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We formulate and study a mathematical model for a honeybee colony infected with Varroa mites which describes 
the parallel phenomena of the spread of both the mites and the virus transmitted by them. We extend our previous 
model by including infected forager bees and considering model parameters as time-periodic functions. Firstly, 
we study the autonomous model and show the stability of equilibria. We present two simulation scenarios to 
study the impact of seasonality on the spread of Varroa mites and the disease they carry. Numerical studies are 
given to show how the parameter changes might lead to the colony’s failure.
1. Introduction

The Western honeybee (Apis mellifera), first domesticated several 
thousands of years ago for honey production, is also the most impor-
tant pollinator of food crops [1, 2], hence, it is not only ecologically 
[3] but also economically one of the most important insect species [4]. 
In recent years, honeybee colonies have been menaced by several fac-
tors including climate, pesticides and infections, resulting in high losses 
in honey bee populations [5]. Colony collapse disorder, consisting of a 
sudden colony death, and a lack of healthy adult bees in the hive has 
been observed in recent years in several countries of the world, how-
ever, the reason of the phenomenon could not be completely identified 
yet. Several factors may contribute to this disorder, including various 
infections, among them Varroa mites carrying acute bee paralysis virus, 
Kashmir bee virus, sac-brood virus, Israeli acute paralysis virus and de-
formed wing virus.

Varroa mite is an ectoparasite mite that infests honeybee colonies. 
The life cycle of Varroa mites is tightly adapted to the development of 
honeybees. Varroa mites can only reproduce in a honey bee colony. A 
female mite gets into the brood cell before it is capped, feeds on the ju-
venile bee and it also reproduces [6]. The adult female mite becomes 
attached to the bee and weakens it by sucking its fat bodies [7]. Var-

roa infestation, in high levels, may result in the collapse of the colony, 
which happens most often between the end of fall and the beginning 
of spring [8]. Mites can spread both vertically and horizontally in the 
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bee population. Vertical transmission of the mites happens when the bee 
colonies swarm out for reproduction and the attached mites move to the 
new nest site with the swarming bees. Horizontal transmission between 
colonies occurs mainly via migrating worker bees to other colonies and 
also when stronger colonies rob honey stores of weaker colonies as well 
as when infested brood or bees are moved by beekeepers. A further 
way of horizontal transmission involves mites moving from one colony 
to another by attaching to foragers from a mite-free colony after having 
been removed by an infested bee onto a flower [9]. Varroa destructor

mites are capable of rapidly infesting honey bees foraging at a feeder or 
on flowers of various species. Mites can rapidly ascend foraging honey 
bees, and although the bees try to repel the mites, in most occasions 
they succeed to leave the foraging site still attached to the bee. The 
transmission of Varroa mites from flower to bee can occur within just 
two seconds spent on a flower foraging [9]. Varroa mites are the par-
asites with the most important economic burden on beekeeping. It is 
also regarded as one of several stress factors [10] responsible for the 
increasing degree of bee loss in several countries of the world.

Several mathematical models have been established to describe the 
evolution of honeybee populations and to model the spread of infections 
affecting them. In [11], Sumpter et al. established a model to describe 
the impact of the parasites on the brood and on adult bees. Ratti et 
al. [12] studied virus transmission via Varroa mites, with the bee pop-
ulation divided into virus-free and infected individuals. The same bee 
compartments were considered with mite-induced mortality [13]. Kang 
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et al. [14] also considered that transmission of the virus happens at dif-
ferent biological stages of honeybees and mites. In [15], the authors 
extended earlier models by considering uninfected forager bees and 
adding different types of mortality. Petric et al. [16] studied a model for 
a colony infected with Nosema ceranae. The model with time-periodic 
coefficients includes healthy and infected hive and forager bees, as well 
as disease potential in the hive. Recently, in [17], the authors formu-
lated a model for a honey bee colony infected with the parasite Nosema 
ceranae. The model includes healthy and infected hive and forager bees, 
environmental spores of N. ceramae and also considered sugar and food 
storage. Numerical analysis of the model revealed that parasite extinc-
tion, co-existence between bees and the parasites, or colony failure are 
all possible. In [18], a compartmental model for the dynamics of honey 
bee colonies was developed to study the effects of pollen on colony 
failure. Seasonal changes affecting the food amount collected by for-
agers are also considered. Variations in the availability of pollen and 
nectar within a year were represented by trigonometric functions. In 
[19], interaction among brood, adult bees and mites was considered in 
which the time from brood to adult bee is also taken into account. The 
authors proposed a single-patch delay equation model with stage struc-
ture to investigate the effects of age structure and parasitism on colony 
dynamics under periodically changing circumstances. Seasonality is re-
flected in the model by the seasonally varying egg-laying rate of the 
queen bee. The time-dependent egg-laying rate of a fully mated queen 
is represented by a trigonometric function.

In [20], we took a novel approach by considering two types of in-
fested bees: those infested by mites not carrying the virus and those 
infested by virus-carrying mites. Also, the bees were divided into the 
subpopulations of hive bees and forager bees. In that work, to enable 
a complete analytical characterization of the global dynamics of the 
model, we made the simplifying assumption that only hive bees could 
be infested. The aim of the present work is to extend that model by al-
lowing forager bees to be infested by mites. Further, to make the model 
more realistic, we introduce time-periodic parameters following [16, 
17, 18, 19]. First, we study the autonomous case without seasonality 
and then prove the existence and stability of the equilibria. We present 
two simulation scenarios to study the main colony dynamics and to 
show how seasonality affects the spread of Varroa mites in honey bee 
populations. In the first scenario, we assume piecewise constant func-
tion based on seasonal averages for each time-dependent parameter, 
while in the second scenario, we assume that the queen’s egg-laying 
rate, as well as the transmission rates are continuous periodic functions 
represented by trigonometric functions. Finally, we use numerical sim-
ulations to investigate what kind of parameter changes might lead to 
colony failure.

2. Mathematical model

Our compartmental mathematical system is established based on the 
presence of a mite species, which is also a disease vector and can only 
be transmitted to a susceptible host through enough contact with an in-
fested host. Varroa mites are considered vectors in this study, and the 
term “vector” refers to a Varroa mite throughout the text. By an infested 
honeybee, we mean a honeybee with (virus-free or virus-carrying) par-
asites, while we talk about infection in the case when the bee is infested 
by a mite carrying the virus, thus infecting the bee. Depending on the 
presence of the mites and the infections transmitted by them, the honey-
bee population, denoted by 𝐵, is split into six compartments as follows:

(i) Healthy bees: those who can be infested by the vector. Healthy 
bees are classified as either healthy hive bees (𝐻𝑠) or healthy for-
aging bees (𝐹𝑠).

(ii) Hive bees (𝐻𝑚) and foraging bees (𝐹𝑚) who are infested by vectors 
not carrying the virus.

(iii) Hive bees (𝐻𝑖) and foraging bees (𝐹𝑖) who are infested by vectors 
virus-carrying, and thus infected with the disease.
2

Consequently, the total number of hive bees, total number of forager 
bees and total honeybee population, respectively, are given by

𝐻 ∶=𝐻𝑠 +𝐻𝑚 +𝐻𝑖, 𝐹 ∶= 𝐹𝑠 + 𝐹𝑚 + 𝐹𝑖, 𝐵 ∶=𝐻 + 𝐹 .

2.1. Model assumptions

We extend our earlier mathematical model of the disease in Dénes 
and Ibrahim [20] by including infected forager bees and taking into 
consideration model parameters as time-periodic functions. We follow 
the assumption given in [16, 17, 20] and add new items to describe the 
new terms. Hence, the following assumptions will be necessary for our 
model:

1. Hive bees (𝐻𝑚) and foraging bees (𝐹𝑚) infested by virus-carrying 
vectors can transmit the mites to healthy bees (𝐻𝑠 and 𝐹𝑠).

2. We assume that at least one Varroa mite not carrying the virus is 
attached to every single individual in 𝐻𝑚 and 𝐹𝑚 compartments.

3. Hive bees (𝐻𝑖) infested by virus-carrying vectors can transmit the 
disease to healthy bees (𝐻𝑠).

4. Foraging bees (𝐹𝑖) infested by virus-carrying vectors can transmit 
the disease to healthy bees (𝐹𝑠).

5. We assume that at least one virus-carrying Varroa mite is attached 
to every single individual in 𝐻𝑖 and 𝐹𝑖 compartments.

6. A bee infested by virus-carrying vectors can transmit the infection 
to a bee infested by virus-free vectors, i.e. an individual from the 
𝐻𝑚 compartment can move to compartment 𝐻𝑖 following an ade-
quate contact with a bee l from compartment (𝐻𝑖 or 𝐹𝑖). Similarly, 
a bee from the 𝐹𝑚 compartment can move to compartment 𝐹𝑖 after 
contacting a member of compartment (𝐹𝑖 or 𝐻𝑖).

7. We suppose that disinfestation rates from both compartments 𝐻𝑚

and 𝐻𝑖 to the susceptible compartment 𝐻𝑠 are equal and denoted 
by 𝛼.

8. The hive bees’ death rates in the spring, summer, and fall months 
can be neglected in comparison with the rate at which hive bees 
are recruited to foraging work, as reported in [16, 17].

9. In accordance with [9], Varroa mites can move easily and fast from 
flowers to foraging honey bees, infecting them outside the hive. 
However, in our model, we only consider infection from bee to 
bee, with no infection from outside.

10. Following [13, 16, 21, 22], we suppose that the queen does not 
die or is replaced with no negative impact on the performance of 
the colony. We further assume that the disease has no effect on the 
queen bee.

11. Without taking into account larval and pupal stages, following [11, 
13, 16, 22], we assume bees emerge as adult worker bees. The 
eclosion rate for hive bees is determined by the product of the daily 
maximum potential eclosion rate (the average number of eggs laid 
per day by the queen) and a measure of the colony’s brood-rearing 
capacity (a sigmoidal function of the total colony population), as 
in [22, 23]. As a result, low worker bee populations can hamper 
the eclosion rate.

12. We assume our parameters to be time-dependent, with a one-year 
periodicity, as in [13], because both the biology and population 
dynamics of honey bees, as well as the dynamics of Varroa mites, 
fluctuate with the seasons.

2.2. Model equations

Our model is based on the bees model presented in [20], with vari-
ous modifications and extensions. In accordance with the transmission 
diagram in Fig. 1 and using the above assumptions, the corresponding 
system of differential equations takes the form
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Fig. 1. Transmission diagram showing honey bee colony dynamics combined 
with the dynamics of infestation by virus-carrying or virus-free Varroa mites. 
The progression of infection is represented by black solid arrows. Disinfestation 
is shown by blue dashed arrows. The movement here between forager bee and 
hive bee compartments is represented by solid blue arrows. Birth and death 
functions are shown by solid green arrows.

𝐻 ′
𝑠
=𝐸(𝐵, 𝑡) − 𝜆1(𝑡) − 𝜆5(𝑡) + 𝛼(𝐻𝑚 +𝐻𝑖) − 𝜎1(𝑡)𝐻𝑠

+ 𝜎2(𝑡)
𝐹

𝐵
𝐹𝑠 − 𝑑𝑠(𝑡)𝐻𝑠,

𝐻 ′
𝑚
= 𝜆1(𝑡) − 𝜆2(𝑡) − 𝛼𝐻𝑚 − 𝜎1(𝑡)𝐻𝑚 + 𝜎2(𝑡)

𝐹

𝐵
𝐹𝑚 − 𝑑𝑚(𝑡)𝐻𝑚,

𝐻 ′
𝑖
= 𝜆2(𝑡) + 𝜆5(𝑡) − 𝛼𝐻𝑖 − 𝜎1(𝑡)𝐻𝑖 + 𝜎2(𝑡)

𝐹

𝐵
𝐹𝑖 − 𝑑𝑖(𝑡)𝐻𝑖,

𝐹 ′
𝑠
= 𝜎1(𝑡)𝐻𝑠 − 𝜎2(𝑡)

𝐹

𝐵
𝐹𝑠 − 𝜆3(𝑡) − 𝜆6(𝑡) − 𝜇𝑠(𝑡)𝐹𝑠,

𝐹 ′
𝑚
= 𝜎1(𝑡)𝐻𝑚 − 𝜎2(𝑡)

𝐹

𝐵
𝐹𝑚 + 𝜆3(𝑡) − 𝜆4(𝑡) − 𝜇𝑚(𝑡)𝐹𝑚,

𝐹 ′
𝑖
= 𝜎1(𝑡)𝐻𝑖 − 𝜎2(𝑡)

𝐹

𝐵
𝐹𝑖 + 𝜆4(𝑡) + 𝜆6(𝑡) − 𝜇𝑖(𝑡)𝐹𝑖,

(1)

where

𝜆1(𝑡) = 𝛽1(𝑡)𝐻𝑚𝐻𝑠 + 𝛽
𝐹𝐻

(𝑡)𝐹𝑚𝐻𝑠, 𝜆2(𝑡) = 𝛽3(𝑡)𝐻𝑖𝐻𝑚 + 𝛽
𝐹𝐻

(𝑡)𝐹𝑖𝐻𝑚,

𝜆3(𝑡) = 𝛽4(𝑡)𝐹𝑚𝐹𝑠 + 𝛽
𝐻𝐹

(𝑡)𝐻𝑚𝐹𝑠, 𝜆4(𝑡) = 𝛽5(𝑡)𝐹𝑚𝐹𝑖 + 𝛽
𝐻𝐹

(𝑡)𝐻𝑖𝐹𝑚,

𝜆5(𝑡) = 𝛽2(𝑡)𝐻𝑖𝐻𝑠 + 𝛽
𝐹𝐻

(𝑡)𝐹𝑖𝐻𝑠, 𝜆6(𝑡) = 𝛽6(𝑡)𝐹𝑖𝐹𝑠 + 𝛽
𝐻𝐹

(𝑡)𝐻𝑖𝐹𝑠.

The maximum emergence rate of healthy hive bees is given by

𝐸(𝐵, 𝑡) = �̃�(𝑡) 𝐵𝑛

𝐾𝑛 +𝐵𝑛
,

where �̃�(𝑡) is the queen’s egg laying rate. The term 𝐵𝑛

𝐾𝑛+𝐵𝑛
represents 

brood maintenance function, in [17, 23], with half-saturation constant 
𝐾 . To incorporate the seasonal changes all parameters are assumed to 
be time-dependent. More precisely, we assume that these parameters 
are periodic with a periodicity of one year.

In system (1), 𝜎1 is the maximum rate at which hive bees switch 
to become foragers when no foragers are present in the colony. The pa-
rameter 𝜎2 stands for a reduction in recruitment of foragers and possible 
reversion if the distribution of hive and forager bees is perturbed [16]. 
In accordance with [24], we assume that the recruitment of hive bees 
to foragers is proportional to the actual number of hive bees. Social in-
hibition is the phenomenon of a surplus of foragers causing foragers to 
change back to become hive bees. Our assumption is that both healthy 
and infected bees have the same rates of recruitment and social inhibi-
tion. The description of the model parameters is listed in Table 1.

To address the existence and uniqueness of the solutions of sys-
tem (1), we introduce some notations

𝜉(𝑡) = min{𝑑𝑠(𝑡), 𝑑𝑚(𝑡), 𝑑𝑖(𝑡), 𝜇𝑠(𝑡), 𝜇𝑚(𝑡), 𝜇𝑖(𝑡)},
3

Table 1. Description of parameters of model (1).

Parameters Description
𝐸(𝐵, 𝑡) maximum emergence rate

𝐾 brood maintenance constant

𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡) transmission rate from hive bee-to-hive bee

𝛽4(𝑡), 𝛽5(𝑡), 𝛽6(𝑡) transmission rates from forager bee-to-forager bee

𝛽
𝐹𝐻

(𝑡) transmission rate from forager bee-to-hive bee

𝛽
𝐻𝐹

(𝑡) transmission rate from hive bee-to-forager bee

𝛼 disinfestation rate from (𝐻𝑚 and 𝐻𝑖) to 𝐻𝑠

𝜎2(𝑡) rate of reversion

𝜎1(𝑡) rate of recruitment

𝑑𝑠(𝑡), 𝑑𝑚(𝑡), 𝑑𝑖(𝑡) hive bees death rates

𝜇𝑠(𝑡), 𝜇𝑚(𝑡), 𝜇𝑖(𝑡) forager bees death rates

𝜙 =
(
𝐻𝑠(0),𝐻𝑚(0),𝐻𝑖(0), 𝐹𝑠(0), 𝐹𝑚(0), 𝐹𝑖(0)

)
∈ℝ6

+.

Define

Ω ∶=
⎧⎪⎨⎪⎩
(
𝐻𝑠,𝐻𝑚,𝐻𝑖,𝐹𝑠,𝐹𝑚,𝐹𝑖

)
∈ℝ6 ∶

𝐻𝑠 ⩾ 0,𝐻𝑚 ⩾ 0,𝐻𝑖 ⩾ 0,
𝐹𝑠 ⩾ 0, 𝐹𝑚 ⩾ 0, 𝐹𝑖 ⩾ 0,
𝐵 =𝐻 + 𝐹 > 0

⎫⎪⎬⎪⎭
Lemma 2.1. For any 𝜙 ∈Ω, every forward solution of (1) eventually enters 
Ω for all positive 𝑡 and is bounded from above by

0 ⩽𝐵(𝑡) ⩽ 𝑒∫ 𝑡
0 𝜉(𝑠)𝑑𝑠

⎡⎢⎢⎣𝐵(0) +
𝑡

∫
0

�̃�(𝑠)𝑒∫ 𝑠
0 𝜉(𝑟)𝑑𝑟 𝑑𝑠

⎤⎥⎥⎦ ,
where 𝐵(𝑡) =𝐻𝑠(𝑡) +𝐻𝑚(𝑡) +𝐻𝑖(𝑡) + 𝐹𝑠(𝑡) + 𝐹𝑚(𝑡) + 𝐹𝑖(𝑡).

Proof. By the Lipschitz condition we can prove the existence and 
uniqueness of model (1) solutions. From Equation (1), we have

𝐵′ = �̃�(𝑡) 𝐵𝑛

𝐾𝑛 +𝐵𝑛
− 𝑑𝑠(𝑡)𝐻𝑠 − 𝑑𝑚(𝑡)𝐻𝑚 − 𝑑𝑖(𝑡)𝐻𝑖 − 𝜇𝑠(𝑡)𝐹𝑠

− 𝜇𝑚(𝑡)𝐹𝑚 − 𝜇𝑖(𝑡)𝐹𝑖,

⩽ �̃�(𝑡) − 𝜉(𝑡)𝐵.

Applying the comparison theorem [25], we complete the proof. □

3. Analysis in the autonomous case

In this section, we study the stability of the autonomous model 
solutions obtained from Equation (1) by setting the time-dependent pa-
rameters to be constant. Although this is an impractical simplification 
in quantitative terms, it gives a qualitative understanding of the inter-
play of several parameters of the model. These results would also lead 
to the formulation and explanation of the full time-dependent model 
numerical simulations.

From Equation (1), we obtain

𝐻 ′
𝑠
= �̃�

𝐵𝑛

𝐾𝑛 +𝐵𝑛
− 𝛽1𝐻𝑚𝐻𝑠 − 𝛽

𝐹𝐻
𝐹𝑚𝐻𝑠 − 𝛽

𝐹𝐻
𝐹𝑖𝐻𝑠 − 𝛽2𝐻𝑖𝐻𝑠

+ 𝛼(𝐻𝑚 +𝐻𝑖) − 𝜎1𝐻𝑠 + 𝜎2
𝐹

𝐵
𝐹𝑠 − 𝑑𝑠𝐻𝑠,

𝐻 ′
𝑚
= 𝛽1𝐻𝑚𝐻𝑠 + 𝛽

𝐹𝐻
𝐹𝑚𝐻𝑠 − 𝛽3𝐻𝑖𝐻𝑚 − 𝛽

𝐹𝐻
𝐹𝑖𝐻𝑚 − (𝛼 + 𝜎1)𝐻𝑚

− 𝑑𝑚𝐻𝑚 + 𝜎2
𝐹

𝐵
𝐹𝑚,

𝐻 ′
𝑖
= 𝛽3𝐻𝑖𝐻𝑚 + 𝛽

𝐹𝐻
𝐹𝑖𝐻𝑚 + 𝛽

𝐹𝐻
𝐹𝑖𝐻𝑠 + 𝛽2𝐻𝑖𝐻𝑠 − 𝛼𝐻𝑖 − 𝜎1𝐻𝑖

+ 𝜎2
𝐹

𝐵
𝐹𝑖 − 𝑑𝑖𝐻𝑖,

𝐹 ′
𝑠
= 𝜎1𝐻𝑠−𝜎2

𝐹

𝐵
𝐹𝑠−𝛽4𝐹𝑚𝐹𝑠−𝛽

𝐻𝐹
𝐻𝑚𝐹𝑠−𝛽

𝐻𝐹
𝐻𝑖𝐹𝑠−𝛽5𝐹𝑖𝐹𝑠−𝜇𝑠𝐹𝑠,

𝐹 ′
𝑚
= 𝜎1𝐻𝑚 − 𝜎2

𝐹

𝐵
𝐹𝑚 + 𝛽4𝐹𝑚𝐹𝑠 + 𝛽

𝐻𝐹
𝐻𝑚𝐹𝑠 − 𝛽5𝐹𝑚𝐹𝑖 − 𝛽

𝐻𝐹
𝐻𝑖𝐹𝑚

− 𝜇𝑚𝐹𝑚,

𝐹 ′
𝑖
= 𝜎1𝐻𝑖 − 𝜎2

𝐹
𝐹𝑖 + 𝛽5𝐹𝑚𝐹𝑖 + 𝛽 𝐻𝑖𝐹𝑚 + 𝛽 𝐻𝑖𝐹𝑠 + 𝛽6𝐹𝑠𝐹𝑖 − 𝜇𝑖𝐹𝑖.

(2)
𝐵 𝐻𝐹 𝐻𝐹
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The following proposition is analogous with [15, Proposition 3.1] 
and [16, Proposition 3.3].

Proposition 3.1 (Existence of equilibria). We define

𝐺 ∶=
(𝜎1 − 𝜇𝑠) +

√
(𝜎1 − 𝜇𝑠)2 + 4𝜎1𝜎2

2(𝜇𝑠 + 𝜎2)
.

The trivial equilibrium 𝐸0 = (0, 0, 0, 0, 0, 0) of the model (2) always exists. If

𝐾 > (𝑛− 1)
−1
𝑛

[
𝑛− 1
𝑛

(𝐺 + 1)�̃�
𝑑𝑠 + 𝜇𝑠𝐺

]
,

then the trivial one is the only equilibrium. If the above inequality is re-
versed, then two positive equilibria 𝐸1 = (𝐻∗

𝑠,1
, 0, 0, 𝐺𝐻∗

𝑠,1
, 0, 0) and 𝐸2 =

(𝐻∗
𝑠,2
, 0, 0, 𝐺𝐻∗

𝑠,2
, 0, 0) exist. Furthermore,

0 <𝐻∗
𝑠,1

<
𝑛− 1
𝑛

�̃�

𝑑𝑠 + 𝜇𝑠𝐺
<𝐻∗

𝑠,2

Proof. From Equation (2), it is easy to see that 𝐸0 = (0, 0, 0, 0, 0, 0) is 
always an equilibrium. In the absence of mites and viruses, we have

𝐻 ′
𝑠
= �̃�

(𝐻∗
𝑠
+ 𝐹 ∗

𝑠
)𝑛

𝐾𝑛 + (𝐻∗
𝑠
+ 𝐹 ∗

𝑠
)𝑛

+ 𝜎2
𝐹 ∗
𝑠
2

𝐻∗
𝑠
+ 𝐹 ∗

𝑠

− (𝜎1 + 𝑑𝑠)𝐻∗
𝑠
= 0, (3)

𝐹 ′
𝑠
= 𝜎1𝐻

∗
𝑠
− 𝜎2

𝐹 ∗
𝑠
2

𝐻∗
𝑠
+ 𝐹 ∗

𝑠

− 𝜇𝑠𝐹
∗
𝑠
= 0. (4)

From (4) we get

𝜎1𝐻
∗
𝑠

2 − (𝜎1 − 𝜇𝑠)𝐻∗
𝑠
𝐹 ∗
𝑠
− (𝜎2 + 𝜇𝑠)𝐹 ∗

𝑠

2 = 0. (5)

By solving Equation (5) with respect to 𝐹 ∗
𝑠

, we obtain

𝐹 ∗
𝑠
=

(𝜎1 − 𝜇𝑠) ±
√
(𝜎1 − 𝜇𝑠)2 + 4𝜎1𝜎2

2(𝜇𝑠 + 𝜎2)
𝐻∗

𝑠
.

We ignore the lower branch to keep the positivity of the disease free-
solution and obtain

𝐹 ∗
𝑠
=𝐺𝐻∗

𝑠
. (6)

Adding Equations (3) and (4), we get

�̃�
(𝐻∗

𝑠
+ 𝐹 ∗

𝑠
)𝑛

𝐾𝑛 + (𝐻∗
𝑠
+ 𝐹 ∗

𝑠
)𝑛

− 𝜇𝑠𝐹
∗
𝑠
− 𝑑𝑠𝐻

∗
𝑠
= 0. (7)

Substituting Equation (6) into Equation (7), we find that 𝐻∗
𝑠
> 0 is a 

positive root

𝑓 (𝐻) = −(𝑑𝑠 + 𝜇𝑠𝐺)𝐾𝑛 + (𝐺 + 1)𝑛𝐻𝑛−1�̃� − (𝑑𝑠 + 𝜇𝑠𝐺)(𝐺 + 1)𝑛𝐻𝑛,

a polynomial of degree 𝑛. With Descartes’ rule of signs, we obtain that, 
depending on the parameters, there are either none or two such positive 
roots. We have 𝑓 (0) < 0 and 𝑓 (𝐻) < 0 for sufficiently large 𝐻 . Positive 
roots exist if the maximum of 𝑓 is positive. The maximum is reached 
for

�̄� = 𝑛− 1
𝑛

�̃�

𝑑𝑠 + 𝜇𝑠𝐺
.

Thus, we have

𝑓 (�̄�) =
(

1
𝑛− 1

[
𝑛− 1
𝑛

(𝐺 + 1)�̃�
𝑑𝑠 + 𝜇𝑠𝐺

]𝑛
−𝐾𝑛

)
(𝑑𝑠 + 𝜇𝑠𝐺) > 0.

If

𝐾 < (𝑛− 1)
−1
𝑛

[
𝑛− 1
𝑛

(𝐺 + 1)�̃�
𝑑𝑠 + 𝜇𝑠𝐺

]
,

then there exist two positive disease-free equilibria (𝐻∗
𝑠,1
, 0, 0, 𝐺𝐻∗

𝑠,1
, 0, 0)

and (𝐻∗ , 0, 0, 𝐺𝐻∗ , 0, 0) with 0 <𝐻∗ < �̄� <𝐻∗ . □

𝑠,2 𝑠,2 𝑠,1 𝑠,2

4

This result indicates that a sufficient number of healthy worker (hive 
and forager) bees are necessary to preserve the hive in order for it to 
establish itself as a properly working colony.

Proposition 3.2 (Stability of trivial equilibrium). The empty-hive equilib-

rium 𝐸0 = (0, 0, 0, 0, 0, 0) of model (2) is locally asymptotically stable.

Proof. By the tangent criterion, it can be seen that positive initial val-
ues yield non-negative solutions. We define 𝜉 = min{𝑑𝑠, 𝑑𝑚, 𝑑𝑖, 𝜇𝑠, 𝜇𝑚, 𝜇𝑖}.

From (2), we have

d𝐵
d𝑡

= �̃�
𝐵𝑛

𝐾𝑛 +𝐵𝑛
− 𝑑𝑠𝐻𝑠 − 𝑑𝑚𝐻𝑚 − 𝑑𝑖𝐻𝑖 − 𝜇𝑠𝐹𝑠 − 𝜇𝑚𝐹𝑚 − 𝜇𝑖𝐹𝑖,

⩽ �̃�
𝐵𝑛

𝐾𝑛 +𝐵𝑛
− 𝜉𝐵.

Consider the following auxiliary equation:

d�̄�
d𝑡

= �̃�
�̄�𝑛

𝐾𝑛 + �̄�𝑛
− 𝜉�̄�. (8)

Applying the comparison theorem [25], we obtain 0 ⩽ 𝐵(𝑡) ⩽ �̄�(𝑡) with 
initial value �̄�(0) = 𝐵(0).

For given 𝛿 > 0, the set

Ω𝛿 ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝐻𝑠,𝐻𝑚,𝐻𝑖,𝐹𝑠,𝐹𝑚,𝐹𝑖

)
∈ℝ6 ∶

𝐻𝑠 ⩾ 0,𝐻𝑚 ⩾ 0,𝐻𝑖 ⩾ 0,

𝐹𝑠 ⩾ 0, 𝐹𝑚 ⩾ 0,

𝐹𝑖 ⩾ 0,

0 ⩽𝐻𝑠 +𝐻𝑚 +𝐻𝑖 + 𝐹𝑠 + 𝐹𝑚 + 𝐹𝑖

< 𝛿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

is positively invariant. Equation (8) has the asymptotically stable equi-
librium �̄�0 = 0 for 𝑛 > 1. Therefore, for small enough �̄�, we get

lim
𝑡→0

(
𝐻𝑠(𝑡),𝐻𝑚(𝑡),𝐻𝑖(𝑡), 𝐹𝑠(𝑡), 𝐹𝑚(𝑡), 𝐹𝑖(𝑡)

)𝑇 = (0,0,0,0,0,0)𝑇 .

Thus, for small enough 𝛿1 all solutions starting in Ω𝛿1
will tend to the 

equilibrium 𝐸0. □

Proposition 3.3 (Stability of disease-free equilibrium). Assume 𝐸1 =
(𝐻∗

𝑠
, 0, 0, 𝐺𝐻∗

𝑠
, 0, 0) is a disease-free equilibrium of (2) in accordance with 

Proposition (3.1). Then 𝐸1 is asymptotically stable if the inequalities

�̃�
𝑛𝐾𝑛(𝐺 + 1)𝑛−1𝐻∗𝑛−1

𝑠

(𝐾𝑛 + (𝐺 + 1)𝑛𝐻∗𝑛
𝑠
)2

< 𝜎1 + 𝜎2
𝐺

𝐺 + 1
+ 𝑑𝑠 + 𝜇𝑠,

(𝛽1 +𝐺𝛽4)𝐻∗
𝑠
< 𝛼 + 𝜎1 − 𝜎2

𝐺

𝐺 + 1
+ 𝑑𝑚 + 𝜇𝑚,

(𝛽2 +𝐺𝛽6)𝐻∗
𝑠
< 𝛼 + 𝜎1 + 𝜎2

𝐺

𝐺 + 1
+ 𝑑𝑖 + 𝜇𝑖,

(9)

are satisfied.

Proof. Linearizing system (2) around the disease-free equilibrium 𝐸1, 
we obtain the Jacobian

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐽1 𝐽10 𝐽11 Λ + 𝐺+2
𝐺+1𝐽5 𝐽12

0 𝐽2 0 0 𝐽3 0
0 0 𝐽4 0 0 𝐽3

𝜎1 +
𝐽25
𝜎2

𝐽13 𝐽13 𝐽6
𝐽25
𝜎2

− 𝛽4𝐺𝐻
∗
𝑠

𝐽25
𝜎2

− 𝛽5𝐺𝐻
∗
𝑠

0 𝐽7 0 0 𝐽8 0
0 0 𝐽7 0 0 𝐽9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where
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Λ = �̃�
𝑛𝐾𝑛(𝐺 + 1)𝑛−1𝐻∗𝑛−1

𝑠

(𝐾𝑛 + (𝐺 + 1)𝑛𝐻∗𝑛
𝑠
)2
, 𝐽1 = Λ− 𝜎1 −

𝐽 2
5
𝜎2

− 𝑑𝑠,

𝐽2 = 𝛽1𝐻
∗
𝑠
− 𝛼 − 𝜎1 − 𝑑𝑚, 𝐽3 = 𝛽

𝐹𝐻
𝐻∗

𝑠
+ 𝐽5,

𝐽4 = 𝛽2𝐻
∗
𝑠
− 𝛼 − 𝜎1 − 𝑑𝑖, 𝐽5 = 𝜎2

𝐺

𝐺 + 1
,

𝐽6 = − 𝐺 + 2
𝐺

𝐽 2
5
𝜎2

− 𝜇𝑠, 𝐽7 = 𝜎1 + 𝛽
𝐻𝐹

𝐺𝐻∗
𝑠
,

𝐽8 = 𝛽4𝐺𝐻
∗
𝑠
− 𝐽5 − 𝜇𝑚, 𝐽9 = 𝛽6𝐺𝐻

∗
𝑠
− 𝐽5 − 𝜇𝑖,

𝐽10 = Λ+ 𝛼 − 𝛽1𝐻
∗
𝑠
−
𝐽 2
5
𝜎2

, 𝐽11 = Λ+ 𝛼 − 𝛽2𝐻
∗
𝑠
−
𝐽 2
5
𝜎2

,

𝐽12 = Λ+
𝐽5

𝐺 + 1
− 𝛽

𝐹𝐻
𝐻∗

𝑠
, 𝐽13 =

𝐽 2
5
𝜎2

− 𝛽
𝐻𝐹

𝐺𝐻∗
𝑠
.

(10)

The eigenvalues of the matrix 𝐽 are negative if

𝐽1 + 𝐽6 < 0, 𝐽2 + 𝐽8 < 0, 𝐽4 + 𝐽9 < 0. (11)

Then, starting with Equation (10) and substituting in Equation (11), we 
have

Λ < 𝜎1 + 𝜎2
𝐺

𝐺 + 1
+ 𝑑𝑠 + 𝜇𝑠,

(𝛽1 +𝐺𝛽4)𝐻∗
𝑠
< 𝛼 + 𝜎1 − 𝜎2

𝐺

𝐺 + 1
+ 𝑑𝑚 + 𝜇𝑚,

(𝛽2 +𝐺𝛽6)𝐻∗
𝑠
< 𝛼 + 𝜎1 + 𝜎2

𝐺

𝐺 + 1
+ 𝑑𝑖 + 𝜇𝑖.

Therefore, the inequalities in Equation (9) are satisfied, and hence the 
proof is complete. □

These results indicate that the disease-free equilibrium 𝐸1 is stable 
if inequalities (9) are satisfied. If, however, the disease-free equilibrium 
is unstable, it is unclear whether the system will converge to the trivial 
equilibrium or an endemic equilibrium. We note that these findings are 
in accordance with the results concerning the stability of the disease-
free equilibrium in [15, 16, 20].

4. Simulation results: non-autonomous model

In this section, we present some numerical experiments concerning 
model (1). Following [16], we generally assume that the Hill exponent 𝑛
takes a value 𝑛 ≥ 2. Thus, if 𝐵 ≫𝐾 , emergence is close to maximal rate, 
while for 𝐵 ≪ 𝐾 a very low number of new bees emerge. In [23], the 
emergence rate’s sigmoidal form had simple Holling type 2 saturation, 
implying that emergence is proportional to the number of worker bees 
at low bee populations. Since bees are eusocial insects with colonies that 
cannot survive in the long term with extremely low population sizes, 
we conceive that Holling type 3 form is ecologically more realistic, as 
in [16].

Using the Piecewise function of Wolfram Mathematica software, we 
create piecewise constant function based on seasonal averages for each 
time-dependent parameter, except where stated differently. Parameter 
values given in Table 2 and Table 3 represent average value of each 
season. In particular, we assume that 𝜎2 = 1.5 when 𝜎1 = 0.25 for spring, 
summer and fall, while in winter we set 𝜎1 = 0 (all forager bees rapidly 
revert back into the hive) and we maintain 𝜎2 = 1.5, as in [16, 17, 24, 
26]. We assume that hive bees die at the same rates equal to zero for 
spring, summer and fall, while in winter these values are assumed to be 
𝑑𝑠 = 𝑑𝑚 = 𝑑𝑖 = 0.00649. For the foragers, following [16, 17, 24, 26], we 
assume that death rates of healthy bees, those infested by non-infectious 
vectors and infected bees are 0.08511, 0.08511, 0.16936, respectively, for 
spring, summer and fall, while in winter the death rates are assumed to 
be 𝜇𝑠 = 𝜇𝑚 = 𝜇𝑖 = 0 as foragers return to the hive.

The results of numerical simulations of two different scenarios that 
illustrate the main dynamics of the bee colony are presented below. The 
base case with no disease in the system is shown in each scenario. In 
addition, we show three other situations in which the bee population 
5

Table 2. Seasonal averages of some of the model (1) parameters, derived from 
the data in [11, 13, 16, 22, 24, 27, 28, 29] and used in scenario 1.

Parameters Spring Summer Fall Winter References
�̃�(𝑡) 500 1500 500 0 [11, 16, 24]

𝐾(𝑡) 8000 12000 8000 6000 [13, 16, 24]

𝛽𝑖(𝑡), 𝑖 = 1,… ,6 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6 estimated

𝛽
𝐹𝐻

(𝑡) = 𝛽
𝐻𝐹

(𝑡) 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6 estimated

𝜎2(𝑡) 1.5 1.5 1.5 1.5 [16, 24]

𝜎1(𝑡) 0.25 0.25 0.25 0 [22, 24]

𝑑𝑠(𝑡), 𝑑𝑚(𝑡), 𝑑𝑖(𝑡) 0 0 0 0.00649 [16, 27]

𝜇𝑠(𝑡), 𝜇𝑚(𝑡) 0.08511 0.08511 0.08511 0 [16, 28]

𝜇𝑖(𝑡) 0.16936 0.16936 0.16936 0 [16, 28, 29]

Fig. 2. The curve of the queen’s egg laying rate �̃�(𝑡) with seasonal values is 
shown in Table 2.

has been infested by non-infectious vectors, infectious vectors, or both. 
Except where otherwise noted, our simulations began on the first day 
of spring in year 1, with initial conditions

𝐻𝑠(0) = 𝐹𝑠(0) = 104, 𝐻𝑚(0) = 𝐹𝑚(0) = 0, 𝐻𝑖(0) = 𝐹𝑖(0) = 0. (12)

In all cases, the year is assumed to begin with spring and that the length 
of all four seasons is the same, 91.25 days. Introducing 𝑙 = 91.25𝑑e, 
spring occurs from 0 to 𝑙, summer from 𝑙 to 2𝑙, fall from 2𝑙 to 3𝑙 and 
winter from 3𝑙 to 4𝑙 days. Simulations are performed for a period of 
3,650 days (approximately 10 years), except in the disease-free case, 
which is obtained for a period of approximately 3 years.

4.1. Scenario 1: piecewise constant birth and transmission functions

In this scenario, we integrate the system (1) numerically with piece-
wise constant birth and transmission functions. We assume that the 
maximum emergence rate �̃� of healthy adult hive bees is set to be 1500
for summer, 500 for spring and fall, and 0 for winter. The transmission 
rates are assumed to be constant for each season. The seasonal average 
values of the parameters are given in Table 2. Fig. 2 depicts the curve 
of the queen’s egg laying rate �̃�(𝑡) that will be used in this scenario.

Case 1: disease-free case

In the absence of the disease, we first show possible model simula-
tion outcomes. The bee populations fluctuate with the seasons, as shown 
in Fig. 3, and the colony rapidly settles into a healthy periodic solution. 
The number of bees in a hive decreases during the winter, when no new 
eggs are produced and there are no new adults emerging. Hive bees are 
recruited for foraging in the spring, and the colony strengthens during 
the summer. It begins to drop again in the fall, when the no eggs are 
laid and foragers return to the hive.

Case 2: the bee colony infested by virus-free vectors only

We assume that the colony is only infested by virus-free vectors. 
Also, we increase the level of 𝐻𝑚(0) to 10 with a small change in the 
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Fig. 3. Disease-free periodic solution of model (1) with parameter values given in Table 2 and 𝛼 = 0.1237.

Fig. 4. Solution of model (1) with parameter values given in Table 2 and 𝛼 = 0.145.

Fig. 5. The model (1) solution with parameter values given in Table 2 except 𝛽2 = 7.8 × 10−6 and 𝛼 = 0.15.

𝑡)
disinfection rate. Fig. 4 shows that the hive and forager bees (𝐻𝑚 and 
𝐹𝑚) infested by virus-free vectors are presented in the bee population 
and fluctuate with the season.

Case 3: the bee colony infested by infectious vectors only

In this case, we assume that the colony is only infested by infected 
vectors. Thus, we increase the level of 𝐻𝑖(0) to 10 and increase 𝛽2 to 
7.8 × 10−6. We obtain that the bees infected by infectious vectors (𝐻𝑖

and 𝐹𝑖) periodically reappear in the colony, as shown in Fig. 5.

Case 4: endemic periodic solutions

To obtain the full periodic solution where the populations fluctuate 
with the seasons, we increase the level of 𝐻𝑚(0) and 𝐻𝑖(0) to 10 and 
increase 𝛽2 to 6.56 × 10−6 with a slight decrease in the infestation rate 
from both 𝐻𝑚 and 𝐻𝑖. Fig. 6 shows the bee colony is infested by both 
virus-free and virus-carrying vectors and the disease is endemic in the 
whole bee population. Fig. 5 shows that the bee population is infested 
by virus-carrying mites only, while Fig. 6 shows that the bees are in-
fested by both virus-free and virus-carrying mites, and the disease is 
6

endemic in the bee population (hive and forager). The hive does not die 
out in Fig. 5, but it does not attain an endemic periodic solution. Fig. 6
illustrates the disease being controlled to the point that the hive does 
not die out but tends to an endemic periodic solution. There are only a 
small number of infected bees, but it is still sufficient for the disease to 
reemerge each year.

4.2. Scenario 2: continuous birth and transmission functions

In this scenario, we assume that the queen’s egg laying rate (�̃�(𝑡)) as 
well as the transmission rates (𝛽

𝐹𝐻
(𝑡), 𝛽

𝐻𝐹
(𝑡), 𝛽1(𝑡), 𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡), 𝛽4(𝑡), 𝛽5(

and 𝛽6(𝑡)) are periodic continuous functions.
Based on earlier works where trigonometric functions were ap-

plied for seasonal parameters (see e.g. [19, 30, 31]), these time-
dependent parameters take the form �̃�(𝑡) = 𝐸1 sin4

( 𝜋(𝑡−𝐸2)
365

)
, 𝛽

𝐹𝐻
(𝑡) =

𝛽
𝐹𝐻

sin20
( 𝜋(𝑡−𝑏)

365

)
, 𝛽

𝐻𝐹
(𝑡) = 𝛽

𝐻𝐹
sin20

( 𝜋(𝑡−𝑏)
365

)
and 𝛽𝑖(𝑡) = 𝛽𝑖 sin20

( 𝜋(𝑡−𝑏)
365

)
where 𝐸1, 𝐸2, 𝑏, 𝛽𝐹𝐻 , 𝛽𝐻𝐹

, 𝛽𝑖 ∈ ℝ+ for 𝑖 = 1, 2, … , 6. Here, 𝐸2 denotes the 
day of the year with the maximum egg-laying rate, 𝐸1 is the baseline 
egg-laying rate, 𝛽 , 𝛽 , 𝛽𝑖 are the baseline transmission rates, 𝑏 is the 
𝐹𝐻 𝐻𝐹
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Fig. 6. The model (1) solution with parameter values given in Table 2 except 𝛽2 = 6.56 × 10−6 and 𝛼 = 0.128.

Fig. 7. The curve of in (a) the queen’s egg laying rate �̃�(𝑡) = 𝐸1 sin
4( Π(𝑡−𝐸2)

365
) where 𝐸1 = 2000 and 𝐸2 = 320, and in (b) transmission rates, for example, 𝛽(𝑡) =

𝛽 sin20( Π(𝑡−𝑏)
365

) where 𝛽 = 10−6 and 𝑏 = 120.
Table 3. Seasonal averages of some of the parameters in model (1), derived 
from the data in [13, 16, 22, 24, 27, 28, 29] and used in scenario 2.

Parameters Spring Summer Fall Winter Reference
𝐾(𝑡) 8000 12000 8000 6000 [13, 16, 24]

𝛽𝑖, 𝑖 = 1,… ,6 10−6 10−6 10−6 10−6 estimated

𝛽
𝐹𝐻

= 𝛽
𝐻𝐹

10−6 10−6 10−6 10−6 estimated

𝜎2(𝑡) 1.5 1.5 1.5 1.5 [16, 24]

𝜎1(𝑡) 0.25 0.25 0.25 0 [22, 24]

𝑑𝑠(𝑡), 𝑑𝑚(𝑡), 𝑑𝑖(𝑡) 0 0 0 0.00649 [16, 27]

𝜇𝑠(𝑡), 𝜇𝑚(𝑡) 0.08511 0.08511 0.08511 0 [16, 28]

𝜇𝑖(𝑡) 0.16936 0.16936 0.16936 0 [16, 28, 29]

seasonality parameter, and 𝑡 is time measured in days. The seasonal 
values of the parameters used in this scenario are given in Table 3. The 
curves of the queen’s egg laying rate �̃�(𝑡) and the transmission rate 𝛽(𝑡)
that will be applied in this scenario are shown in Fig. 7.

In this scenario, we show also four different cases similar to Sec-
tion 4.1:

Case 1: disease-free case

Similarly, the bee populations fluctuate with the seasons when 
no infected bees are introduced, and the colony rapidly reaches an 
infestation-free periodic solution, as can be seen in Fig. 8.

Case 2: the bee colony infested by non-infectious vectors only

In this case, we assume that the colony is only infested by non-
infectious vectors and increase the level of 𝐻𝑚(0) to 10. Fig. 9 shows 
that the hive and forager bees (𝐻𝑚 and 𝐹𝑚) are introduced in the bee 
population and fluctuate with the season.

Case 3: the bee colony infested by infectious vectors only

Here, we assume that the colony is only infested by infected vectors. 
Hence, we increase the level of 𝐻𝑖(0) to 10 and increase 𝛽2 and 𝛽6 to 
4.1 × 10−5. The infected by infectious vectors (𝐻𝑖 and 𝐹𝑖) are presented 
in the colony, as shown in Fig. 10.
7

Case 4: endemic periodic solutions

To show the endemic periodic solution, we increase the level of 
𝐻𝑚(0) and 𝐻𝑖(0) to 10, and rise 𝛽2 to 6.09 × 10−5 and 𝛽4 to 5.23 × 10−5. 
Fig. 11 shows the bee colony is periodically reappearance and the dis-
ease is endemic in the bee populations.

Remark. Seasonal average and annual average values for the piecewise 
constant functions and the trigonometric functions applied in scenario 
1 and scenario 2 are calculated and compared in Table 4. The seasonal 
average observed in the parameter �̃�(𝑡) (the queen’s egg laying rate) by 
interpolating the piecewise constant seasonal averages and the trigono-
metric functions are shown in Fig. 12. The seasonal average for �̃�(𝑡) by 
using the trigonometric functions is higher than the seasonal average of 
the piecewise constant function for all seasons, while the seasonal av-
erage for 𝛽(𝑡) (the transmission rate) using the trigonometric functions 
is smaller than the seasonal average of the piecewise constant function 
for all seasons as shown in Fig. 12. The annual average for �̃�(𝑡) by us-
ing the trigonometric functions is higher than the annual average from 
the piecewise constant function, while the annual average for 𝛽(𝑡) using 
the trigonometric functions is smaller than the annual average from the 
piecewise constant function as given in Table 4.

5. Colony failure

The colony fails if, after a given number of years, depending on 
initial conditions and parameters, the colony is not strong enough to 
recoup at the end of the winter season and goes extinct owing to win-
tering losses, i.e. 𝐻𝑠(𝑡) + 𝐹𝑠(𝑡) +𝐻𝑚(𝑡) + 𝐹𝑚(𝑡) +𝐻𝑖(𝑡) + 𝐹𝑖(𝑡) → 0. In this 
section, we show numerical simulation to study what kind of parame-
ter changes might lead to the colony failure. We study the impact of the 
transmission of the disease between individuals by contact, for example, 
increasing the transmission rates between hive bees and hive-forager 
bees. We assume the base case as the disease free periodic solution is 
eventually obtained and 𝐻𝑚(𝑡) + 𝐹𝑚(𝑡) +𝐻𝑖(𝑡) + 𝐹𝑖(𝑡) → 0. Moreover, we 
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Fig. 8. The model (1) solution with parameter values given in Table 3 and 𝛼 = 0.07.

Fig. 9. The model (1) solution with parameter values given in Table 3 except 𝛽1 = 5 × 10−5 , 𝛼 = 0.13, and 𝛽4 = 5 × 10−5 .

Fig. 10. The model (1) solution with parameter values given in Table 3 except 𝛽2 = 4.1 × 10−5 , 𝛼 = 0.075, and 𝛽6 = 4.1 × 10−5 .

Fig. 11. The model (1) solution with parameter values given in Table 3 except 𝛽2 = 6.09 × 10−5 , 𝛽4 = 5.23 × 10−5 , and 𝛼 = 0.134.
8
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Table 4. Comparison of the average values of the parameters computed in Scenario 1 and Scenario 2 and 
shown in Fig. 12.

Parameter Function Spring Summer Fall Winter Annual 
average

�̃�(𝑡) Piecewise 500 1500 500 0 625

Trigonometric 581.19 1809.38 600.56 8.85 750

𝛽(𝑡) Piecewise 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6

Trigonometric 4.38 × 10−9 5.54 × 10−14 9.16 × 10−8 6.08 × 10−7 1.76 × 10−7
Fig. 12. The curve of in (a) the queen’s egg laying rate �̃�(𝑡) used in scenario 1 
and scenario 2.

assume that emergence is proportional to the population size of worker 
bees at low bee populations and considering the emergence rate’s sig-
moidal form had simple Holling type 2 saturation.

We first examine both scenarios by increasing the direct transmis-
sion from infected hive bees to healthy hive bees. By increasing the 
value of 𝛽2(𝑡) in scenario 1 to 3.5 × 10−5, we observe that after two 
years the number of bees decreased but still not extinct, as shown in 
Fig. 13(b). For 𝛽2(𝑡) = 5 × 10−5 the number of bee populations tend to 
zero and goes extinct after three years, see Fig. 13(c). Using the same 
parameters and values in scenario 2 with similar changes in the value 
of 𝛽2, as given in Fig. 14, we obtained the extinction of the bee pop-
ulation after four years and the colony fails if 𝛽2 = 8.24 × 10−4. Fig. 13
and Fig. 14 show that increasing the transmission rate from infected 
hive bees to healthy hive bees due to direct contact between individu-
als might lead to the colony failure after three or four years.

To investigate the effect of the disease transmission between hive 
and forger bees on colony strength, we repeat the simulation for se-
lected values of transmission rate from hive to forager bees (𝛽

𝐻𝐹
(𝑡)) and 

transmission rate from forager to hive bees (𝛽
𝐹𝐻

(𝑡)), the rest of param-
eters values the same as used in the base case for both scenarios (see 
Table 2 and Table 3). For 𝛽

𝐻𝐹
(𝑡) = 9 × 10−5 the total number of the bee 

population decreased to 3 × 104 after two years. As 𝛽
𝐻𝐹

(𝑡) increases fur-
ther, e.g. at 𝛽

𝐻𝐹
(𝑡) = 1.68 × 10−4, the colony fails after three years that is 

shown in Fig. 15. For selected values of 𝛽
𝐻𝐹

we plot in Fig. 16 the to-
tal bee population, we observed that the colony losses it’s strength and 
fails at 𝛽

𝐻𝐹
= 0.012 after three years. Fig. 15 and Fig. 16 indicate that 

if the disease is endemic in the hive due to a significant number of dis-
eased hive bees, who subsequently spread the disease to forager bees, 
the colony will collapse after three years in both cases.

Varroa mites can jump from flowers to foraging honey bees, infect-
ing them outside the hive [9]. As a result, if a high number of infected 
foraging bees return to the hive, the population of infected hive bees 
will grow. Similarly, we run the simulation again with different values 
of 𝛽

𝐹𝐻
(𝑡) to assess the effect of disease transmission rate from forager 

to hive bees. For chosen 𝛽
𝐹𝐻

(𝑡) = 1.44 × 10−4 the colony fails as shown 
in Fig. 17(c), while in Fig. 18(c) the colony fails at 𝛽

𝐹𝐻
(𝑡) = 0.05. The 

colony fails after two to three years, as can be seen in Fig. 17 and 
Fig. 18, due to a large number of infected foraging bees returning to 
the hive and/or forager losses.

As can be seen in Figs. 13–18, increasing one of the transmission 
rates (𝛽2(𝑡), 𝛽𝐻𝐹

(𝑡), 𝛽
𝐹𝐻

(𝑡)) up to a certain level causes the colony to lose 
strength and become too weak to rebound at the end of the winter, 
potentially leading to colony failure after two to five years.
9

Fig. 13. The curve of the total bee population size when 𝛽2(𝑡) = 5 × 10−6 , 𝛽2(𝑡) =
3.5 × 10−5 and 𝛽2(𝑡) = 5 × 10−5 with parameter values given in Table 2.

Fig. 14. The curve of the total bee population size when 𝛽2 = 10−6 , 𝛽2 = 7.2 ×10−4
and 𝛽2 = 8.24 × 10−4 with parameter values given in Table 3.

6. Discussion

Honeybees serve a significant role in the production of many agri-
cultural products and in the preservation of plant variety in undisturbed 
ecosystems. For more than a decade, honeybee colonies have seen a sig-
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Fig. 15. The curve of the total bee population size when 𝛽
𝐻𝐹

(𝑡) = 5 ×10−6 , 𝛽
𝐻𝐹

(𝑡) =
9 × 10−5 and 𝛽

𝐻𝐹
(𝑡) = 1.68 × 10−4 with parameter values given in Table 2.

Fig. 16. The curve of the total bee population size when 𝛽
𝐻𝐹

= 10−6 , 𝛽
𝐻𝐹

= 0.0093
and 𝛽

𝐻𝐹
= 0.012 with parameter values given in Table 3.

nificant decline in bee populations. This collapse may not have a single 
cause, rather there are a variety of factors at work [32, 33]. Colony 
failure has been strongly linked to the presence of Varroa mites [14, 
34]. In this article, we developed a novel non-autonomous mathemati-
cal model to investigate the spread of Varroa mites and the viruses they 
carry in a honeybee colony. The main novelty of the model is that it 
describes the parallel spread of the virus and that of the mites carrying 
them and transmitting them to honeybees by introducing compartments 
for honeybees infested by virus-free and virus-carrying mites. Seasonal-
ity is also integrated into our model because the temporal dynamics of 
honeybee colonies are affected by seasonality (temperature, photope-
riod, etc.). This model extends our recent mathematical model [20] of 
10
Fig. 17. The curve of the total bee population size when 𝛽
𝐹𝐻

(𝑡) = 5 ×10−6 , 𝛽
𝐹𝐻

(𝑡) =
9 × 10−5 and 𝛽

𝐹𝐻
(𝑡) = 1.44 × 10−4 with parameter values given in Table 2.

Fig. 18. The curve of the total bee population size when 𝛽
𝐹𝐻

= 10−6 , 𝛽
𝐹𝐻

=
0.00354 and 𝛽

𝐹𝐻
= 0.05 with parameter values given in Table 3.

the disease by including infected forager bees, and model parameters 
are simulated as time-periodic functions as well.

We initially investigated the autonomous case without seasonality 
and demonstrated the existence and stability of the equilibria. Since the 
disease, its viability, and its level of infection undergo a drastic change 
throughout the year, we consider a non-autonomous system where coef-
ficients are assumed to be periodic. The resulting model is algebraically 
rather complex, hence, there is no possibility to perform rigorous math-
ematical analysis via Floquet theory and further usual tools from the 
theory of ordinary differential equations. For this reason, the dynam-
ical behaviour of the model is investigated numerically in computer 
simulations.
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Besides piecewise constant parameters, often used to describe the ef-
fect of seasonal variation of the parameters in the spread of mites and 
the viruses they carry [12, 13, 15, 16, 17, 23, 24], we also used periodic 
functions. This way, two simulation scenarios are presented to investi-
gate the main dynamics of the bee colony and to show how seasonality 
affects the spread of Varroa mites. Four different possibilities are pro-
vided to the reader in both scenarios. In each scenario, the base case 
with no disease in the system is shown, see Fig. 3 and Fig. 8. Moreover, 
the system converges to the disease-free periodic solution. In the last 
three cases, we investigated the impact of Varroa mites on bee popu-
lations in which virus-free vectors, virus-carrying vectors, or both have 
infested the bee population, see Figs. 4–6 and Figs. 9–11. The system 
converges to the endemic periodic solution only in one case as shown 
in Figs. 6 and 11.

Depending on initial conditions and parameters, the colony fails if 
it is too feeble to rebound at the end of winter and goes extinct after a 
certain number of years, which concurs with the findings in [22, 24, 26, 
35]. We performed numerical simulation to demonstrate what kinds of 
parameter modifications could result in colony failure. Our results from 
both scenarios indicate that if the transmission rate from hive bees in-
fested by virus-carrying vectors to healthy hive bees reaches a specific 
threshold, the colony will collapse within three to four years. The in-
terplay between hive and forager bees has also contributed to colony 
collapse. Furthermore, if one of the transmission rates from hive to for-
ager bees or forager to hive bees exceeds a certain level, the colony loses 
strength and collapses within two to three years. Mite control is critical 
for the colony’s survival. As a result, our recommendation to beekeep-
ers is to lower transmission rates while also increasing disinfestation 
rates, both of which have a substantial impact. To control these mites, a 
variety of treatments are now being used, which may be classified into 
chemical and mechanical controls [36, 37, 38].

Comparing the results of the two simulation scenarios, one may find 
that depending on the parameters, the risk of colony collapse is might be 
shown smaller when using piecewise constant functions (see Fig. 13(c)), 
and might be shown smaller when using periodic functions 17(c). At 
the same time, it is important to note that without a secure knowledge 
on the exact shape of the functions describing the time-dependent pa-
rameters, it is a very difficult question to judge which functions reflect 
reality the most. However, we may conclude that the choice of non-
autonomous parameters affects the time to colony failure predicted by 
the model.

Our model has several possibilities for further development. We ex-
tended the model to account for increased forager losses by including 
the effects of foragers being exposed to pesticides while foraging on 
crops treated with such chemicals. This offers us a better understand-
ing of how these effects interact to affect a colony’s survival. A further 
possibility is to study how Varroa mite infection affects food storage 
dynamics and how that affects colony survival as well as yearly honey 
supply.
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