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xv

Introductory Statement
Tara Ruttley

The National Aeronautics and Space Administration
(NASA) has spent decades implementing research pro-
grams in Low-Earth Orbit (LEO), starting with Skylab,
NASA’s first sustained space station. A rudimentary
research lab outfitted inside of a repurposed Saturn V
propellant stage, Skylab paved the way for experiments
ranging from solar and Earth observations to physical and
biological sciences and human physiology over its brief
24-week lifetime. Then, in the 1980s, space shuttle flights

housed more capable Spacelab research facilities, and the microgravity science
yielded breakthroughs in all disciplines with each short-duration flight. I joined
NASA in 2001, a few months after the first International Space Station (ISS) crew
was launched to the partially built, newest, most capable long-duration laboratory in
LEO. Since then, the ISS has evolved into the premier microgravity research facility
it is today, enabling over 3000 scientists from over 100 countries to perform over
4000 investigations to date across every imaginable discipline. If there were ever an
ideal time to be a researcher designing microgravity experiments, this has been it.

In those twenty years of ISS access, NASA has learned how to better prepare
astronauts for long-duration space exploration. We’ve developed the optimal coun-
termeasures for preventing bone and muscle loss and keeping the heart healthy,
and we’ve learned that long-duration stays can significantly affect astronaut vision.
We’ve refined emergency medicine and ultrasound procedures, evaluated astronaut
behavioral health, and improved nutrition. We better learned how to ignite and
extinguish flames, and leveraged surface tension and capillary action to better
manage fluid flow. We’ve tested the newest radiation dosimeters and we have
harvested plants that have gone from the on-orbit Veggie “farm to table” facility for
astronaut taste tests.

While tackling those challenges for human exploration of space, NASA was given
an additional mission: use the ISS to commercialize LEO. This required us to ask of
American industry, “what can we do for you?” Companies responded with ideas to
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xvi Introductory Statement

use the unique microgravity environment that only ISS can offer for in-space produc-
tion experiments such as cutting-edge tissue engineering, 3D bioprinting of cells and
tissues, retinal implant development, and exotic glass optical fiber manufacturing.

This is only the beginning. With unprecedented access to LEO, businesses are now
racing to design, develop, and test in-space manufacturing and production facilities
that will one day deliver state-of-the-art materials and technology that will improve
the lives of those of us on Earth. They’re also making plans for their own commercial
space stations independent of the ISS that will create a busy, flourishing new LEO
economy in ways that humanity has never before been a part of. With so much to
look forward to in the future of human space exploration and development of the
LEO economy, what a time to be part of the space revolution!

Dr. Tara Ruttley
Associate Chief Scientist for Exploration and Applied Research
National Aeronautics and Space Administration Headquarters
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Introductory Statement
Nicol Caplin

Since 1975, ESA has become established as a key
enabler for European access to space. With 22 mem-
ber states, three associate states, and a growing num-
ber of agreements with other countries, ESA is a truly
international organization that possesses “strength in
numbers” and can therefore carry out activities in
space on a scale beyond that of any single European
country’s capability.

ESA’s core values embedded via exclusively peace-
ful means promote European space research, technology, and applications. Along-
side implementing mandatory activities, ESA also conducts a selection of optional
programs which is notionally funded by each member state that wishes to con-
tribute. Within this, the Human and Robotic Exploration division has rapidly
expanded to provide cutting-edge scientific and technological research applications
for the over-arching goal of exploring space for the benefit of humankind.

The present-day focus for the HRE research efforts centers on two themes:
Research that is enabled by space and research that enables the achievement
of further exploration goals. The Science in the Space Environment (SciSpacE)
Team coordinates research in the areas of life (including human research) and
physical sciences across multiple platforms and facilities. These include platforms
for microgravity research such as sounding rockets, drop towers, parabolic flights,
and of course the International Space Station.

In November 2000 the first astronaut crew entered the very early two-module con-
figuration of the ISS, and less than a year later the first European experiment facility1

was up and running. ESA’s single largest contribution to the ISS is the Columbus
laboratory. Launched in 2008, it provides European researchers with a permanent
laboratory in Low-Earth orbit, for conducting research across a range of disciplines.

1 https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Research/First_
European_experiment_facility_up_and_running_on_the_ISS.
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Fast forward to today and insights from European research and the international
community are gearing up to explore further into space with human and robotic
missions. The ISS will continue to serve as an orbiting laboratory, delivering cru-
cial information to researchers that enable deeper exploration while simultaneously
improving life on our home planet.

ESA are a key player in the planned Gateway2 facility; a spacecraft in Lunar
orbit that will host scientific and technological projects that will provide a test
bed in a much harsher space environment, away from the Earth’s protective layer.
This environment is more representative of deep space, with far more challenging
conditions to ensure spacecraft, experiments, and indeed crews can exist within.

If humanity’s goals of once again reaching the Moon and someday landing human
crews on Mars are to be achieved, carrying out research in such an intrepid environ-
ment will be vital in fully understanding the implications and risks to embarking
on such a mission. In addition to this, we should be aiming to explore space in a
sustainable manner.

In-space manufacturing is a growing area of research and a welcome one. Our
planet is already suffering the effects of being depleted of materials, so it makes not
only sense from an environmental perspective but also has huge potential to be an
economically effective way of building what humans need to go further. This can
take on many forms, from 3D printing of plastic and metals right the way through to
biomining processes and chemical extraction of precious resources from regolith.

We are making the preparations to go further into space, sustainably, for the
benefit of everyone – Who knows what wonders we will discover? The book In
Space Manufacturing and Resources is a timely addition to international literature
in an important niche field that is evolving at a remarkable pace. It effectively
compiles the current relevant outputs for space utilization and exploration.

Dr. Nicol Caplin
Deep Space Exploration Scientist

European Space Agency

2 https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/
Gateway.
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Introductory Statement
Masaki Fujimoto

Dr. Masaki Fujimoto (Deputy Director
General of ISAS, JAXA) greeting Dr. Lori
Glaze (Director of Science Mission
Directorate’s Planetary Science
Division, NASA) for JAXA’s participation
to the Solar System Exploration
Research Virtual Institute.

We are in an exciting era of space exploration.
International space agencies are working
together to advance space science and tech-
nologies, leading to new scientific discoveries
announced almost every day. Discoveries
always inspire further fundamental questions,
where new technologies are developed to
promote new explorations for answering.
Such chain activities gain more and more
momentum in various fields, accelerating
international collaborations as a natural con-
sequence. I feel very honored to be a part of
the current global and international endeavor
for space developments.

Japan launched its first satellite, Ohsumi,
in 1970. Numerous experimental and scientific challenges followed, including the
1985 Halley’s comet observation satellites Sakigake and Suisei and the first Japanese
interplanetary mission, Mars Orbiter Nozomi, launched in 1998 and passed Mars
in 2003. In that year, Japan Aerospace Exploration Agency (JAXA) was established
as an independent administrative institution, integrating the Institute of Space and
Astronautical Science (ISAS), the National Space Development Agency of Japan
(NASDA), and the National Aerospace Laboratory of Japan (NAL). Since then,
JAXA has been the core performance agency to support the Japanese government’s
aerospace development and utilization.

JAXA has completed many science missions and significantly contributed to
advance astronomical and planetary sciences. AKEBONO (aurora observation satel-
lite), HITOME and SUZAKU (X-ray astronomy satellite), AKARI (infrared imaging
satellite), HAYABUSA (asteroid explorer), and KAGUYA (lunar explorer) are good
examples of previous missions. Hayabusa 2 (asteroid explorer), IKAROS (small solar
power sail demonstrator), AKATSUKI (Venus climate orbiter) have successfully
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xx Introductory Statement

performed their primary objectives and are now in their extended phases. Currently
ongoing missions include BepiColombo (Mercury exploration with ESA), HISAKI
(planetary atmosphere), HINODE (solar physics), REIMEI (technology demon-
stration), GEOTAIL (magnetospheric observation), and ARASE (energization and
radiation in geospace). XRISM (X-ray imaging and spectroscopy mission), MMX
(Martian Moons exploration), and SLIM (smart lander for investigating Moon) are
under development and scheduled to be launched in a few years.

We will continue exploring scientific questions regarding the origin and the evo-
lution of the solar system, where a broader range of international collaborations and
private associations will be required. JAXA provides a wide range of opportunities
including to industries to help private companies enter the space business. We have
programs to share our intellectual property acquired through aerospace research and
experience, allow industries to use our test facilities, offer a system for cooperative
research, and provide launch opportunities for small secondary satellites.

We expect so many new research fields to be involved in future explorations,
including human space activities and the development of the lunar economy. We
are looking forward to new activities related to space manufacturing and space
resources as crucial technologies in this decade and the next with significant
pioneer splits and international collaborations.

Dr. Masaki Fujimoto
Deputy Director General

Institute of Space and Astronautical Science
Japan Aerospace Exploration Agency
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Introductory Statement
Enrico Palermo

The Australian Government established
the Australian Space Agency in 2018
to leverage the rapid growth of the
global space economy and its shift to a
commercial stage. Space is an emerging
industry for both government and the
private sector that presents a wealth
of economic opportunities–and space
manufacturing has a key role to play in
harnessing those opportunities, as well

as supporting our national strategic interests. Space manufacturing is an important
element of the Australian Government’s goal to triple the size of the national civil
space sector to $12 billion by 2030 and continue making progress in the years
beyond1.

Soon after it was established, the Agency began implementing programs to build
capacity and capability in the sector. One of our first steps was the Moon to Mars
initiative–the result of a partnership between NASA and the Agency to support Aus-
tralian space manufacturing efforts that align with NASA’s exciting future plans for
space exploration. This initiative has had great success with manufacturing busi-
nesses across the value chain that already work in the space sector and want to
increase space heritage, as well as businesses in adjacent industries looking to diver-
sify their manufacturing outputs to include products with space applications. Under
the Moon to Mars initiative we have also reached an agreement for an Australian
designed, built and operated semi-autonomous rover to be included in a future lunar
mission with NASA. In addition, we are delivering a National Space Mission for
Earth Observation which will include Australian industry designing, constructing,
launching, and operating four new Earth observation satellites. It will take Aus-
tralian from a consumer to a contributor of critical Earth observation data.

1 https://www.industry.gov.au/data-and-publications/australian-civil-space-strategy-2019–2028.
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Space is also one of six manufacturing priority areas the Australian Government
is investing heavily in to drive the national economy. This is coupled with a Space
Manufacturing Road Map2 that sets the future vision for manufacturing investment
in the space sector and targets key growth opportunities–including products that
go into space, space components, and associated products and infrastructure. This
ambition is backed by the Agency’s own series of technical roadmaps, which iden-
tify diverse space manufacturing opportunities corresponding to our seven National
Civil Space Priority Areas1.

Australia’s competitive advantages give us great enthusiasm for the future. For
example, we have world-leading expertise in remote asset management in the
mining and resources sector, and a range of remote and extreme environments
ideal for testing space-focused technology. Australian companies are combining
robotics technology with satellite communications to remotely service pipelines
underwater, and trialling Satellite-Based Augmentation Systems to aid precision
control of mining vehicles. Mine sites in the Pilbara region in Western Australia can
be operated remotely from 1600 kilometers away - so imagine the opportunities to
operate activities in space, which starts just 100 kilometers above us. By leveraging
existing capabilities like these, Australia can become a major player in a global
space economy tipped to be worth US$1 trillion by 20403.

Dr. Enrico Palermo
Head of the Australian Space Agency

2 https://www.industry.gov.au/data-and-publications/space-national-manufacturing-priority-
road-map.
3 https://www.morganstanley.com/ideas/investing-in-space/.
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Preface

I made my last major move, scientifically and privately, in 2018 from the Netherlands
to Australia. At that time, Australia had started to engage with satellite and diverse
computing-related space activities. This turned within just three years into a broad
development including the “new space economy” (on resources and human space
exploitation) and having the Australian Space Agency settled in Adelaide. When I
started with space research in early 2019, it was no more than a curiosity for me.
I had such moment of change already in 1994, when starting with microreactors
and microfluidics. This “curiosity” has turned into commercial business and success
after 20 years of research. Being a child of the 1960s, I am fascinated by the moon
landings and Apollo program. My curiosity had now led me into a laboratory at the
International Space Station. I am so passionate, seeing more far-fetching goals, such
as a moon village, and for any resource and sustainability engineer, the journey to
Mars must be utmost exciting and challenging. It is a privilege reporting about in the
progress that is being made in this book at this pivotal turning point, with some of the
most agile global players in space science and space industry; sincere appreciation
to all those. This book highlights current developments of which we are unable to
imagine the full range of future implications. Einstein once said “Think truly to the
future and make those dreams come true.”
Volker Hessel, University of Adelaide

When I joined the space industry, just over seven years ago, the idea of a robust
commercial space economy in low-Earth orbit (LEO) – that included anything other
than launch vehicles and satellites – was just a vision. Today we are witnessing
emerging markets for in-space manufacturing take shape at a pace that seems
to grow exponentially each year – with no signs of slowing down. Public–private
partnerships driving the transition from government-funded space agencies to
commercial companies providing launch services offering expanded access to LEO,
platforms that maintain a permanent presence in space beyond the International
Space Station, and services to sustain future cities in space, are creating an expanded
definition of global that includes not just the circumference of Earth but 250 miles
overhead. And the expanded exploration opportunities – to the moon, Mars, and per-
haps beyond – that this transition provides are a legacy and a gift we are leaving for
future generations. The chapters in this book will hopefully not only provide a new
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xxiv Preface

perspective but inspire you to dream as well, perhaps envisioning possibilities that
have yet to be imagined. Sincere thanks to all of those who have shared their work
and their vision in these pages, and to their courage as trailblazers to lead the way.
Jana Stoudemire, Axiom Space

I worked on Venusian geology in my early career in mid-90’s, when the accessibility
to spacecraft data was very limited. I had to spend a significant amount of time to
obtain the Magellan mission data generously distributed by NASA as CD-ROMs,
which made my work more theoretical than observational. However, thanks to
the evolution of communication technologies, the situation has been significantly
improved. Also, the science community now prefers to disclose more and more
data to the public with the strong belief that it is the best to enhance science. Now
we can access growing (and already huge) amounts of raw data of numerous space
missions of about 100 extraterrestrial bodies. Also, online international meetings
regarding space missions have become important routines of my daily schedule;
we can work together with world-leading experts in various fields for operating
ongoing space missions and preparing future missions. There is no doubt that
our scientific interests will be further accelerated through new findings from the
current and the near-future missions, which stimulate curiosities in outer space
and incubate new businesses including tourism and settlements. As innovative
technologies, including AI, have helped democratize many different markets on
Earth, the same is happening in space exploration and development. This book is
full of such aspects, and I’m very proud to be a part.
Hideaki Miyamoto, University of Tokyo

The rapidly emerging opportunities offered through the new economy of extended
space travel have opened up numerous exciting areas of research. My area of inter-
est, the development of healthy nutritious foods that can be produced and processed
safely and easily, raises many key questions that can only be addressed by taking
a cross-disciplinary view on these grand challenges. How to develop foods that
respond to the nutritional needs of astronauts and take account of metabolic chal-
lenges of extended space missions; how to ensure a balanced energy expenditure and
intake; how to ensure the immune system is not compromised and the gut micro-
biota continue to thrive in a healthy state; how to select, develop, and grow foods
in microgravity; how to engineer plants in readiness for spaceflight application;
how to create foods in situ through space farming; how to develop food processing
technologies to ensure processability, minimize loss of nutrients, and maximize
storability. Finally, it is critically important that the produced foods are well designed
in taste, aroma, and flavor, such that they are palatable and would be enjoyed even
after repeat consumption. If these challenges can be solved, then we are well
placed to ensure future space travelers have the nutrients and foods that they will
require to achieve extended space travel. Furthermore, these in-space approaches to
manufacturing essential resources for food will have many terrestrial applications
and as the space industry develops further, so too will the terrestrial equivalents.
Ian D. Fisk, University of Nottingham
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