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Preface

This conference is the 12th in a series. The organizers aimed to bring together PhD students
working on any eld of computer science and its applications to help them publishing one of
their rst papers, and provide an opportunity to hold a scientic talk. As far as we know, this
is one of the few such conferences. The aims of the scientic meeting were determined on the
council meeting of the Hungarian PhD Schools in Informatics: it should

• provide a forum for PhD students in computer science to discuss their ideas and research
results;

• give a possibility to have constructive criticism before they present the results at professional
conferences;

• promote the publication of their results in the form of fully refereed journal articles; and
nally,

• promote hopefully fruitful research collaboration among the participants.

The papers emerging from the presented talks will be invited to be considered for full paper
publication the Acta Cybernetica journal.

This year, due to the unfortunate international situation caused by the COVID-19 pandemic,
the organizers had no option but to adapt, so they decided to convert the conference completely
into a web-based event. Nevertheless, they still hope that the conference will be a valuable
contribution to the research of the participants, who can perform virtual interactions to get
feedback on their research progress.

Szeged, June 2020

Attila Kertész
Balázs Bánhelyi
Tamás Gergely

Judit Jász
Zoltán Kincses
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Task allocation possibilities in simulated Fog environments

András Márkus

Abstract: Nowadays billions of smart devices utilise the network and storage capacity of
complex systems. These devices having various sensors are usually managed in Internet of
Things systems, which are often supported by Fog Computing or Cloud Computing services.
Within the Fog paradigm, nodes are installed close to the users (i.e their devices) to achieve
faster and more reliable communications and sensor data management than former cloud
solutions. In this paper, we present an extension of a simulation tool called DISSECT-CF-Fog,
which provides a more detailed fog model by enhanced location awareness andmulti-layer fog
node management. We also exemplify the utilisation of these fog properties by developing and
validating different task allocation strategies in simulated IoT-Fog-Cloud environments. We
also show an evaluation of a scenario comparing four different approaches for task allocation
in these systems.

Keywords: Fog Computing, Internet of Things, Simulation, Task allocation

Introduction

According to the paradigm of the Internet of Things (IoT), sensors, actuators and smart
devices are connected through the Internet. Based on [1], the number of smart devices will
overstep 75 billions all over the world by 2025. IoT is often encoupled with Cloud Computing,
because the huge amount of sensed data require storing and processing for further analysis
with cloud resources. In the past years a new paradigm called Fog Computing appeared
(grown out of Cloud Computing), where the generated sensor data are stored and processed
on so-called fog nodes, which are located geographically closer to the end users for minimising
latency and ensuring privacy of the data [2]. These fog nodes usually have less computing
power and limited functionality as well (due to their constrained nature). Different type of
applications, such as real time or forecasting systems, can utilise fog architectures, which typi-
cally havemore layers of fog or cloud nodes with different resource constraints and characteris-
tics. These nodes can process bag of task applications composed of the generated data of
sensors, hence one of the open issues of Fog Computing is how the operating costs and the
node response times can be minimised by an appropriate allocation of the tasks.

The investigation of real-world fog systems and topologies are rarely feasible, thus different
simulation environments are utilised by the researchers for such purposes. In this paper we
chose the DISSECT-CF-Fog simulator1 to be extended with a more realistic fog model, and for
further analysing task allocation possibilities. The rest of this paper we give a brief introduction
to related works in Section , in Section we present our simulator extension, the proposed
strategies and their evaluation. Finally, Section concludes our work.

Related work

The literature of Fog, Cloud and IoT systems contains numerous articles with diverse ap-
proaches aiming at task and virtual machine (VM) placement for IoT applications. Mann et
al. [3] compared seven different VM placement algorithms for clouds. They executed their
experiments in the well-known CloudSim simulator, relying on cloud properties such as CPU
speed, resource capacity, utilisation ratio and energy consumption of the available nodes.

1The DISSECT-CF-Fog simulator is available at: https://github.com/andrasmarkus/dissect-cf/
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Vasconcelos et al. [4] presented a different approach, where the Fog topology is modelled
as a weighted graph, and they considered resource cost, bandwidth, and latency of the smart
devices. Resource availability and the topology of the network are also considered during their
validations performed in the Cooja simulator.

Xia et al. [5] proposed four heuristics for application placement in SimGrid with the follow-
ing parameters: required CPU, RAM, bandwidth, and latency of the fog nodes. Three allocation
policies were presented by Bittencourt et al. [6], which were evaluated in the one of the most
commonly used Fog simulators called iFogSim. The proposed strategies took into account
CPU capacity, the arrival time and the delay-priority of the tasks. Skarlat et al. [7] presented a
framework, where fog nodes are utilised when possible. Their optimisation solution considers
the resource capacity of fog nodes, the resource demand of a service, the link delay between
nodes, and different properties of the application (e.g. deployment and response time).

Based on these works we can state that the evaluation of task scheduling algorithms have
been performed in different simulation environments, and most approaches consider almost
the same characteristics of the Fog and IoT systems. Beside the former commonly used cloud
properties, location and mobility-related properties are used in fogs, but more heterogeneous
and multi-layered Fog-Cloud systems are rarely analysed.

Device layer

Fog layer II.

Cloud layer

Fog layer I.

Frankfurt

Athen

Brussel

Budapest

Kiev

London Paris

Amsterdam

Vienna Prague

Bratislava

Moscow Vilnius

Warsaw

Stockholm

Figure 1: The considered Fog topology in the evaluation

The proposed simulator extension and its evaluation

An algorithm for the allocation of a task of an IoT application in our proposed model can
consider the energy consumption of the execution environment (i.e. fog or cloud node), the
load of the network used for communication and data transfers, and the transfer, storage and
execution costs. When a selected fog node is overloaded, the execution of the appropriate task
will be delayed, which has a negative effect on themakespan of it application. To overcome this
problem, we also introduce the possibility of multi-layer fog node management by enabling
task ofoading from (possibly overloaded) nodes to others. A typical fog topology can contain
numerous nodes, some of them are grouped as a Fog cluster, which restricts the access and
visibility of other nodes. These nodes can be ordered into layers, where higher level fog layers
usually contain stronger physical resources. We implemented this envisioned model in the
DISSECT-CF-Fog simulator. We developed a solution that is able to handle fog properties
dynamically, hence performing task allocation and reallocation during the experiments. In this
way, different approaches can be created and implemented by extending the new, Application-
Strategy abstract class.
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We dened four strategies to validate the usability of our proposal. The Random strategy is
the default, which always chooses one from the connected nodes randomly. The Pushing Up
strategy always chooses the parent node (i.e. a node from a higher layer), if available. The
disadvantage of these strategies is the disability to consider increased network trafc and costs
of the operation. The third strategy called Holding Down considers data protection, because
the application keeps the data as close to the end-user as possible. In this way the network
trafc is minimal, but the execution time of the application can increase dramatically (due to
the overload of the lowest layer). Finally, the Load Balancing strategy ranks the parent nodes (if
available) and all neighbour nodes (from its own cluster) by network latency and the ratio of
the available CPU capacity and the total CPU capacity. The algorithm picks the node with the
highest rank (i.e. closest and least loaded).

We evaluated these proposed strategies in a European-wide weather forecasting scenario
with a fog topology having 10000 weather stations. Each station is equipped with ve sensors
(e.g. measuring weather conditions (e.g. temperature, humidity) with 50 bytes of sensor
data). The time interval between two measurements was set to one minute, and the whole
simulation period took one day. The topology contains two Fog layers with 14 different Fog
nodes organised into clusters, and one cloud layer having a single cloud node. Each node has at
lest 40 CPU cores and 44 GB RAMs, and they are mapped to different cities, with exact latency
values dened between them using WonderNetwork2. The dened topology can be seen in
Figure 1, which also depicts the Fog clusters and layers with different colour. The arrows
represent routes responsible for communication between the layers, while the (undirected)
edges are for the message exchanges inside a cluster. The network capability of the smart
devices (or stations) are modelled with a 4G network with an average 50 ms of latency. The fog
nodes are modelled with real VM specications according to the AmazonWeb Services (AWS):
the lowest Fog layer has VMs with 2 CPU cores, 4 GB RAMs and 0.051$ hourly price, the top
fog layer has VMs with 4 CPU cores, 8 GB RAMs and 0.101$ hourly price, nally the cloud
layer has VMs with 8 CPU cores, 12 GB RAMs and 0.204$ hourly price. Each VM can process
only one task (represented by 250 Kilobytes of data) at the same time.

Table 1: Evaluation results of the proposed strategies

Strategies Random Pushing Up Holding Down Load Balancing
Num. of VM 78 73 60 78

Network utilisation (sec.) 54 40 0 43
Data transferred (MB) 1076 279 0 346

Timeout (min.) 42.04 4.88 175.16 4.66
Fog Layer I. cost ($) 66.41 66.40 72.05 66.40
Fog Layer II. cost ($) 21.71 22.02 0 22.01

Cloud cost ($) 13.10 0.74 0 0.81
Sum. of cost ($) 101.22 89.16 72.05 89.22

Table 1 summarises the average results after executing the scenario with all strategies ve
times. For the comparison of the strategies, we measured how many VMs were required for
processing the tasks (and their data) during the operating hours. The Network utilisation
metric reects the network load, and it represents the time taken to transfer the sensor data
from the source to the actual processing node, while the Data transferred metric represents its
size. The Timeout value means the time taken to nish data processing after the last sensor

2WonderNetwork website is available at: https://wondernetwork.com/pings. Accessed in January, 2020.
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measurement was performed. According to the used AWS pricing models, we could calculate
the exact costs of the usage of the resources, separating each layer.

Concerning the results, the Random strategy occasionally used the network unnecessarily
(1074 MB for 54 seconds), and the task were often moved to the cloud layer resulting in the
highest cost (101.22 $). TheHolding Down strategy used the least VMs (60), however its timeout
value extremely increased (175.16 minutes), pointing out the need of the upper layers. Never-
theless, it is obviously the cheapest solution with 72.05 $. The Pushing Up approach secured
us average cost, but its timeout is the best so far. Finally, the Load Balancing algorithm showed
slightly better task allocation for almost the same price, with the timeout value of 4.66 minutes.

Conclusion

In this paper we presented a simulation solution for investigating task allocation problems
in Fog environments. We developed an extension to DISSECT-CF-Fog with a revised fog
model, and proposed four strategies to exemplify its utilisation. We also compared the perfor-
mance of these strategies. In our future work we plan to extend our strategies with more
sophisticated methods, and perform evaluations of larger-scale IoT systems.
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