal of the surface tension: higher cCa2+ required higher
cNaLAS for γ to increase (Figure 2a, inset). The similarity between the two trends suggests
that there appears to be a second critical surfactant concentration, corresponding to another
chemical equilibrium. As for the tensiometric curves, we estimate this critical concentration
as the minimum of γ (Figure 2a, inset). In the case of the DLS samples, we take this
concentration as the average of those belonging to the most concentrated cloudy sample
and the most dilute transparent one. A comparison of these estimates from the two methods
indeed shows strong correlation (except for cCa2+ = 0.075 g L–1); see Figure 3b.

In conclusion, the two phenomena, i.e., the increase in the surface tension and the
disappearance of cloudiness, stem probably from the same molecular process, likely to
be associated with the collapse of large micelles or aggregates. As such, the particle sizes
decrease significantly and become very similar to those obtained in the absence of salt at
high surfactant concentration (Figure 3a). (Nevertheless, these values should be taken with
a grain of salt as the measurements yielded very high polydispersity indices and poorer
fits of the correlograms; see Figure S2.)

3.3. Characterization of the Precipitates

Having the aqueous phase analyzed, we now turn to the characterization of solids
forming at higher metal-ion and surfactant concentrations. We find that above
cCa2+ = 0.1 g L–1, precipitation occurs readily at all surfactant concentrations. That is,
the maximum salt tolerance of NaLAS (up to 5 g L–1) is 0.1 g L–1 Ca2+, i.e., 0.28 g L–1 CaCl2.

The thus-obtained precipitates are all largely amorphous, similar to the poorly crys-
talline sodium salt, as shown in the X-ray diffractogram in Figure S4. The infrared spectrum
of the neat sodium salt matches well the one reported earlier [56], with the following char-
acteristic vibrations in cm–1: 2956 and 2870 (–CH3 asymmetric and symmetric stretching),
2924 and 2854 (–CH2– asymmetric and symmetric stretching), 1601, 1496 and 1408 (aro-
matic –C=C– stretching), 1461 (–CH2 scissoring), 1378 (–CH3 symmetric bending), 1182 and
1042 (–S=O asymmetric and symmetric stretching), 1129 and 1012 (aromatic =CH in-plane
bending), 831 (aromatic =CH out-of-plane bending), 688 (–SO3 bending); see Figure 4.
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Figure 4. Traces of infrared spectra of sodium linear alkylbenzene sulfonate (NaLAS) and precipitates
formed by adding CaCl2 to solutions of the surfactant, at two different Ca2+:NaLAS weight ratios.
Characteristic vibrations of NaLAS taken from Ref. [56] are labelled. Also shown are the stretching
(3436 cm–1) and scissoring (1653 cm–1) vibration modes, respectively, of hydrating water. The
intensities were normalized such that the highest value in each spectrum is 1.00.

Upon binding of Ca2+ ions, most peak positions remain unaltered (within 4 cm–1), with
the exception of the –S=O stretching bands which shift from 1182 to 1992 cm–1 and 1042 to
1049 cm–1, respectively. That is, Na+/Ca2+ exchange affects mostly the sulfonate moiety,
consistent with this group being the metal-ion coordination site. This is consistent with
previous calculations for the DBS– anion in the presence of Na+, Mg2+, and Ca2+ ions [52,57],
and with Ca2+ having a high affinity toward oxygen-donor ligands. In addition, the
variation of the –S=O bands are in line with those reported for the incorporation of the DBS–

anion in the interlayer gallery of Mg-Al- [56,58], as well as Zn-Fe layered double hydroxides
(LDHs) [59]. Nevertheless, the shift to higher wavenumbers is the opposite to that found for
LDHs [56,58,59]. Most likely, this is due to the difference between the binding interactions:
the sulfonate anion is bound directly to the Ca2+ ion in the precipitate, whereas for LDHs,
it is connected to the hydrated metal ions via hydrogen-bonding [56,58–60]. Moreover, it is
seen in Figure 3 that the distance between the positions of the asymmetric and symmetric
vibration does not differ significantly (140 vs. 143 cm–1), in line with previous findings [56],
suggesting similar coordination modes for Na+ and Ca2+.

Furthermore, the very broad peak around 3000 cm–1 in the spectrum of NaLAS, which
corresponds to the –OH stretching region, becomes much more intensive for the calcium
salt. In parallel, a peak at 1653 cm–1 shows up, which belongs to the scissoring mode of
water [61,62]. Consequently, the calcium salt is more strongly hydrated than NaLAS. As
for calcium salts precipitating from solutions with very different metal-ion-to-surfactant
ratios, the spectra are again very similar indicating similar stoichiometries.

We checked the supposed Ca2+:LAS– = 1:2 molar ratio by calcining numerous precipitates
both at 900 ◦C (for 24 h) and at 1000 ◦C (for 16 h). The X-ray diffractograms in Figure S5
show unambiguously that the only crystalline solid phase is CaSO4 (JCPDS No. 74-2421),
with some amorphous CaSO4 or residual organics in a few cases (for instance, the precipitate
obtained at 5 g L–1 Ca2+ and NaLAS and calcined at 900 ◦C; see Figure S5). Consequently,
the addition of Ca2+ ions to NaLAS solutions yields CaLAS2. This is supported by the EDX
elemental analyses, showing that—within experimental uncertainty—the solids are essentially
free of Na+; hence, Na+ ions are fully exchanged with Ca2+ in the solids. The obtained
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Na+:Ca2+ molar ratios are shown in Table 1. (The atomic fraction obtained directly from the
measurements are listed as atomic percentages in Table S1 in the Supplementary Materials).

Table 1. Concentration of sodium linear alkylbenzene sulfonate (NaLAS) and Ca2+ in surfactant—
CaCl2 dispersions, the Na+:Ca2+ molar ratio (with standard deviation) in the CaLAS2 precipitates
forming in the dispersions, weight loss upon calcination (∆m), the difference between the final and
theoretical mass assuming the CaLAS2 → CaSO4 reaction upon calcination (∆mtheo.), the calculated
initial H2O:CaLAS2 molar ratio based on this difference, and the temperature of calcination.

cNaLAS/g L–1 cCa
2+/g L–1 nNa

+/nCa
2+ ∆m/% ∆mtheo./% nH2O/nCaLAS2 Tcalcination/◦C

0.625 5.00 –81.7 –10.1 4.2 900

2.50 5.00 0.01 ± 0.01 –81.6 –9.59 3.9 900

5.00 0.50
0.1 ± 0.1

–80.2 –3.07 1.2 900
5.00 0.50 –80.1 –2.35 0.9 900
5.00 0.50 –80.0 –2.06 0.8 900

5.00 1.00
0.01 ± 0.01

–80.3 –3.20 1.2 900
5.00 1.00 –80.1 –2.13 0.8 1000
5.00 1.00 –81.7 –10.3 4.2 1000

5.00 2.00
0.05 ± 0.02

–80.2 –3.02 1.2 900
5.00 2.00 –80.0 –1.78 4.9 1000
5.00 2.00 –82.0 –11.7 0.7 1000

5.00 3.00 0.04 ± 0.02 –81.3 –8.22 3.3 900

5.00 4.00
0.02 ± 0.02

–81.3 –8.34 3.4 900
5.00 4.00 –80.6 –4.74 1.8 1000

5.00 5.00 –81.9 –11.6 4.7 900
5.00 5.00 –80.0 –1.7 0.6 1000
5.00 5.00 –80.1 –2.1 0.8 1000

These findings are also corroborated by the satisfactory agreement between the mass
of the calcined solids and the ‘theoretical’ one, assuming the exclusive formation of CaSO4
(which can be calculated by multiplying the weight of the precipitates by the CaSO4:CaLAS2
molar mass ratio, 136.14/667.72). Nevertheless, differences of 2–11% still remain. Based on
the infrared spectra, this difference can be attributed to the presence of hydrating water in
the solid phase. Accounting for this water fraction, we obtain 2.3 ± 1.6 water molecules
per surfactant unit and thus an average stoichiometry of CaLAS2·2H2O. These calculations
together with the weight losses are listed in Table 1.

4. Conclusions

In this contribution, we studied the interaction between Ca2+ and linear alkylbenzene
sulfonate (LAS–) ions both in the colloidal and heterogeneous systems. We find the CMC
(2.0 mmol L–1) of the neat surfactant to agree well with the range reported previously, and
it is consistent with the C11 chain being the largest fraction. The addition of CaCl2 gives
rise to a marked decrease in the surface tension and the CMC simultaneously, as a result of
cation–sulfonate interactions. Surprisingly, a further increase in the metal-ion concentration
results in a sharp increase in the surface tension above ~0.6 g L–1 NaLAS, supported by
tensiometric curves obtained in the presence of Mg2+ ions as well. This ‘second critical’
concentration corresponding to the reversal of the surface tension increases with increasing
salt concentration, which is the opposite to the trend commonly observed for CMC. This
hints at another micellar equilibrium, being either the transition of rather spherical micelles
to ellipsoidal or rod-like aggregates and/or the collapse of micelles, both associated with
Ca2+-ion binding by the sulfonate group.

These observations are also strongly correlated with the volume-averaged particle
diameters as determined from dynamic light scattering experiments. Here, the diame-
ters drop significantly at a certain surfactant concentration, giving rise to macroscopically



Materials 2023, 16, 494 10 of 12

transparent solutions. These characteristic concentrations are very similar to those corre-
sponding to the onset of increasing surface tension, indicating that both phenomena have
the same molecular origin.

Further addition of Ca2+ ions to the samples results in rapid precipitate formation
at all surfactant concentrations. Consequently, the salt tolerance, i.e., the maximum salt
concentration without the appearance of filterable precipitate, is 0.1 g L–1 Ca2+. All solids
are amorphous and identical in their infrared spectra. Na+ ions are essentially absent in
these precipitates, indicating the exclusive formation of CaLAS2. In addition, the weight
losses upon calcination for a wide range of initial sample compositions allow us to conclude
that CaLAS2 precipitates as a dihydrate salt.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16020494/s1, Figure S1: Traces of the negative-ion-mode
mass spectrum of a ~0.05 g L–1 NaLAS solution; Figure S2: Apparent absorbance at three different
wavelengths as a function of NaLAS concentration, in the presence of CaCl2; Figure S3: Polydispersity
index as a function of NaLAS concentration, in the presence of CaCl2; Figure S4: Powder X-ray
diffractograms of NaLAS and precipitates formed by adding CaCl2 to solutions of the surfactant,
at two different Ca2+:NaLAS weight ratios; Figure S5: Powder X-ray diffractograms of CaLAS2
precipitates, calcined at 900 ◦C or 1000 ◦C.
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