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Abstract: Herein we present the synthesis of a polymeric prodrug nanomaterial capable of spontaneous,
self-assembled nanoparticle formation and of the conjugation (encapsulation) of drugs with amino
and/or carboxyl and/or hydroxyl groups via ester and/or amide linkage. Mitomycin C (MMC)
a versatile drug with antibiotic, antibacterial and antineoplastic properties, was used to prove this
concept. The in vitro drug release experiments showed a fast release for the pure MMC (k = 49.59 h−n);
however, a significantly lower MMC dissolution rate (k = 2.25, 1.46, and 1.35 h−n) was obtained for
the nanoparticles with increased cross-link density (3, 10, 21%). The successful modification and
conjugation reactions were confirmed using FTIR and EDX measurements, while the mucoadhesive
properties of the self-assembled particles synthesized in a simple one-pot reaction were proved by
rheological measurement. The prepared biocompatible polymeric prodrugs are very promising and
applicable as a drug delivery system (DDS) and useful in the area of cancer treatment.

Keywords: modified PVA; Mitomycin; self-assembled polymeric particle formation; mucoadhesive
properties; prolonging/adjusted drug release

1. Introduction

Orally administrated Mitomycin C (MMC) has long been used as an antibiotic, antifi-
brotic and antineoplastic agent, and the antitumor mechanism of MMC is based on its use
as a bifunctional alkylating agent that inhibits DNA synthesis [1]. Still, its undesirable side
effects (such as renal damage, gastrointestinal damage, and bone marrow depression [2,3])
minimize the dose in chemotherapy. However, around eight times the dosage is required
compared to intravenous (IV) and intraperitoneal (IP) administration; in addition, oral
administration of MMC is 3 to 12 times the injection administration of LD50 [4]. Therefore,
it is necessary to develop prodrugs or so-called drug delivery systems (DDS) to provide
the prolonged therapeutic effect and safe administration of MMC to reduce its side effects
and enhance therapeutic efficiency.

Nano- or microparticulate encapsulation of MMC for controlled release has benefits
including lower dosage, decreased side effects, enhanced bioavailability, high carrier
capacity, high stability, and better treatment performance. The prevalent method of delivery
of MMC includes drug encapsulation in nano- or micro-particles such as dextran [5,6],
albumin [7], poly butyl cyanoacrylate [8], estradiol [9], hydrogels [10], and poly-epsilon-
caprolactone [11]. However, these systems have demonstrated some shortcomings in the
local administration of MMC as they rapidly degrade in the body.
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A polymeric prodrug is the conjugation of a drug with a polymer to form an inactive
precursor of a drug. According to Ringsdorf’s model [12], a polymeric prodrug mainly
contains five components: polymeric backbone, spacer, drug, soluble agent, and targeting
group. Polymeric prodrugs have several advantages, including prolongation of drug action,
controlled drug release, and immuno-protection during cancer treatment. The coupling
of the drug with a polymer via an amide bond is strongly promising because of its high
stability against different reaction conditions and high temperatures [13]. In this scenario, a
comparatively significant amount of prodrug can be administered without attendant side
effects and overdosing risk.

Mucoadhesion is an attachment phenomenon of the natural or synthetic polymer to the
surface of the mucosa. Mucoadhesive drug delivery systems (MDDS) may be configured to
specifically target oral, rectal, buccal, vaginal, ocular, and nasal routes of administration [14].
Thiolated polymers are the most effective mucoadhesive polymers because they can easily
form covalent bonds (disulfide bonds) with cysteine-rich sub-domains of the mucus gel
layer, in addition to the hydrogen bonds and van der Waals’ forces that lead to an increase
in the drug residence time and improve bioavailability [15,16].

Polyvinyl alcohol (PVA) provides a suitable base for DDS because of its good me-
chanical properties, biodegradability, biocompatibility, and ease of modification [17,18].
The biocompatible PVA has FDA approval for in vivo applications and clinical uses in
the human body [19–21]. Baker et al. revealed that preclinical and clinical studies of
PVA validated its safety and biocompatibility without any adverse effects, indications
of tissue loss, or cytotoxicity [19]. PVA with pendant OH groups can be converted into
carboxylic acid derivatives by treatment with acid anhydrides (such as succinic anhy-
dride). For drug and protein conjugation, the succinyl group integrated into the polymer
can act as a spacer between the drug and the polymer, which controls the rate release
through enzymatic and/or hydrolytic (non-enzymatic) cleavage of the temporary bond
between the drug and polymer. In the in vitro environment (enzyme-free condition) via
an aqueous buffer solution, the rate of hydrolysis of the temporary bond (e.g., amide
or ester bond) may be too slow and not therapeutically effective. However, amidase
or esterase in an in vivo environment will result in a significant catalytic acceleration of
hydrolysis kinetics from twofold to multiple magnitude orders [22]. In addition to the
conjugation of the drug, the succinyl group provides suitable cross-linking groups (COOH)
with the OH groups of the PVA backbone by the formation of an ester bond via the use of
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as a coupling agent,
according to reported literature [23], resulting in the formation of self-particles during the
conjugation reaction of MMC to succinated PVA.

In the present work, we aimed to reduce the severe side effect of MMC by synthesizing
a polymeric prodrug and increasing the mucoadhesive properties of the prepared polymeric
prodrug by conjugation of an aminothiol compound (e.g., cysteamine, CYS) to increase the
terminal free thiol group that can form a disulfide bond with the mucous membrane. The
in vitro release experiments were performed for 7 days under physiological conditions (PBS,
pH = 7.4) with the application of different kinetic models to evaluate the releasing kinetics
(zero-order, first-order, Hixson–Crowell, Higuchi, and Korsmeyer–Peppas models) [24].
The relevant antibacterial and anticancer properties of the obtained polymeric prodrugs
were examined. The prepared conjugated particles with strong mucoadhesive properties
were suitable for the prolonged drug release of MMC under physiological conditions. The
release of MMC could be controlled by adjusting the cross-linking density.

2. Results
2.1. Structural Characterization of the Synthesized Samples

As shown in Figure 1, the initial PVA was functionalized with various molar ratios
(from 8 to 126 molar %) of succinic anhydride to the PVA’s OH groups (15.8 mmol/g,
determined by acetic anhydride/pyridine titration [25]).
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Figure 1. The scheme of the succinylation reaction of PVA and conjugation reaction of MMC and
cysteamine (through amide bonds highlighted in blue) with PVA-SA in addition to the self-particle for-
mation by cross-linking of the OH group and COOH group by EDC (through ester bonds highlighted
by red).

The substitution degree of succinate moiety ranged from 3.1 to 21.5% (see Figure S1B
in the Supplementary Materials). Due to the mild reaction condition and the applied
DMF as a poor solvent for PVA, the percent of substitution was relatively low because the
reaction only occurred on the surface of partially dissolved PVA particles, however, using
extreme conditions for substitution reaction will lead to the crosslinking of PVA by SA
which was not preferred for our work as was studied by Zhou et al. [26]. The attachment of
the carboxyl group to the PVA backbone and the partial carboxylation (PVA-SA) provided
a suitable candidate polymer for conjugation reaction using EDC as a coupling agent.
Next, the obtained PVA-SA was reacted with cysteamine (CYS) and MMC via amide bond
formation, with the MMC binding range between 70 and 80%. Furthermore, the remaining
OH and COOH groups allowed the self-particle formation of linear polymer chains through
ester bonds (Figure 1) [23].

The successful reactions were confirmed using FTIR measurements as presented
in (Figure 2).

The main characteristic peaks of PVA were 3280 cm−1 (O–H stretching vibration),
2960 cm−1 (CH2 asymmetric stretching vibration), 2925 cm−1 (CH2 symmetric stretching
vibration), 1735 cm−1 (C=O carbonyl stretch), 1425 cm−1 (C–H bending vibration of CH2),
1380 cm−1 (C–H deformation vibration), 1325 cm−1 (CH2 wagging vibration), 1245 cm−1

(C–O–C stretching vibration), 1100 cm−1 (C–O stretching of acetyl groups), and 840 cm−1

(C–C stretching vibration) [25,27,28]. It was obvious that when the OH groups of the
PVA backbone were modified by succinyl moieties, the OH-stretching band of pure PVA
(~3280 cm−1) diminished, and the emergence of significant absorption bands at 1735 and
1670 cm−1, which were associated with the esteric carbonyls and carboxylate moieties,
respectively, characterized the difference between these two spectra [29]. The new peak
at 1580 cm−1 was due to the asymmetric stretching vibration of carboxylate RCOO− [30].
The new absorption band between 1150 and 1190 cm−1 for the PVA-SA arose from the
C–O stretching vibrations of the ester group [31]. This was evidence that the successful
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introduction of succinic moiety into the PVA side chains occurred. The conjugation reaction
of PVA-SA with CYS was proved by the vanishing of the band at 1670 and 1580 cm−1

related to carboxylate moiety and asymmetric stretching vibration of carboxylate RCOO−,
as well as the shift and increasing the intensity of the carbonyl band (C=O) at 1710 cm−1

owing to the formation of an amide bond between the carboxylate group of PVA-SA and
the NH2 group of cysteamine. Moreover, the emergence of a new peak at 1180 cm−1 was
due to the C–N stretching vibration, which confirmed the successful occurrence of the
conjugation reaction.
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Figure 2. FTIR spectra of initial PVA and modified forms.

The disappearance of the NH band at 3442 cm−1 and the appearance of the amide band
(C=O) at 1705 cm−1 meant that the conjugation reaction successfully occurred between
PVA-SA and MMC. In addition, there was a change in the region from 3000 to 3500 cm−1

in the case of the conjugated products, reducing the peak at 1670 cm−1. This was attributed
to the carboxylate moieties and proved that the reaction occurred between the NH of MMC
and the carboxyl group of PVA-SA. MMC moiety was characterized by the emergence of
new peaks at 2850, 1383, 1560, 1540, 1170, and 900 cm−1 [32].

Spontaneous particle formation by cross-linking between the simultaneously available
OH and COOH groups was confirmed by decreasing the band that related to the carboxylate
moiety of succinate and the emergence of a new absorption band between 1150 and
1190 cm−1 as a result of C–O stretching vibrations of the ester group, confirming the
cross-linking by an ester bond [23].

The thermal behaviour of the initial PVA and its modified derivatives were inves-
tigated with DSC measurements (see Figure S2A in the Supplementary Materials). Due
to the conjugation reaction, the melting point values of the conjugated particles PVA-SA-
CYS, PVA-SA-MMC, and PVA-SA-CYS-MMC were higher compared to initial PVA [29]
because of the formation of crosslinking network that enhances the thermal properties of
prepared particles. The water heat evaporation and the desorption enthalpy value were
also measured by DSC measurements (see Figure S2B in the Supplementary Materials).
The conjugated particles show a lower desorption value at around 29 kJ/mol compared
to the initial PVA. The desorption enthalpy of the pure, initial PVA is a little bit higher
(43.7 kJ/mol) than the reported vaporization enthalpy of distilled water (41.74 kJ/mol) [33]
indicating the hydrophilic nature of the polymer.
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2.2. Self-Assembled Particle Formation

Before the particle synthesis, we needed to determine the effect of the polymer con-
centration on the solution properties, since in a dilute aqueous macromolecular solution
separate polymeric particles are expected to be obtained from the polymer globule, and the
emerging ester cross-links help to maintain their spherical shape. However, if this process
takes place in concentrated solutions, a 3D cross-linked structure is expected. Thus, to
prepare self-assembled particles, the change in viscosity of PVA-SA solutions was studied
to determine the maximum polymer concentration that was suitable to forming separate
particles instead of the formation of a cross-linked bulk phase. For this examination, dif-
ferent PVA-SA solutions were prepared followed by adding the proper amount of EDC.
Figure 3A shows the change in the viscosity as a function of aqueous polymer concentration.
Turbid, low viscosity dispersion was formed in the case of 1, 2, and 3% PVA-SA solutions;
however, above this concentration, the viscosity was suddenly increased to 16.3 mPa·s
because of the formation of a cross-linked hydrogel. These results indicated that the critical
polymer concentration of our modified polymer was around 3% in water; below this con-
centration separate polymeric particles are obtained, while at higher concentration values
the macromolecule chains provide a cross-linked sample.
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Figure 3. (A) The change in the viscosity as a function of increasing the concentration of PVA-SA
solutions from increasing the cross-linking ratio. (B) The change in the turbidity (black) and particle
size (gray) values of PVA-SA with EDC as a function of time from particle formation by ester bond
cross-linking.

The self-particle formation was also confirmed by the turbidity measurement, since
the simultaneous presence of COOH and OH groups on the polymeric backbone allowed
the formation of esters bonds between these functional groups in the presence of EDC.
As a result, particles were formed from the homogeneous polymer solution. To study
this phenomenon, 2 wt% PVA-SA aqueous solution was prepared and, after adding EDC,
the turbidity was monitored as a function of the time, as shown in Figure 3B. A sudden
increase in the turbidity was observed after adding EDC (~20 NTU) because activation
of the COOH groups of PVA-SA began with EDC, and the turbidity showed a constant
value before a significant increase after 60 min of measurement, owing to the self-particle
formation by the cross-linking of COOH groups of succinate moieties with OH groups of
PVA backbone. After 130 min, the turbidity reached a plateau value and became constant
over time until 180 min; after that, it decreased owing to the coagulation of the particles.
DLS measurement was performed to check the changes in the size of the prepared particles
with time, and the corresponding data are presented in gray in Figure 3B. Particle size
showed the tendency to increase with time, and the maximum particle size was ~200 nm
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during the high turbidity value (between 120 and 170 min), while the maximum particle
size was 256 nm after 300 min.

The morphology and the size of the prepared conjugated particles were also studied by
TEM. Figure 4 shows a representative TEM image of spherical polymeric prodrug particles
(PVA-SA-CYS-MMC 21%) and the corresponding particle size distribution histogram
with the mean particle size at around 92 nm. The small particle size of the polymeric
prodrug provided an advantage by increasing the surface area and hence increasing the
bioavailability of MMC. The enhanced particle surface area is also very important for
the mucoadhesive properties of a polymeric prodrug by helping to increase the adhesion
of particles to the mucous membrane, as we will see in the mucoadhesive measurement
section. Figure 4 also shows the corresponding particle size distribution histograms for
PVA-SA-CYS-MMC (10%) and PVA-SA-CYS-MMC (3%) with mean particle sizes at around
149 nm ± 66 and 260 nm ± 67, respectively. It can be seen that the increasing cross-linking
density resulted in a decrease in the particle size of the prepared polymeric prodrugs.
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2.3. Mucoadhesive Properties of Cysteamine Polymeric Conjugate

The required mucoadhesive properties of the formed particles were ensured by the
terminal thiol groups. The thiol content values determined by Volhard’s method (see the
Supplementary Materials) were 0.8, 0.2, and 0.075 mmol/g in the case of PVA-SA-CYS
samples with ~21, 10, and 3% cross-linking densities, respectively.

These terminal thiol groups enabled the particles to form covalent S-S bonds with
the SH groups of mucin molecules [15,16]. This mechanism was verified via rheological
measurements since the mixing of 1% w/v PVA-SA-CYS solution with 1% w/v mucin
solution resulted in a viscous cross-linking hydrogel (Figure S4). The storage modulus (G′)
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provides information about the elastic nature of the polymer while the loss modulus (G”)
represents the viscous property. Figure S5 shows that the G′ of PVA-CYS-mucin varied from
104 to 105 Pa but the G” of PVA-CYS-mucin varied from 103 to 104 Pa. The ‘sum’ of the loss
and storage modulus is the so-called complex modulus (G*). According to Table 1, the PVA-
CYS-mucin suspension had much higher G′ values (158.3 kPa) than PVA-CYS (24.7 kPa)
and mucin (12.4 kPa), mainly because of the formation of a more entangled network by
hydrogen bonds and disulfide linkages, wherein the thiolate polymer served as a cross-
linker that led to the formation of the gel (as shown in Figure S4), which was consistent
with the literature [34]. With the same approach, the loss modulus of PVA-CYS-mucin had
higher values (23.2 kPa) than PVA-CYS (7.55 kPa) and mucin (0.78 kPa).

Table 1. Data of storage modulus (G′), loss modulus (G”), and complex modulus (G*) of PVA-SA-CYS
(1%), mucin (1%), and a mixture of them.

Sample G′ (kPa) G” (kPa) G* (kPa)

1% PVA-CYS 24.7 7.55 32.25
1% Mucin 12.4 0.78 13.18

1% PVA-CYS-Mucin 158.3 23.2 181.5

The formation of the disulfide bonds between our mucoadhesive polymer particles and
the mucin-rich surface was also demonstrated by surface adsorption measurements. During
this experiment, a pig intestinal membrane as the model mucus surface was immersed in
1 wt% of a gently agitated aqueous dispersion of particles, and the decrease in the turbidity
due to the particles’ adsorption was measured as a function of time. The same measurement
was repeated with particles without CYS as control, as shown in Figure 5. The presence
of CYS increased the mucoadhesive properties of the initial PVA. The turbidity decreased
dramatically over time because of the continuous surface adsorption of the mucoadhesive
particles (PVA-SA-CYS 21%) on the intestinal membrane until nearly full adsorption was
reached, with a maximum decrease in the turbidity value of approximately 76.2% compared
to the initial PVA-SA particles with maximum decrease of 9.5% after 7 h. After 24 h, the drop
in turbidity value in the PVA-SA-CYS example remained essentially steady, confirming
the permanence of the surface bonding state. In the case of PVA-SA-CYS, around 60% of
the particles were adsorbed on the intestinal surface after 1 h of measurement, resulting in
the increasing residence time of the conjugated particles and improved bioavailability [35].
It is worth noting that because of the presence of pendant SH groups, the PVA-SA-CYS
macromolecules can also form disulfide bonds on their own. The inserted photos in Figure 5
show the intelligent self-healing property of this polymer, where the test sample (PVA-
SA-CYS 21%) was cut in half and reattached. The evolving disulfide bonds resulted in a
recovered, cross-linked structure from the two parts.

2.4. In Vitro Drug Release Measurement

The profiles of MMC released from different forms are shown in Figure 6; release from
the bare MMC and the physical mixture was too fast a process with maximum releasing
amounts of 92 and 81%, respectively.
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PVA-SA-CYS-MMC with different cross-linking densities.

According to Table S1, releases from the bare MMC and the physical mixture of MMC
with polymer data were fitted with the Korsmeyer and Peppas model. Korsmeyer and
Peppas developed a basic relationship that explains the release of drugs from a polymer
system that follows the form of dissolution and is defined as Equation (1) [36]:

Mt/M∞ = Ktn (1)

where Mt/M∞ denotes the percentage of drug released at time t, n denotes the release
exponent (or diffusional exponent) and k is the release rate constant. Based on an “n” value
for spherical geometry, the release exponent n≤ 0.43 indicated a Fickian diffusion mechanism,
whereas 0.43 < n < 0.85 corresponded to non-Fickian (anomalous) transport [36,37]. Because
n < 0.2 for the bare MMC and the physical mixture of MMC, this implied a Fickian diffusion
release, i.e., diffusion-controlled transport.
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In contrast, the release of MMC from the conjugated form (PVA-SA-CYS-MMC) with
different cross-linking densities (3, 10, and 21%, respectively) showed prolonged-releasing
profiles determined by the amide hydrolysis of the MMC moiety from the conjugated form.
Amide hydrolysis reactions were very slow and therefore took a long time to reach the
plateau value; the maximum MMC releasing values after 7 days for PVA-SA-CYS-MMC
(21%), PVA-SA-CYS-MMC (10%) and PVA-SA-CYS-MMC (3%) were 33.1, 49.1 and 62.2%,
respectively. According to Table S1, drug release data for all the conjugated forms were
fitted with the Korsmeyer–Peppas model. Based on an “n” value (diffusional exponent)
ranging between 0.43 and 0.85, which correlates to an anomalous transport (non-Fickian),
the drug release mechanism was dependent on both diffusion and erosion-controlled
mechanisms [38–41].

2.5. In Vitro Evaluation of the Anticancer and Antibacterial Activity of MMC Samples

The anticancer activity of the MMC and its conjugated forms was also studied. After
1, 3, 5, and 7 days, the released medium with the given MMC concentration (see Table 2)
was withdrawn and the IC50 values were determined (Table 2). All the MMC-containing
samples showed an obvious antitumor effect; the measured IC50 values varied between
0.014 ± 0.001 and 0.054 ± 0.029 mg/mL. The IC50 values of the encapsulated samples
were very similar to the values of pure MMC in each case, indicating that neither the
conjugation of the MMC nor the dissolution of the drug from the particles caused an
adverse change in the effect of the drug. These results indicated that the polymeric particles
were able to efficiently adhere to mucus surfaces, and because of the prolonged release, the
anticancer effect of MMC could be felt for a long time. Moreover, the developed system
had antibacterial properties.

Table 2. The spectrophotometrically measured MMC concentration values (in mg/mL) of the
solutions used during the antitumor and antibacterial tests, the determined IC50 values (in mg/mL)
of the tested samples released from the encapsulated and pure MMC on the Hep-2c tumor cell line.

Sample
1st Day 3rd Day 5th Day 7th Day

Conc
(mg/mL)

IC50
(mg/mL)

Conc
(mg/mL)

IC50
(mg/mL)

Conc
(mg/mL)

IC50
(mg/mL)

Conc
(mg/mL)

IC50
(mg/mL)

Pure MMC 0.254 0.029 ± 0.001 0.270 0.041 ± 0.002 0.273 0.026 ± 0.006 0.275 0.05 ± 0.045
Control 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PVA-MMC (3%) 0.063 0.014 ± 0.001 0.140 0.022 ± 0.007 0.173 0.043 ± 0.025 0.188 0.054 ± 0.029
PVA-MMC (21%) 0.029 0.037 ± 0.004 0.065 0.038 ± 0.01 0.089 0.039 ± 0.007 0.097 0.029 ± 0.004

Figure 7 shows a representative result obtained after 5 days of dissolution of MMC
against MRSA. We noted that both pure MMC and encapsulated forms inhibited the
growth of MRSA bacteria at the measured doses because the diameter of the inhibition
zones was already more than 10 mm. Figure S6 shows the obtained diameter values of the
corresponding specific inhibition zone after 7 days of antibacterial effects. Furthermore,
the antibacterial effect (size of inhibition zones) was well correlated with the released
amount/concentration of MMC because the highest effect was obtained in the case of pure
MMC and the diameters were decreased with the increasing cross-link densities.
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3. Discussion

In this work, polymeric prodrug nanoparticles with spontaneous, self-assembled
particle formation ability and mucoadhesive properties were used to reduce the severe
side effect of MMC. The particles were synthesized by conjugation of MMC and CYS with
succinated PVA combined with self-assembled particle formation using EDC in a simple
one-pot reaction, as shown in Figure 1.

The successful and varied (3–21%) substitution degree of PVA and coupling reactions
were confirmed using FTIR (Figure 2) and EDX (Figure S3) measurements, while the
self-assembled particle formation process was proved by turbidimetric measurements
(Figure 3B). The size and morphology of polymeric prodrug nanoparticles were examined
by TEM measurements that showed spherical nanoparticles with the mean particle size
ranging between ~92 to 260 nm, depending on the cross-linking density (3–21%) (Figure 4).

The mucoadhesive properties of the conjugated particles showed strong attachment
with the pig intestinal test membrane that was demonstrated by turbidity measurement
and high values of storage modulus (G′ = 158.3 kPa) and loss modulus (G” = 23.2 kPa)
when mixing with porcine mucin. This led to the formation of a cross-linking hydrogel
by a disulfide bond between a thiol group of polymer and cysteine-rich sub-domains of
the mucus glycoproteins (mucin) (Figure S4) [15,16]. The prepared conjugated particles
with strong mucoadhesive properties are suitable for increasing the residence time of the
polymeric prodrug of MMC within the human body during the prolonged process of MMC
release and improved bioavailability [35].

The in vitro drug release experiments were performed for 7 days under physiological
conditions (PBS, pH = 7.4) that indicated the drug-releasing process can be adjusted by
variation of the cross-linking density. PVA-SA-CYS-MMC (21%) was the slowest one with
maximum drug release of 33.1% compared to 62.2% for PVA-SA-CYS-MMC (3%) (Figure 6),
and all MMC release data for polymeric prodrugs were fitted with the Korsmeyer–Peppas
model (Table S1) [36] where the drug-releasing mechanism depended on both diffusion-
and erosion-controlled mechanisms [38–41]. This means the hydrolysis reaction of the
conjugated form first, followed by diffusion of the Mitomycin drug. Thus, it can be
concluded that the release rate of MMC can be significantly prolonged by the application
of our modified polymer; furthermore, the amount and kinetics of the released drug can be
adjusted by the synthesis condition.

Because of the control of MMC release by cross-linking density, the antibacterial effect
(the diameter of the inhibition zones) was dependent on the released amount/concentration



Int. J. Mol. Sci. 2022, 23, 6807 11 of 14

of the MMC where the diameters were decreased (26.5, 19, and 11.5 mm) with the increasing
cross-link densities (0/pure MMC/, 3 and 21%) (Figure 7). The anticancer effect of the
polymeric prodrugs was very similar to the values of pure MMC in each case, which means
the effect of MMC was not affected by conjugation with the polymer and dissolution from
the particle system (Table 2). Eventually, we hope that the prepared polymeric prodrug
particles of MMC will become a promising drug delivery system (DDS) and useful in the
area of throat cancer treatment.

4. Materials and Methods

The Supplementary Materials contain a description of the materials as well as some of
the synthetic procedures (e.g., preparation of the succinic anhydride precursor according
to [42], preparation of PVA-SA according to [43] with modification of reported procedures)
and characterization methods (e.g., thiol content determination by Volhard’s silver nitrate
method [44], mucoadhesive measurement, anticancer activity, and antibacterial activity
using the standard disk diffusion technique [45], etc.).

4.1. Preparation of PVA-SA-CYS-MMC by One-Pot Reaction

The polymeric prodrug of MMC as shown in Figure 1 was prepared according to
the following recipe: 100 mg of PVA-SA with different carboxylic contents (0.5, 1.65, and
3.4 mmol/g of the COOH group; 3.1, 10.4, and 21.5% substitution degrees, respectively, as
shown in Figure S1B) was dissolved in 10 mL of distilled water, then 1.5 equivalent of EDC
to COOH content (14.4, 47.4, and 97.8 mg; 0.075, 0.248, and 0.51 mmol, respectively), 4 mg
of MMC, and 1 equivalent of cysteamine to COOH content (3.9, 7.3, and 9.6 mg; 0.05, 0.165,
and 0.34 mmol, respectively) was added to the polymer solution and left for 3 h under
magnetic stirring at room temperature. After the conjugation and self-assembled particle
formation, the reaction mixture was added to an excess amount of ethanol to precipitate the
conjugated polymeric particles product followed by centrifugation to remove the solvent
and washing with a mixture of acetone and water in a 3:1 ratio. The precipitate was
left to dry under the vacuum, the absorbance of the supernatant was measured by UV-
spectroscopy to determine unbound MMC and the percent of MMC binding was calculated
according to Equation (2).

Percent of binding (%) =
Total MMC− unbound MMC

Total MMC
× 100. (2)

4.2. Methods of Characterization

The FTIR spectroscopy measurements were carried out between 4000 and 500 cm−1

through the accumulation of 128 scans at 1 cm−1 resolution utilizing the BioRad FTS-60A
FTIR spectrometer (Bio-Rad, Krefeld, Germany). Thermo Scientific GRAMS/AI Suite
software was used for all spectral manipulations.

A transmission electron microscope (TEM) was used to investigate the morphology
and particle size of the prepared conjugated particles. The investigation was carried out
utilizing a Philips CM-10 transmission electron microscope with a 100 kV acceleration
voltage. For TEM measurements, the dispersed samples were disseminated and dried on
lacey carbon films on copper grids with 200 mesh.

Viscosity measurements were carried out using a Physica MCR 301 rheometer (Anton
Paar, Graz, Austria) equipped with a roller geometry cylinder type (DG 26.7) and the
measurements were performed at 25 ◦C. Aqueous PVA-SA (21.5% cross-linking density)
solutions were prepared at different concentrations (1, 2, 3, and 4 wt%), then 1.5 equivalent
of EDC to COOH content was added to the prepared solutions, and the change in the
viscosity was measured 15 min after addition of EDC.

The self-assembled particle formation of liner macromolecules through ester bonds
was studied based on the turbidity measurement that was performed using an ISO Portable
Turbidity Meter—HI98703 (Hanna instruments, Cluj-Napoca, Romania). A 2 wt% amount
of PVA-SA (with 21.5% cross-linking density) aqueous solution was prepared and 1.5 molar
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equivalent of EDC to COOH content was added, followed by monitoring the change in
the turbidity over time and simultaneously measuring the particle size by DLS (SZ-100
HORIBA Scientific, HORIBA, Ltd., Kyoto, Japan).

The in vitro experiments on MMC release were performed using a cellulose membrane
(Sigma-Aldrich (St. Louis, MO, USA), avg. flat width 10 mm (0.4 in.)). The MMC amounts
released from the bare and conjugated forms were spectrophotometrically measured by
monitoring the change in the intensity of the characteristic absorbance peak of MMC at
λ = 364 nm. The MMC concentration was directly proportional to the maximal absorption
values measured at this wavelength [CMMC (mg/mL) = (A364 nm)/20.418; R2 = 0.9998],
according to the calibration curve previously determined within the range of 0–0.08 mg/mL
MMC solution. Solid powders of the pure drug and conjugated forms (equivalent to
0.057 mg/mL MMC) were inserted in a cellulose membrane that was closed and placed
into 20 mL of a PBS buffer solution at pH = 7.4 (37 ◦C; 0.9 wt% NaCl content). In order to
determine the effect of the conjugation of MMC to polymer in the releasing process, the
release of MMC from a physical mixture of pure MMC and PVA-SA particles (with the
same ratio as the conjugated particles) was studied. During the measurement, 3 mL of the
aqueous solution was taken from the release medium at selected time intervals and the
average MMC concentration with the corresponding standard deviations was determined.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23126807/s1.
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