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Abstract
We introduce a bi-Hamiltonian hierarchy on the cotangent bundle of the real
Lie group GL(n,C), and study its Poisson reduction with respect to the action
of the product group U(n) × U(n) arising from left- and right-multiplications.
One of the pertinent Poisson structures is the canonical one, while the other is
suitably transferred from the real Heisenberg double of GL(n,C). When tak-
ing the quotient of T∗GL(n,C) we focus on the dense open subset of GL(n,C)
whose elements have pairwise distinct singular values. We develop a conve-
nient description of the Poisson algebras of the U(n) × U(n) invariant functions,
and show that one of the Hamiltonians of the reduced bi-Hamiltonian hierarchy
yields a hyperbolic Sutherland model coupled to two u(n)∗-valued spins. Thus
we obtain a new bi-Hamiltonian interpretation of this model, which represents
a special case of Sutherland models coupled to two spins obtained earlier from
reductions of cotangent bundles of reductive Lie groups equipped with their
canonical Poisson structure. Upon setting one of the spins to zero, we recover
the bi-Hamiltonian structure of the standard hyperbolic spin Sutherland model
that was derived recently by a different method.
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1. Introduction and background

The investigation of integrable many-body models of Calogero–Moser–Sutherland type has
been initiated half a century ago [7, 38, 52], and by now an extensive body of knowledge has
been amassed about such systems and their manifold applications in mathematics and physics
[3, 11, 12, 47]. Remarkably, we are still witnessing intense research in this area, regarding
especially the ‘relativistic’ deformations [48] of the originally studied particle systems and
their spin extensions [17, 26, 30, 34]. Recent enquiries on these models are concerned, for
example, with their derivation by Hamiltonian reduction [4, 9, 14], relations to moduli spaces
of flat connections [2], harmonic analysis and special functions [10, 31, 46], pole dynamics in
the matrix KP hierarchy [43] and quiver varieties [8, 13].

Interestingly, several classical integrable systems admit a bi-Hamiltonian structure, which
means that the evolution equation can be encoded by two different Hamiltonians and corre-
sponding Poisson brackets that are compatible in the sense that their linear combinations also
satisfy the Jacobi identity. This can often be used to generate a family of commuting Hamilto-
nians through recursion. The first example of a bi-Hamiltonian structure was found by Magri
[35] for the KdV equation. Since then the bi-Hamiltonian approach has become one of the
central tools in the study of soliton equations [6, 36]. The bi-Hamiltonian structures of Toda
lattices also received considerable attention [51], but (except for the simplest rational model
[1, 5, 15, 36]) the construction of bi-Hamiltonian structures for Calogero–Moser–Sutherland
type models has been left largely unexplored in the literature. The aim of our current research
is to take some steps towards filling this gap.

The present report is a continuation of our series of papers [18–20] devoted to the study
of bi-Hamiltonian aspects of spin Sutherland models. The papers [18, 19] dealt with bi-
Hamiltonian structures of the hyperbolic and trigonometric real spin Sutherland models, and
then in [20] we investigated the corresponding complex holomorphic system. Here, we con-
struct a bi-Hamiltonian structure for a more general real Sutherland type model that involves
two spin variables belonging to the dual u(n)∗ of the Lie algebra of the unitary group U(n). The
bi-Hamiltonian structure of the hyperbolic spin Sutherland model will be recovered by setting
one of the spins to zero. The model of our interest is a special case of models investigated pre-
viously in [16, 24, 29, 45], but in those papers bi-Hamiltonian structures were not addressed,
while this is the issue that concerns us here.

Our work fits into the Hamiltonian reduction approach to integrable many-body models.
We now overview the chain of developments that motivated us and sketch the content of the
present report. The first step was taken by Olshanetsky and Perelomov [41] who derived the
hyperbolic Sutherland model with Hamiltonian,

HSuth =
1
2

n∑
i=1

p2
i +

∑
1�i< j�n

κ2

sinh2(qi − q j)
, κ ∈ R

∗, (1.1)

by reduction of geodesic motion on the Riemannian symmetric space of positive matrices.
One may view the symmetric space in question as the coset space G/U(n) for G := GL(n,C)
regarded as a real Lie group. The pioneering work [41] focused on solving the equations of
motion defined by the Hamiltonian (1.1) via projection of suitably constrained geodesics on
G/U(n). It is fruitful to interpret this as Hamiltonian reduction of the phase space T∗G as
follows [21]. There is a natural action of the group U(n) × U(n) on T∗G (see equations (3.1)
and (3.2) below), which is generated by a moment map

(ΦL,ΦR) : T∗ G → u(n)∗ ⊕ u(n)∗. (1.2)
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The Sutherland model lives on the reduced phase space

Φ−1
L (0) ∩Φ−1

R (OKKS)/(U(n) × U(n)), (1.3)

where OKKS (named after [28]) is a coadjoint orbit of U(n) of dimension 2(n − 1) (that is, the
smallest non-trivial coadjoint orbit). One can also perform the reduction in two consecutive
steps, descending first to Φ−1

L (0)/U(n), which is nothing but the cotangent bundle of the sym-
metric space. In this construction it is useful to trivialize T∗G, say by right translations, and
also identify G := gl(n,C) with its own dual space by means of the pairing given by the real
part of the trace form, see (2.1). Thus T∗G gets identified with the manifold

M := {(g, J)|g ∈ G, J ∈ G}, (1.4)

and HSuth (1.1) arises from the unreduced Hamiltonian

H(g, J) =
1
2
〈J, J〉. (1.5)

Of course, the role of the two U(n) factors can be exchanged in (1.3).
A generalization [23] of the construction just outlined is to consider the reduction to

Φ−1
L (0)/(U(n) × U(n)). (1.6)

After restriction to a dense open subset, this gives rise to the spin Sutherland model with
Hamiltonian

Hspin−1 =
1
2

n∑
i=1

p2
i +

∑
1�i< j�n

|ξi j|2
sinh2(qi − q j)

, (1.7)

where the ‘spin variable’ ξ ∈ u(n)∗ 	 u(n) has zero diagonal part. The spin ξ can be restricted
to a coadjoint orbit by imposing a corresponding constraint on ΦR, as was done in [23], but
this will not be advantageous for our present purpose.

The most general reduction of M based on the group U(n) × U(n) consists in descending
to the quotient

M/(U(n) × U(n)), (1.8)

which is naturally a Poisson space. Taking the quotient of a Poisson manifold by a group action,
having the key property that the Poisson bracket closes on the invariant functions, is usually
called Poisson reduction. The smooth functions on the quotient stem from the smooth invariant
functions upstairs. In the paper [24] the closely related method of symplectic reduction was
applied, which means that we considered

Φ−1
L (OL) × Φ−1

R (OR)/(U(n) × U(n)) (1.9)

with two arbitrary coadjoint orbits of U(n). By general principles [42], these quotients represent
Poisson subspaces of the (singular) Poisson space (1.8). They are stable under the projections
of the Hamiltonian flows of all the U(n) × U(n) invariant functions.

The fact that the quotient space (1.8) is not a smooth manifold does not cause any serious
difficulty. Still, it is convenient to focus on the dense open subsetMreg ⊂ M, where the singular
value decomposition of g ∈ G has the form
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g = AeqB−1 with q = diag(q1, q2, . . . , qn), qi ∈ R, q1 > q2 > . . . > qn,

(1.10)

and A, B ∈ U(n). Note that q is uniquely determined by g, but A and B are unique only up to
the transformations

(A, B) �→ (Aτ , Bτ ), ∀ τ ∈ T
n, (1.11)

with Tn < U(n) denoting the diagonal subgroup. Introduce the space

M
reg
0 := {(eq,J )}, (1.12)

where q is restricted as in (1.10) and J ∈ G. Then consider the mapping

(g, J) �→ (eq,J ) with J := A−1 JA (1.13)

fromMreg ontoMreg
0 . This induces a bijective mapping of the dense subsetMreg/(U(n) × U(n))

of the quotient (1.8) onto M
reg
0 /Tn. The quotient by Tn expresses that J matters up to the

gauge transformationsJ �→ τJ τ−1, as inherited from (1.11). According to earlier results (see
equation (2.25) in [24], and see also [29, 45]), one can parameterize the matrix J in terms of
two u(n)∗-valued spin variables ξl and ξr as follows:

Ji j = piδi j − (1 − δi j)
(
coth(qi − q j)ξl

i j + ξr
i j/ sinh(qi − q j)

)
− ξl

i j. (1.14)

The spin variables Poisson commute with the canonical pairs qi, pi. We may decompose any
n × n complex matrix X into anti-Hermitian part X+ and Hermitian part X−, and then we have
ξl = −J+ and ξr = (e−qJ eq)+. The two spins are coupled by the constraint that the diago-
nal part of (ξl + ξr) vanishes, and the Tn gauge transformations act on them by simultaneous
conjugations. The reduction of the Hamiltonian (1.5) takes the form

Hspin−2 =
1
2

n∑
i=1

(p2
i − |ξl

ii|2) +
∑

1�i< j�n

( |ξl
i j|2 + |ξr

i j|2 − 2R(ξr
i jξ

l
ji)

sinh2(qi − q j)
+

R(ξr
i jξ

l
ji)

sinh2((qi − q j)/2)

)
.

(1.15)

Upon setting ξl = 0, J simplifies to the Hermitian Lax matrix of the spin Sutherland model
and Hspin−2 turns into the spin Sutherland Hamiltonian (1.7).

The essential new contribution of the present paper is this. We first exhibit an interesting
bi-Hamiltonian structure on the cotangent bundle T∗G. This consists of a quadratic Poisson
bracket (in terms of natural coordinate functions) and the canonical one. The quadratic Poisson
bracket comes from the theory of Poisson–Lie groups [49], and its suitable Lie derivative is the
canonical Poisson bracket. The Hamiltonians given by the real and imaginary parts of tr(Jk),
for k ∈ N, generate a hierarchy of bi-Hamiltonian evolution equations on M. The Poisson
reduction with respect to U(n) × U(n) gives rise to a bi-Hamiltonian structure on the quotient
space (1.8), which we will realize in the form of compatible Poisson brackets on the space
of Tn invariant functions C∞(Mreg

0 )T
n
. These functions represent the ring of smooth functions

on the regular part of the quotient (1.8). In practice, this means that we present the reduced
Poisson brackets in terms of Tn invariant functions of the pair (q,J ). By constraining the anti-
Hermitian part of J to zero, we reach a joint Poisson subspace of the compatible Poisson
brackets, and on this subspace we recover the bi-Hamiltonian structure of the spin Sutherland
model (1.7) that was derived originally by a rather ad hoc method [18]. In the general case,
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we shall explain that in terms of the variables (q, p, ξl, ξr) the first reduced Poisson structure
takes the form that underlies the interpretation of the Hamiltonian (1.15) as a Sutherland model
coupled to two spins.

The article is organized as follows. In section 2, we describe the compatible Poisson brackets
and a family of bi-Hamiltonian evolution equations on M. In section 3, we develop the reduc-
tion of these structures. Section 4 is devoted to the spin Sutherland interpretation of the reduced
system. Our conclusions are given in section 5. There are also three appendices. Appendix A
provides an explanation of the origin of the second Poisson bracket onM, appendix B expounds
some technical details, and appendix C contains the proof of the key property of the change of
variables behind the spin Sutherland interpretation.

Finally, let us state explicitly what we consider as our new results and specify their location
in the text. First, we think that the unreduced bi-Hamiltonian hierarchy that we present in
section 2 has not been described before. We studied the analogous holomorphic system in [20].
Our principal results are contained in section 3: theorems 3.4 and 3.5 give the reduced Poisson
brackets in terms of Tn invariant functions on M

reg
0 , propositions 3.6 and 3.8 characterize the

reduced bi-Hamiltonian hierarchy of evolution equations. In the general case, the interpretation
as a spin Sutherland model with two spins is explained by lemma 4.6 and proposition 4.7, which
were motivated by previous results [24]. Theorem 4.3 represents an important new result, since
it clarifies the origin of the bi-Hamiltonian structure of the hyperbolic spin Sutherland model
having the ‘main Hamiltonian’ (1.7).

Remark 1.1. To be more precise about the related literature [16, 24, 29, 45], we note that [16,
45] considered generalized spin Sutherland models on symplectic leaves of quotient spaces
of the form K1\T∗G/K2, where K1 and K2 are the fixed point subgroups of two involutions
of a semisimple or reductive Lie group G, while in [24, 29] K1 = K2 was taken to be the
maximal compact subgroup. Our construction of the bi-Hamiltonian master system on T∗G is
specific to G = GL(n,C), since it uses that GL(n,C) is an open subset of its Lie algebra, which
contains the unit matrix. One may also apply a similar construction to GL(n,R), but no other
generalizations are apparent to us.

2. Master system on the cotangent bundle of GL(n,C)

We first fix some notations. Let us consider G :=GL(n,C), regarded as a real Lie group, and
endow its Lie algebra G := gl(n,C) with the trace form

〈X, Y〉 :=Rtr (XY), ∀ X, Y ∈ G. (2.1)

Any X ∈ G admits the unique decomposition

X = X> + X0 + X< (2.2)

into strictly upper triangular part X>, diagonal part X0, and strictly lower triangular part X<.
Correspondingly, one obtains the vector space direct sum

G = G> + G0 + G<. (2.3)

This decomposition gives rise to the standard solution of the modified classical Yang–Baxter
equation on G, r ∈ End(G). Specifically, we define

r(X) :=
1
2

(X> − X<), ∀ X ∈ G, (2.4)
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and also introduce

r± := r ± 1
2

id, (2.5)

where id(X) :=X. Note that

〈r(X), Y〉 = −〈X, r(Y)〉, ∀ X, Y ∈ G. (2.6)

Let G+ denote the subalgebra of anti-Hermitian matrices and G− the subspace of Hermitian
matrices,

G+ := u(n) = {X ∈ G|X∗ = −X}, G− := iu(n). (2.7)

They yield another direct sum decomposition

G = G+ + G−, (2.8)

where the two subspaces are orthogonal to each other with respect to the bilinear form (2.1).
Thus we may decompose any X ∈ G as X = X+ + X− with X± ∈ G±. We shall use that

[G+,G+] ⊂ G+, [G−,G−] ⊂ G+, [G+,G−] ⊂ G−, (2.9)

and, in consequence of (2.4),

r(G+) ⊂ G− and r(G−) ⊂ G+. (2.10)

Our immediate aim is to present two Poisson structures on the smooth, real manifold

M :=G × G = {(g, J)|g ∈ G, J ∈ G}. (2.11)

We viewM as a model of the cotangent bundle of T∗G. Here, the cotangent bundle is trivialized
by means of right translations, and G∗ is identified with G using the trace form.

For any F ∈ C∞(M,R), introduce the G-valued derivatives ∇1F, ∇′
1F and d2F by the

defining relations

〈∇1F(g, J), X〉 = d
dt

∣∣∣∣
t=0

F(etX g, J), 〈∇′
1F(g, J), X〉 = d

dt

∣∣∣∣
t=0

F(getX, J),

(2.12)

and

〈d2F(g, J), X〉 = d
dt

∣∣∣∣
t=0

F(g, J + tX), (2.13)

where t is a real parameter and X ∈ G is arbitrary. In addition, it will be convenient to define
the G-valued functions ∇2F and ∇′

2F by

∇2F(g, J) := J(d2F(g, J)), ∇′
2F(g, J) := (d2F(g, J))J. (2.14)

It is worth remarking that ∇1F(g, J) = g
(
∇′

1F(g, J)
)

g−1.

Theorem 2.1. For F, H ∈ C∞(M,R), the following formulae define two Poisson brackets:

{F, H}1(g, J) = 〈∇1F, d2H〉 − 〈∇1H, d2F〉+ 〈J, [d2F, d2H]〉, (2.15)
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and

{F, H}2(g, J) = 〈r∇1F,∇1H〉 − 〈r∇′
1F,∇′

1H〉+ 〈∇2F −∇′
2F, r+∇′

2H − r−∇2H〉

+ 〈∇1F, r+∇′
2H − r−∇2H〉 − 〈∇1H, r+∇′

2F − r−∇2F〉, (2.16)

where the derivatives are evaluated at (g, J), and we put rX for r(X).

Proof. The first Poisson bracket is easily recognized to be the canonical one carried by the
cotangent bundle T∗G, presented by means of right trivialization. The second one is the real
analogue of the holomorphic Poisson bracket of M, then regarded as a complex manifold,
which has been constructed in [20]. The formula (2.16) has the same form as the second Poisson
bracket in [20], except that now we use smooth real functions and the real part of the trace for
the pairing 〈, 〉. We give a terse outline of the origin of this Poisson bracket in appendix A. Of
course, its Jacobi identity can be verified directly as well. �

Let us recall [35, 36] that two Poisson brackets are called compatible if their arbitrary linear
combination is also a Poisson bracket. A bi-Hamiltonian manifold is a manifold equipped with
a pair of compatible Poisson brackets. The non-trivial condition is posed by the Jacobi identity
for the linear combination of the Poisson brackets. In several examples it is guaranteed by the
following mechanism. Suppose that D is a derivation of the functions, and {, } is a Poisson
bracket. Then the formula

{F, H}D := D[{F, H}] − {D[F], H} − {F,D[H]}, (2.17)

where D[F] is the derivative of the function F, provides an anti-symmetric bi-derivation. This
is called the Lie derivative bracket (since its underlying bi-vector is the Lie derivative of the
Poisson tensor of {, } along the corresponding vector field). It is well-known [50] that if {, }D
satisfies the Jacobi identity, then this holds also for arbitrary linear combinations of {, } and
{, }D.

Now consider the vector field on M whose flow through (g, J) is

(g, J + t1n), t ∈ R, (2.18)

where 1n denotes the n × n unit matrix, and letD be the corresponding derivation of C∞(M,R).
As coordinate functions on M, we may employ ‘evaluation functions’ that on (g, J) return the
real and imaginary parts of the matrix elements of g,

gr
αβ :=R gαβ , gi

αβ :=I gαβ , (2.19)

and the components Jk := 〈Tk, J〉 with respect to an arbitrary basis Tk (k = 1, . . . , 2n2) of the
real vector space G. Their derivatives are

D[gαβ] = 0, D[Jk] = 〈Tk, 1n〉, (2.20)

where we extended the derivation to complex functions.
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Proposition 2.2. The first Poisson bracket (2.15) on M is the Lie derivative of the second
Poisson bracket (2.16) with respect to the derivation D, i.e. we have

{F, H}1 = {F, H}D2 , ∀ F, H ∈ C∞(M,R). (2.21)

Consequently, the two Poisson brackets of theorem 2.1 are compatible.

Proof. Since both {, }1 and {, }D2 are bi-derivations, it is enough to verify the equality (2.21)
for coordinate functions. Hence, we inspect the cases for which F and H are taken from the
functions Jk and gi

αβ , gr
αβ . Since D[gαβ] = 0 and the second Poisson bracket closes on the

functions that depend only on g, we see that the equality (2.21) holds if both F and H depend
only on g, for in these cases both sides of (2.21) vanish. Next, we note that

{Jk, Jl}2 = 〈[J, Tk], r[Tl, J] +
1
2

(TlJ + JTl)〉, (2.22)

and this leads to

{Jk, Jl}D2 = 〈J, [Tk, Tl]〉, (2.23)

which equals {Jk, Jl}1. To continue, we introduce the n × n matrix {g, Jk}a, for a = 1, 2, by
defining its αβ entry to be

{gr
αβ , Jk}a + i{gi

αβ , Jk}a, 1 � α, β � n. (2.24)

The formulae of theorem 2.1 give

{g, Jk}1 = Tkg and {g, Jk}2 =

(
r[Tk, J] +

1
2

(JTk + TkJ)

)
g (2.25)

From here it is easily checked that

{gr
αβ , Jk}1 + i{gi

αβ , Jk}1 = {gr
αβ, Jk}D2 + i{gi

αβ , Jk}D2 , (2.26)

whereby the proof is complete. �
The evolution equation of a bi-Hamiltonian system can be written in Hamiltonian form with

respect to two compatible, linearly independent, Poisson brackets, and respective Hamiltoni-
ans. We now present interesting bi-Hamiltonian systems on M.

Proposition 2.3. For any k ∈ N, define the Hamiltonians Hk and H̃k on M by

Hk(g, J) :=
1
k
Rtr (Jk), H̃k(g, J) :=

1
k
Itr (Jk). (2.27)

All these Hamiltonians are in involution, and they define bi-Hamiltonian systems according to
the relations, and corresponding flows, listed as follows:

{ ·, Hk}2 = { ·, Hk+1}1, (g(t), J(t)) =
(
exp

(
J(0)kt

)
g(0), J(0)

)
(2.28)

and

{ ·, H̃k}2 = { ·, H̃k+1}1, (g(t), J(t)) =
(
exp

(
−iJ(0)kt

)
g(0), J(0)

)
. (2.29)

Proof. We can calculate that

d2Hk = Jk−1, d2H̃k = −iJk−1. (2.30)
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Therefore (∇′
2Hk −∇2Hk) and (∇′

2H̃k −∇2H̃k) both vanish, and we obtain

r+∇′
2Hk − r−∇2Hk = d2Hk+1 = Jk,

r+∇′
2H̃k − r−∇2H̃k = d2H̃k+1 = −iJk.

(2.31)

Taking an arbitrary F ∈ C∞(M,R), the formulae of theorem 2.1 then yield

{F, Hk}2(g, J) = {F, Hk+1}1(g, J) = 〈∇1F(g, J), Jk〉, (2.32)

and

{F, H̃k}2(g, J) = {F, H̃k+1}1(g, J) = 〈∇1F(g, J),−iJk〉. (2.33)

This means that the Poisson bracket relations (2.28) and (2.29) hold. It follows also immedi-
ately that the corresponding Hamiltonian flows through the initial value (g(0), J(0)) have the
simple form as claimed. In particular, J and all its functions are constant along these flows,
which implies the involutivity of the underlying Hamiltonians. �

Remark 2.4. Let us define the G-valued function J̃ on M by

J̃(g, J) := − g−1Jg, (2.34)

and notice that J̃ is constant along all the bi-Hamiltonian flows of proposition 2.3. The functions
of J and J̃ are related by the 2n functional relations

Rtr (Jk) = (−1)kRtr (J̃k), Itr (Jk) = (−1)kItr (J̃k), ∀ k = 1, . . . , n.

(2.35)

Thus the functional dimension of the ring of functions, A, depending on J and J̃ equals
4n2 − 2n. This ring is closed under both Poisson brackets, since in addition to (2.22) one has
{Jk, J̃l}i = 0 (i = 1, 2) and

{J̃k, J̃l}2 = −〈[J̃, Tk], r[Tl, J̃] +
1
2

(TlJ̃ + J̃Tl)〉. (2.36)

The elements of A Poisson commute with the elements of the ring of functions, H ⊂ A, gener-
ated by the Hamiltonians (2.27). It is clear that the functional dimension ofH is 2n. Let us recall
[39] that a degenerate integrable system on a symplectic manifold of dimension N is given by
an abelian Poisson algebra of functional dimension N1 < N/2, whose element admit N − N1

functionally independent joint constants of motion1. We can directly apply this definition to
the first Poisson structure, which is symplectic. Therefore we see that the Hamiltonians (2.27)
define a degenerate integrable system, at least with respect to the first Poisson bracket. The ori-
gin of the second Poisson bracket from Poisson–Lie groups (see appendix A) shows that it is
also symplectic on a dense open subset of M, and therefore we may say that the Hamiltonians
of the ‘bi-Hamiltonian hierarchy’ of proposition 2.3 form a degenerate integrable system with
respect to both Poisson brackets.

1 Degenerate integrable systems are also called superintegrable or integrable in the non-commutative sense [32, 37,
44]. Liouville integrability corresponds to the limiting case N1 = N/2.
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3. Poisson reduction with respect to U(n) × U(n)

We are going to reduce with respect to an action of U(n) × U(n), which is engendered by two
commuting actions of U(n), called right-handed and left-handed actions. Regarding the first
Poisson structure, it will be obvious that the Poisson bracket closes on the invariant functions.
For the second Poisson bracket, this needs a proof, and we start by providing it.

We define the right-handed action of U(n) on M by associating with any η ∈ U(n) the
diffeomorphism Rη of M that acts according to

Rη : (g, J) �→ (gη−1, J). (3.1)

The left-handed action is given by Lη ,

Lη : (g, J) �→ (ηg, ηJη−1). (3.2)

These are commuting U(n) actions on M, for we have

Rη1 ◦ Rη2 = Rη1η2 ,

Lη1 ◦ Lη2 = Lη1η2 ,

Lη1 ◦ Rη2 = Rη2 ◦ Lη1 , ∀ η1, η2 ∈ U(n).

(3.3)

We shall consider the respective sets of invariant functions,

C∞(M)U(n)
R := {F ∈ C∞(M,R)|F ◦ Rη = F, ∀ η ∈ U(n)}, (3.4)

C∞(M)U(n)
L := {F ∈ C∞(M,R)|F ◦ Lη = F, ∀ η ∈ U(n)}, (3.5)

and

C∞(M)U(n)×U(n) = C∞(M)U(n)
R ∩ C∞(M)U(n)

L . (3.6)

Lemma 3.1. For F, H ∈ C∞(M)U(n)
R , {F, H}2 (2.16) takes the form

{F, H}2 = 〈r∇1F,∇1H〉+ 〈∇2F −∇′
2F, r+∇′

2H − r−∇2H〉

+ 〈∇1F, r+∇′
2H − r−∇2H〉 − 〈∇1H, r+∇′

2F − r−∇2F〉, (3.7)

and it belongs to C∞(M)U(n)
R .

Proof. If F ∈ C∞(M)U(n)
R , then

F(getX, J) = F(g, J), ∀ X ∈ G+, (3.8)

and therefore

∇′
1F(g, J) ∈ G−. (3.9)

On account of (2.10) and the orthogonality of the subspaces (2.8), we see that for right-invariant
functions F, H

〈r∇′
1F,∇′

1H〉 = 0. (3.10)
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Thus we obtain (3.7) from (2.16). The closure of the Poisson bracket on C∞(M)U(n)
R is then a

consequence of the relations

(∇1F) ◦ Rη = ∇1F, (∇2F) ◦ Rη = ∇2F, (∇′
2F) ◦ Rη = ∇′

2F,

(3.11)

which follow directly from the definitions. �
Lemma 3.2. For F, H ∈ C∞(M)U(n)

L , {F, H}2 (2.16) takes the form

{F, H}2 = 〈∇′
1F, r∇′

1H〉+ 1
2
〈∇2F,∇′

2H〉 − 1
2
〈∇2H,∇′

2F〉

+
1
2
〈∇1F,∇′

2H +∇2H〉 − 1
2
〈∇1H,∇′

2F +∇2F〉, (3.12)

and it belongs to C∞(M)U(n)
L .

Proof. The function F (and similarly H) enjoys the invariance property

F(etXg, etXJe−tX) = F(g, J), ∀ X ∈ G+. (3.13)

Taking the derivative at t = 0 we obtain

(∇1F)+ = (∇′
2F −∇2F)+. (3.14)

Here and below, we apply the decomposition Y = Y+ + Y− for any Y ∈ G, as defined by the
direct sum (2.8). We now look at the terms that appear in the formula (2.16). By using that r
maps G± into G∓ (2.10) and taking (3.14) into account, we derive the identity

〈r∇1F,∇1H〉 = 〈r(∇1H)−, (∇2F −∇′
2F)+〉 − 〈r(∇1F)−, (∇2H −∇′

2H)+〉.

(3.15)

In a similar manner, we obtain

〈∇1F, r∇′
2H − r∇2H〉 − 〈∇1H, r∇′

2F − r∇2F〉

= 〈r(∇1F)−, (∇2H −∇′
2H)+〉 − 〈r(∇1H)−, (∇2F −∇′

2F)+〉

+ 〈r(∇′
2F −∇2F)+, (∇2H −∇′

2H)−〉

− 〈r(∇′
2H −∇2H)+, (∇2F −∇′

2F)−〉. (3.16)

Next, we can write

〈∇2F −∇′
2F, r∇′

2H − r∇2H〉 = 〈r(∇′
2F −∇2F)+, (∇′

2H −∇2H)−〉

− 〈r(∇′
2H −∇2H)+, (∇′

2F −∇2F)−〉.
(3.17)

In these derivations we used the anti-symmetry of r (2.6). Observe that the terms given by
the last three equations cancel altogether. In other words, the terms that contain r in r± (2.5)
all cancel from (2.16). Noticing the elementary identity

〈∇2F −∇′
2F,∇′

2H +∇2H〉 = 〈∇2F,∇′
2H〉 − 〈∇′

2F,∇2H〉, (3.18)

2981



Nonlinearity 35 (2022) 2971 L Fehér

we then obtain (3.12) from (2.16). The closure of the Poisson bracket on the left U(n) invariant
functions follows from (3.12) and the transformation rules of the derivatives,

(∇1F) ◦ Lη = η(∇1F)η−1,

(∇′
1F) ◦ Lη = ∇′

1F,

(∇2F) ◦ Lη = η(∇2F)η−1,

(∇′
2F) ◦ Lη = η(∇′

2F)η−1,

(3.19)

which hold for all η ∈ U(n). �

We have seen that the U(n) invariant functions form Poisson subalgebras with respect to the
second Poisson bracket (2.16). Of course, the same is true regarding the first Poisson bracket
(2.15). This can be seen directly from (2.15), and also follows from well known results about
cotangent lifts of actions on a configuration space.

According to the singular value decomposition, also called Cartan (KAK) decomposition,
every element g ∈ GL(n,C) can be decomposed as

g = ηLeqη−1
R , ηL, ηR ∈ U(n),

q = diag(q1, q2, . . . , qn), qi ∈ R, q1 � q2 � . . . � qn.
(3.20)

Here, q is uniquely determined by g, and if q1 > q2 > . . . > qn then ηL and ηR are unique up
to the freedom

(ηL, ηR) �→ (ηLτ , ηRτ ), ∀ τ ∈ T
n, (3.21)

with the maximal torus Tn < U(n). In this paper, we call GL(n,C)reg the dense open subset of
GL(n,C) whose elements obey the strict inequalities, and we also introduce

Mreg :=GL(n,C)reg × G. (3.22)

It is easily seen that every invariant function F ∈ C∞(M)U(n)×U(n) can be recovered from its
restriction to the following submanifold of M:

M
reg
0 := {(eq, J)|J ∈ G, q = diag(q1, q2, . . . , qn), q1 > q2 > . . . > qn}.

(3.23)

With the tautological embedding ι : Mreg
0 → M, the restriction of F reads

f = F ◦ ι. (3.24)

Obviously, f is invariant under the Tn action on M
reg
0 given by the diffeomorphisms Aτ ,

Aτ : (eq, J) �→ (eq, τJτ−1), ∀ τ ∈ T
n. (3.25)

That is to say, f = F ◦ ι belongs to C∞(Mreg
0 )T

n
. Next, we introduce the reduced ring of

functions,

C∞(M)red := { f ∈ C∞(Mreg
0 )T

n | f = F ◦ ι, F ∈ C∞(M)U(n)×U(n)}. (3.26)
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This space of functions naturally inherits a pair of compatible Poisson brackets, called reduced
Poisson brackets, which are defined as follows:

{F ◦ ι, H ◦ ι}red
i := {F, H}i ◦ ι, ∀ F, H ∈ C∞(M)U(n)×U(n), i = 1, 2.

(3.27)

The reduced Poisson brackets are well-defined, since the original Poisson brackets close on
the U(n) × U(n) invariant functions. They contain all information about the Poisson algebra
carried by the (singular) quotient space

Mred := M/(U(n) × U(n)), (3.28)

whose space of smooth functions is C∞(M)U(n)×U(n).
Now our goal is to establish intrinsic formulae of the reduced Poisson brackets, which con-

tain only derivatives with respect to the variables on M
reg
0 . To this end, we need to express the

derivatives of F at (eq, J) ∈ M
reg
0 in terms of the derivatives of the restricted function f = F ◦ ι.

We shall use the decompositions

G± = G±
0 + G±

⊥ , (3.29)

where G±
0 ⊂ G± contain the respective diagonal matrices, and G±

⊥ contain the off-diagonal
ones. Thus we can write X± = X±

0 + X±
⊥ for any X ∈ G±. Any function f ∈ C∞(Mreg

0 ) has the
G−

0 -valued derivative ∇1 f and the G-valued derivative d2 f , determined by

〈∇1 f (eq, J), X0〉 =
d
dt

∣∣∣∣
t=0

f (etX0eq, J) =
d
dt

∣∣∣∣
t=0

f (eq+tX0 , J), ∀ X0 ∈ G−
0 ,

(3.30)

〈d2 f (eq, J), X〉 = d
dt

∣∣∣∣
t=0

f (eq, J + tX), ∀ X ∈ G, (3.31)

and we define ∇2 f and ∇′
2 f similarly to (2.14). The definition (3.30) makes sense since for

small enough t the components of (q + tX0) satisfy the same ordering condition as those of q.
Plainly, we have

d2F(eq, J) = d2 f (eq, J), (3.32)

and as a result of the Tn invariance

[J, d2 f (eq, J)]+0 = 0. (3.33)

Let us introduce the linear operator R(q) ∈ End(G) by letting it act on an arbitrary matrix X ∈ G
according to

(R(q)X)ii = 0, (R(q)X)i j = Xi j coth(qi − q j), 1 � i �= j � n. (3.34)

Notice that R(q) maps G±
⊥ onto G∓

⊥ (3.29), respectively, in an invertible manner, and it satisfies

〈R(q)X, Y〉 = −〈X, R(q)Y〉, ∀ X, Y ∈ G. (3.35)
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Due to the following result, R(q) will appear in the expressions of the reduced Poisson brackets.

Lemma 3.3. If F ∈ C∞(M)U(n)×U(n) and f = F ◦ ι, then we have

∇1F(eq, J) = [d2 f (eq, J), J]+ +∇1 f (eq, J) + R(q)[d2 f (eq, J), J]+, (3.36)

where the superscripts refer to the decomposition (2.7).

Proof. We know from (3.9) that (∇′
1F)+ = 0 holds, because F ∈ C∞(M)U(n)

R . On the other
hand, (∇1F)+ = (∇′

2F −∇2F)+ holds (3.14), because F ∈ C∞(M)U(n)
L . By using that

∇′
1F(eq, J) = e−q(∇1F(eq, J))eq, (3.37)

we can write

0 = (∇′
1F)+ = (cosh adq)((∇1F)+) − (sinh adq)((∇1F)−), (3.38)

at any (eq, J), where adq(X) := [q, X]. This implies that

(∇1F)−⊥ = R(q)(∇1F)+. (3.39)

Finally, since

d
dt

∣∣∣∣
t=0

F(etX0eq, J) =
d
dt

∣∣∣∣
t=0

f (etX0eq, J), ∀ X0 ∈ G−
0 , (3.40)

we get

(∇1F(eq, J))−0 = ∇1 f (eq, J). (3.41)

The proof is completed by noting that

∇′
2F −∇2F = ∇′

2 f −∇2 f = [d2 f , J] at any (eq, J) ∈ Mred
0 . (3.42)

�

Theorem 3.4. For f , h ∈ C∞(M)red (3.26), the first reduced Poisson bracket (3.27) is given
by

{ f , h}red
1 (eq, J) = 〈∇1 f , (d2h)−0 〉 − 〈∇1h, (d2 f )−0 〉

+ 〈R(q)[d2 f , J]+, (d2h)−〉 − 〈R(q)[d2h, J]+, (d2 f )−〉

+ 〈J+, [(d2 f )−, (d2h)−] − [(d2 f )+, (d2h)+]〉, (3.43)

where the derivatives are taken at (eq, J) and we use R(q) (3.34). If h is the restriction of any
of the Hamiltonians Hk or H̃k (2.27), then this formula can be written as

{ f , h}red
1 (eq, J) = 〈∇1 f , (d2h)−0 〉+ 〈d2 f , [R(q)(d2h)− − (d2h)+, J]〉. (3.44)

Proof. The first and second lines of (3.43) represent the contributions of the second and third
terms of (3.36) obtained upon substitution in the formula (2.15). Regarding the third line, it
arises from the first term of (3.36) by taking the sum of

〈[d2 f , J]+, d2h〉 − 〈[d2h, J]+, d2 f 〉 = −2〈J+, [(d2 f )+, (d2h)+]〉

− 〈J−, [d2 f , d2h]−〉 (3.45)
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and

〈J, [d2 f , d2h]〉 = 〈J+, [d2 f , d2 f ]+〉+ 〈J−, [d2 f , d2h]−〉. (3.46)

To get (3.44) from (3.43), we use that for any Hamiltonian h proportional with the real or
imaginary parts of tr(Jk) one has [d2h, J] = 0. In this case, the second line of (3.43) gives

〈R(q)[d2 f , J]+, (d2h)−〉 = 〈R(q)[d2 f , J], (d2h)−〉 = 〈d2 f , [R(q)(d2h)−, J]〉,
(3.47)

and the third line becomes

〈J+, [(d2 f )−, (d2h)−] − [(d2 f )+, (d2h)+]〉

= 〈J, [(d2 f )−, (d2h)−] − [(d2 f )+, (d2h)+]〉

= 〈J, [(d2h)+, (d2 f )−] + [(d2h)+, (d2 f )+]〉 = −〈d2 f , [(d2h)+, J]〉,
(3.48)

which confirm the claim (3.44). �

Theorem 3.5. For f , h ∈ C∞(M)red (3.26), the second reduced Poisson bracket (3.27) can
be written as

2{ f , h}red
2 (eq, J) = 〈∇1 f , (∇2h +∇′

2h)−0 〉 − 〈∇1h, (∇2 f +∇′
2 f )−0 〉

+ 〈R(q)[d2 f , J]+, (∇2h +∇′
2h)−〉 − 〈R(q)[d2h, J]+, (∇2 f +∇′

2 f )−〉

+ 〈(∇2 f )−, (∇′
2h)−〉+ 〈(∇′

2 f )+, (∇2h)+〉 − (∇′
2 f )−, (∇2h)−〉

− 〈(∇2 f )+, (∇′
2h)+〉, (3.49)

where the derivatives are taken at (eq, J) and R(q) is given by (3.34). If h is the restriction of
any of the Hamiltonians Hk or H̃k (2.27), then this formula can be recast in the form

{ f , h}red
1 (eq, J) = 〈∇1 f , (∇2h)−0 〉+ 〈d2 f , [R(q)(∇2h)− − (∇2h)+, J]〉. (3.50)

Proof. We see by combining (3.10) (obtained in the proof of lemma 3.1) and lemma 3.2 that
for F, H ∈ C∞(M)U(n)×U(n)

2{F, H}2 = 〈∇2F,∇′
2H〉 − 〈∇2H,∇′

2F〉+ 〈∇1F,∇′
2H +∇2H〉

− 〈∇1H,∇′
2F +∇2F〉. (3.51)

Putting f = F ◦ ι and h = H ◦ ι, we substitute the identity (3.36) both for ∇1F and ∇1H.
After that, we spell out the first two terms of (3.51) and the contributions coming from the first
terms of ∇1F and ∇1H. The formula (3.49) is then obtained by collecting terms. Turning to
the proof of (3.50), instead of (3.49) it is shorter to go back to (3.51). We observe from (2.30)
that in this case [d2H, J] = 0. Thus ∇2H = ∇′

2H and

〈∇2F,∇′
2H〉 − 〈∇2H,∇′

2F〉 = 〈d2F, [d2H, J2]〉 = 0. (3.52)

Then

{ f , h}red
2 (eq, J) = 〈∇1F(eq, J),∇2H(eq, J)〉
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= 〈[d2 f (eq, J), J]+ +∇1 f (eq, J) + R(q)[d2 f (eq, J), J]+,∇2h(eq, J)〉.
(3.53)

The verification is finished by noting that

〈R(q)[d2 f , J]+,∇2h〉 = −〈[d2 f , J], R(q)(∇2h)−〉 = 〈d2 f , [R(q)(∇2h)−, J]〉,

(3.54)

and

〈[d2 f , J]+,∇2h〉 = 〈d2 f , [J, (∇2h)+]〉. (3.55)

�
The following statement summarizes the outcome of our construction.

Proposition 3.6. The formulae (3.43) and (3.49) yield two compatible Poisson brackets on
C∞(M)red (3.26). The commuting Hamiltonians

hk :=
1
k
Rtr (Jk) and h̃k :=

1
k
Itr (Jk), k ∈ N, (3.56)

give rise to bi-Hamiltonian evolution equations since they satisfy

{ f , hk}red
2 = { f , hk+1}red

1 and

{ f , h̃k}red
2 = { f , h̃k+1}red

1 ,

∀ f ∈ C∞(M)red, k ∈ N.

(3.57)

Proof. This is obvious from our construction. In particular, the compatibility of the reduced
Poisson brackets follows from the compatibility of the original Poisson brackets on C∞(M,R)
by applying the definition (3.27). The properties (3.57) are consequences of (3.44) and (3.50)
taking into account that

∇2hk = Jk = d2hk+1 and ∇2h̃k = −iJk = d2h̃k+1, (3.58)

which are implied by (2.30). �
In the next remark, we explain that the compatible Poisson brackets can be defined also on

the ring of functions C∞(Mreg
0 )T

n
.

Remark 3.7. The ring of functions C∞(M)red (3.26) is contained in C∞(Mreg
0 )T

n
, but is

not equal to it. For example, the components of q give elements of C∞(Mreg
0 )T

n
, and can be

extended to unique, U(n) × U(n) invariant continuous functions on M, but these functions lose
their differentiability at the locus where qi = qi+1 for some i. This holds since the e2qi (3.20)
are the ordered eigenvalues of gg† and, as is well known, the differentiability of eigenvalues
is in general lost where they coincide. Nevertheless, the formulae (3.43) and (3.49) define
compatible Poisson brackets on the whole of C∞(Mreg

0 )T
n
. In order to see this, consider Mred

(3.22), which is the set of elements of M that can be transformed into M
reg
0 by the action

of U(n) × U(n). This is a dense open subset and the pull-back by ι : Mreg
0 →Mreg yields an

injective and surjective map from C∞(Mreg)U(n)×U(n) onto C∞(Mreg
0 )T

n
, that is,

C∞(Mreg
0 )T

n
= { f ∈ C∞(Mreg

0 )| f = F ◦ ι, F ∈ C∞(Mreg)U(n)×U(n)}. (3.59)
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Then the application of (3.27) to F, H ∈ C∞(Mreg)U(n)×U(n) gives rise to compatible Pois-
son brackets on C∞(Mreg

0 )T
n
. They are described by the formulae (3.43) and (3.49) for any

f , h ∈ C∞(Mreg
0 )T

n
, since they are determined by calculations identical to those presented

above.

For a vector field E on M
reg
0 , we denote the derivative of f ∈ C∞(Mreg

0 ) by E[ f ]. The vector
field E is encoded by the matrix valued functions E[q] and E[J], i.e. by the derivatives of q and
J regarded as evaluation functions that return q and J when applied to (q, J) ∈ M

reg
0 . Then the

chain rule reads

E[ f ] = 〈∇1 f , E[q]〉+ 〈d2 f , E[J]〉. (3.60)

For any fixed h ∈ C∞(Mreg
0 )T

n
, the two Poisson brackets with h determine two derivations of

C∞(Mreg
0 )T

n
. These correspond to vector fields E i

h (i = 1, 2) that are unique only up to the
addition of infinitesimal gauge transformations. The term infinitesimal gauge transformation
refers to any vector field Z for which

Z[q] = 0 and Z[J] = [T , J] (3.61)

with some function T : Mreg
0 → G+

0 . Note that G+
0 is just the Lie algebra of Tn. This ambiguity

drops out after projection to the quotient space M
reg
0 /Tn. For definiteness, we shall fix this

ambiguity of the vector field E i
h by imposing the condition

E i
h[ f ] = { f , h}red

i , ∀ f ∈ C∞(Mreg
0 ), (3.62)

where { f , h}red
i is understood to be given by the formulae (3.43) and (3.49). These formulae

define anti-symmetric bi-derivations on C∞(Mreg
0 ), but the Jacobi identity holds only for theTn

invariant functions. By some abuse of terminology, we call the vector field E i
h the Hamiltonian

vector field associated with h by means of the bracket {, }red
i .

Proposition 3.8. Consider the vector fields E i
k and Ẽ i

k defined by

E i
k[ f ] = { f , hk}red

i and Ẽ i
k[ f ] = { f , h̃k}red

i , k ∈ N, i = 1, 2, (3.63)

with the Hamiltonians (3.56). Using R(q) (3.34), these vector fields have the explicit form

E2
k [q j] = E1

k+1[q j] = R(Jk) j j,

E2
k [J] = E1

k+1[J] =
1
2

[R(q)(Jk + (Jk)∗) + ((Jk)∗ − Jk), J],
(3.64)

and

Ẽ2
k[q j] = Ẽ1

k+1[q j] = R(−iJk) j j,

Ẽ2
k[J] = Ẽ1

k+1[J] =
1
2

[iR(q)((Jk)∗ − Jk) + i(Jk + (Jk)∗), J].
(3.65)

All these vector fields are tangent to the submanifold

M
reg
0,− = {(q, J−) ∈ M

reg
0 |J− ∈ G−} ⊂ M

reg
0 (3.66)

defined by imposing the constraint J+ = 0, as well as to the submanifold

M
reg
0,+ = {(q, J+) ∈ M

reg
0 |J+ ∈ G+} ⊂ M

reg
0 (3.67)
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defined by imposing the constraint J− = 0. The restriction V i
k of E i

k on M
reg
0,− gives

V2
k [q j] = V1

k+1[q j] = (J−)k
j j, V2

k [J−] = V1
k+1[J−] = [R(q)(J−)k, J−],

(3.68)

while the restriction of Ẽ i
k vanishes identically on M

reg
0,− for all k and i. The vector fields V i

k
reproduce the evolutional vector fields of the spin Sutherland hierarchy described in [18] .

Denoting the restrictions of E i
k and Ẽ i

k on M
reg
0,+ by U i

k and Ũ i
k, we obtain, for all l ∈ N,

U2
2l−1 = U1

2l = 0, Ũ2
2l = Ũ1

2l+1 = 0, (3.69)

and

U2
2l[q j] = U1

2l+1[q j] = R((J+)2l) j j,

U2
2l[J

+] = U1
2l+1[J+] = [R(q)(J+)2l, J+],

Ũ2
2l−1[q j] = Ũ1

2l[q j] = R(−i(J+)2l−1) j j,

Ũ2
2l−1[J+] = Ũ1

2l[J
+] = [−iR(q)(J+)2l−1, J+].

(3.70)

By making the substitution J+ = iJ−, the vector fields shown in (3.70) get transformed into
those that appear in (3.68), up some irrelevant overall signs.

Proof. The formulae (3.64) and (3.65) follow directly by applying the formulae (3.44), (3.50)
and (3.58). The tangency to M

reg
0,± is a consequence of the fact that [G+,G±] ⊂ G±. The state-

ments about the form of the restricted vector fields are plain from (3.64) and (3.65). Comparison
with equation (1.8) in [18] shows that the bi-Hamiltonian vector fields (3.68) reproduce the spin
Sutherland hierarchy studied earlier. �

Remark 3.9. It is worth noting that the vector fields Z (3.61) representing infinitesimal
gauge transformations are tangent to the submanifolds M

reg
0,±. Therefore the possibility to

restrict a Hamiltonian vector field fromM
reg
0 toMreg

0,± is independent of the ambiguity of adding
an infinitesimal gauge transformation.

4. Interpretation as spin Sutherland models

We below develop the physical interpretation of the reduced bi-Hamiltonian system. This inter-
pretation will be reached via a suitable parameterization of the variable J for (eq, J) ∈ M

reg
0 .

In this parameterization the first reduced Poisson structure and one of the reduced Hamiltoni-
ans take the form characteristic of spin Sutherland models. We first present the particular case
corresponding to the Hamiltonian (1.7) and deal with the general case (1.15) subsequently. We
will not spell out the expression of the second Poisson bracket in terms of the new variables,
since those formulae are complicated and do not enhance our understanding.

4.1. Spin Sutherland model on the subspace M
reg
0,− ⊂ M

reg
0

We have seen in proposition 3.8 that the evolutional vector fields of the spin Sutherland hierar-
chy (given by (3.68)) result from our construction by restriction to the submanifoldMreg

0,−. Now
we show that the bi-Hamiltonian structure found in [18] also results from this restriction. We
start by demonstrating that the derivative of J+ vanishes along all Hamiltonian vector fields E i

h
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at those point where J+ = 0, i.e. on the submanifold M
reg
0,− (3.66). To see this, we rearrange

the Poisson brackets in the form

{ f , h}red
i = 〈∇1 f , E i

h[q]〉+ 〈(d2 f )−, E i
h[J−]〉+ 〈(d2 f )+, E i

h[J+]〉, (4.1)

and show that the functions

E i
h[J+] : Mreg

0 →G+ (4.2)

vanish for both Poisson brackets upon imposing the constraint J+ = 0.
The following lemmas are obtained by straightforward, somewhat tedious, calcula-

tions. We sketch only the proof of the second lemma, which is the more complicated
one.

Lemma 4.1. The Hamiltonian vector field E1
h associated with the Poisson bracket (3.43) has

the components

E1
h [q] = (d2h)−0 , (4.3)

E1
h [J−] = −∇1h + [(d2h)−, J+] + R(q)[J, d2h]+ + [R(q)(d2h)−, J−], (4.4)

E1
h [J+] = [R(q)(d2h)− − (d2h)+, J+]. (4.5)

Consequently, E1
h is tangent to the submanifold M

reg
0,− (3.66) for every h ∈ C∞(Mreg

0 )T
n
.

Lemma 4.2. The Hamiltonian vector field E2
h associated with the Poisson bracket (3.49)

has the components

E2
h [q] =

(
J−(d2h)− + J+(d2h)+

)−
0

, (4.6)

E2
h [J−] =

(
2J−(d2h)−J+ − 2J−R(q)((d2h)−J− + (d2h)+J+) − ∇1hJ−)−,

(4.7)

E2
h [J+] =

(
2J+(d2h)+J− − 2J+R(q)((d2h)−J− + (d2h)+J+) − ∇1hJ+

)+
.

(4.8)

It follows that E2
h is tangent to both submanifolds Mreg

0,− (3.66) and M
reg
0,+ (3.67).

Proof. We shall use that, for any X ∈ G, X− = 1
2 (X + X∗) and X+ = 1

2 (X − X∗), together
with obvious properties of the trace form (2.1), like 〈X∗, Y∗〉 = 〈X, Y〉. By directly spelling it
out, we find

(∇2h +∇′
2h)− = 2

(
J−(d2h)− + J+(d2h)+

)−
. (4.9)

Thus, the first term of { f , h}red
2 (3.49) gives (4.6), and the second term of (3.49) gives

the last terms in both lines (4.7) and (4.8). In order to confirm the latter statement, note
that
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1
2
〈∇1h, (∇2 f +∇′

2 f )−0 〉 = 〈∇1h, J−(d2 f )− + J+(d2 f )+〉

= 〈∇1hJ−, (d2 f )−〉+ 〈∇1hJ+, (d2 f )+〉

= 〈(∇1hJ−)−, (d2 f )−〉+ 〈(∇1hJ+)+, (d2 f )+〉. (4.10)

Next, we inspect the terms of (3.49) that contain R(q) (3.34). We use the anti-symmetry of
R(q) (3.35), the property (R(q)X)∗ = −R(q)X∗, and that it maps G± into G∓, respectively. Then
we can write

〈R(q)[d2 f , J]+, (∇2h +∇′
2h)−〉

= 2〈R(q)
(
(d2 f )+J+ − J+(d2 f )+ + (d2 f )−J−− J−(d2 f )−

)
, J−(d2h)− + J+(d2h)+〉

= 2〈R(q)
(
(d2 f )+J+ + (d2 f )−J−) , J−(d2h)− + J+(d2h)+ + (d2h)−J− + (d2h)+J+〉

= −2〈(d2 f )+, J+R(q)
(
J−(d2h)− + J+(d2h)+ + (d2h)−J− + (d2h)+J+

)
〉

− 2〈(d2 f )−, J−R(q)
(
J−(d2h)− + J+(d2h)++ (d2h)−J− + (d2h)+J+

)
〉. (4.11)

Similarly, we obtain

− 〈R(q)[d2h, J]+, (∇2 f +∇′
2 f )−〉

= −2〈R(q)[d2h, J]+, (d2 f )−J− + (d2 f )+J+〉

= −2〈(d2 f )+, J+R(q)[d2h, J]+〉 − 2〈(d2 f )−, J−R(q)[d2h, J]+〉. (4.12)

By adding these two expressions, and taking into account the factor 2 on the left-hand side
of (3.49), we get the terms containing R(q) in (4.7) and (4.8). The first terms on the right-
hand sides of (4.7) and (4.8) result by expanding and collecting all terms coming from the last
line of (3.49), which is laborious but fully straightforward. Some further details are given in
appendix B. �

Let us remember [42] that a Poisson submanifold N of a Poisson manifold (M, {, }M) is
characterized by the property that if one considers any Hamiltonian vector field on M and
restricts it to N, then the restricted vector field is tangent to N. Under this condition, one obtains
a Poisson structure {, }N on N as follows. Take any smooth functions F ,H on N and extend
them arbitrarily to smooth functions f , h on M. (It is sufficient to consider such extensions only
locally, and N can be an immersed submanifold). Then the formula

{F ,H}N(x) := { f , h}M(x), ∀ x ∈ N, (4.13)

gives a well-defined Poisson bracket on N. It follows from lemma 4.1 and lemma 4.2 that
this procedure can be applied in our situation, too, and thus we obtain well-defined Poisson
brackets on C∞(Mreg

0,−)T
n

by restriction of the Poisson brackets on C∞(Mreg
0 )T

n
. The variables

of a function F ∈ C∞(Mreg
0,−) are given by the pair (eq, J−). Mimicking the previous practice,

we introduce the corresponding G−
0 -valued and G−-valued derivatives ∇1F and d2F , and also

set ∇2F := J−d2F and ∇′
2F := d2FJ−.

Theorem 4.3. The compatible Poisson brackets given by (3.43) and (3.49) on C∞(Mreg
0 )T

n

can be restricted to C∞(Mreg
0,−)T

n
. For F ,H ∈ C∞(Mreg

0,−)T
n

the restricted brackets, denoted
{F ,H}red

i,−, can be written as
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{F ,H}red
1,−(eq, J−) = 〈∇1F , d2H〉 − 〈∇1H, d2F〉

+ 〈J−, [R(q)d2F , d2H] + [d2F , R(q)d2H]〉 (4.14)

and

{F ,H}red
2,−(eq, J−) = 〈∇1F ,∇2H〉 − 〈∇1H,∇2F〉+ 2〈∇2F , R(q)∇2H〉,

(4.15)

where the derivatives are evaluated at (eq, J−). These formulae reproduce the compatible
Poisson brackets of the hyperbolic spin Sutherland hierarchy described earlier in [18] .

Proof. Suppose that F ,H are the restrictions of f , h ∈ C∞(Mreg
0 )T

n
. Then, according to the

definition of the restricted brackets,

{F ,H}red
i,−(eq, J−) =

(
〈∇1 f , E i

h[q]〉+ 〈(d2 f )−, E i
h[J−]〉

)
(eq, J−), (4.16)

where the formulae of the preceding two lemmas are applied, at J+ = 0. Here, we substitute
(d2 f )−(eq, J−) = d2F (eq, J−) and analogous relations for the other derivatives. This readily
leads to the above forms of the restricted Poisson brackets. For example, to obtain (4.15), we
also use that

−〈d2F , 2J−R(q)∇′
2H〉 = −2〈∇′

2F , R(q)∇′
2H〉 = 2〈∇2F , R(q)∇2H〉. (4.17)

This holds by virtue of the identities

∇2H = (∇′
2H)∗, R(q)X∗ = −(R(q)X)∗, 〈X∗, Y∗〉 = 〈X, Y〉, ∀ X, Y ∈ G.

(4.18)

Taking into account some obvious differences of notation, one sees by direct comparison that
the Poisson brackets in (4.14) and (4.15) coincide with those in theorem 1 of [18]. �

Remark 4.4. The Poisson bracket (4.15) was obtained in [18] by suitably rewriting the Pois-
son structure of an example of models derived by Li [33] applying a rather complicated method
based on dynamical Poisson–Lie groupoids. Then it was directly shown to be compatible with
the first Poisson bracket (4.14) extracted from [23]. The present derivation is simpler and it
highlights that both Poisson brackets originate from a single reduction in a unified manner. If
we parameterize the Hermitian matrix J = J− in the form

(J−)i j = piδi j − (1 − δi j)
ξi j

sinh(qi − q j)
, (4.19)

where the pi are arbitrary real numbers and ξ in an off-diagonal anti-Hermitian matrix, then
the reduced Hamiltonian 1

2 tr (J2) reproduces (1.7). The spin ξ matters up to the gauge trans-
formations ξ �→ τξτ−1, ∀ τ ∈ Tn. Under the reduced first Poisson bracket (4.14), the Tn

invariant functions of ξ are those arising from the u(n) Lie–Poisson bracket reduced by the
first class constraints ξkk = 0 for all k. The qi, pi (i = 1, . . . , n) form canonical pairs with
respect to the reduced first Poisson bracket, and they Poisson commute with the Tn invari-
ant functions of ξ. These statements are proved in [18, 23], and will be generalized in the next
subsection.
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The combined message of theorem 4.3 and proposition 3.8 is summarized in the next
corollary.

Corollary 4.5. The restrictions of the Hamiltonians hk (3.56) on M
reg
0,−, given by

Hk(eq, J−) = 1
k tr ((J−)k), together with the compatible Poisson brackets of theorem 4.3 repro-

duce the bi-Hamiltonian vector fields (3.68) of the spin Sutherland hierarchy. By using the
parameterization (4.19), H2(eq, J−) turns into2 Hspin−1 (1.7). The Hamiltonians h̃k (3.56)
vanish on M

reg
0,−.

Finally, let us observe that J+ and J− appear rather symmetrically in the formula of lemma
4.2. In particular, E2

h [J−] = 0 holds after restriction to the submanifold M
reg
0,+ (3.67). There-

fore we can restrict the second reduced Poisson bracket on this submanifold. Moreover, n out
of the 2n commuting Hamiltonians (3.56) survives this restriction, in correspondence to the
vector fields in (3.70). It can be verified that the substitution J+ = iJ−, with the new variable
J−, converts the restricted Poisson bracket on C∞(Mreg

0,+)T
n

into the restricted second Poisson
bracket on C∞(Mreg

0,−)T
n
. This means that we do not obtain anything new from this restriction,

and hence we omit its more detailed description.

4.2. The general case: Sutherland model with two spins

We now explain how the generalized spin Sutherland Hamiltonian (1.15) arises from our
reduced system. For this purpose, we take (eq, J) ∈ M

reg
0 and (applying (2.7)) define the new

variables

ξl := − J+, ξr := (e−qJeq)+, pk := J−
kk, k = 1, . . . , n. (4.20)

We observe that the pair (ξl, ξr) obeys the constraints

ξl
kk + ξr

kk = 0, k = 1, . . . , n. (4.21)

Lemma 4.6. The matrix J can be reconstructed from (q, p, ξl, ξr) defined by (4.20) accord-
ing to the formula

Ji j = piδi j − (1 − δi j)
(
coth(qi − q j)ξl

i j + ξr
i j/ sinh(qi − q j)

)
− ξl

i j, ∀ 1 � i, j � n.

(4.22)

This expression provides a parameterization of Mreg
0 (3.23) by the variables (q, p, ξl, ξr),

where q1 > q2 > . . . > qn, the pk ∈ R are arbitrary and (ξl, ξr) ∈ u(n) ⊕ u(n) is subject to the
constraints (4.21). The residual gauge transformations act on (q, p, ξl, ξr) according to

(q, p, ξl, ξr) �→ (q, p, τξlτ−1, τξrτ−1), ∀ τ ∈ T
n. (4.23)

In terms of these variables, the reduced Hamiltonian coming from H1 in (2.27) becomes
Rtr (J) =

∑n
k=1 pk, while H2 = 1

2Rtr (J2) yields the generalized spin Sutherland Hamiltonian
Hspin−2 (1.15) displayed in the introduction.

Proof. By decomposing J as J = J+ + J− using (2.7), we can write

2 This justifies calling the system ‘spin Sutherland hierarchy’.
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(e−qJeq)i j = (cosh(qi − q j)J
+
i j − sinh(qi − q j)J−

i j )

+ (cosh(qi − q j)J−
i j − sinh(qi − q j)J

+
i j ). (4.24)

Since the first two terms give the anti-Hermitian part (e−qJeq)+, we obtain from (4.20)

ξr
i j = − cosh(qi − q j)ξl

i j − sinh(qi − q j)J−
i j . (4.25)

This relation can be solved for J−i j as

J−
i j = − coth(qi − q j)ξl

i j − ξr
i j/ sinh(qi − q j), if i �= j, (4.26)

and J−ii = pi by definition. Thus we have derived (4.22) and it is easy to see that this yields
a smooth bijection between (eq, J) ∈ M

reg
0 and the set of quadruplets (q, p, ξl, ξr) satisfying

the conditions stated by the lemma. The transformation rule (4.23) is equivalent to (3.25). The
forms ofRtr (J) and 1

2Rtr (J2) then follow by straightforward evaluation. To obtain the formula
(1.15), one applies the identity 2 cosh x/sinh2x = 1/sinh2(x/2) − 2/sinh2x. �

It turns out that under the reduced first Poisson bracket (3.43) the qi, pi form canonically
conjugate pairs, the Poisson brackets of the T

n invariant functions of ξl, ξr are governed by
the Lie–Poisson bracket of u(n) ⊕ u(n) reduced by the constraints (4.21), and these two sets of
variables decouple under{, }red

1 . This result can be obtained as a consequence of the symplectic
reduction approach adopted in [24]. Alternatively, we can directly perform the required change
of variables in the formula (3.43). In order to make this paper self-contained, we present the
second method, but relegate all computational details to appendix C. Incidentally, we have
verified that the two methods give the same result, which provides an excellent check on our
considerations.

Thus, by using (4.22), we parameterize Mreg
0 by the quintets of variables

(q, p, ξl
⊥, ξr

⊥, ξ0) where ξ0 ∈ G+
0 and ξl = ξl

⊥ + ξ0, ξr = ξr
⊥ − ξ0.

(4.27)

For any smooth, real function F of these variables, we have the ‘partial gradients’

dξl
⊥

F ∈ G+
⊥ , dξr

⊥
F ∈ G+

⊥ , dξ0F ∈ G+
0 , (4.28)

which are defined in the natural manner using the restriction of the pairing (2.1) to G+
⊥ and to

G+
0 (remember that G+ = u(n)). For arbitrary Tn invariant functions f , h of the old variables

(eq, J) we write

f (eq, J) = F(q, p, ξl
⊥, ξr

⊥, ξ0) and h(eq, J) = H(q, p, ξl
⊥, ξr

⊥, ξ0), (4.29)

and calculate {F, H}red
1 from the identity

{F, H}red
1 (q, p, ξl

⊥, ξr
⊥, ξ0) := { f , h}red

1 (eq, J). (4.30)

Proposition 4.7. Let F, H be Tn invariant smooth functions on M
reg
0 , parameterized by the

variables (4.27) that transform according to

(q, p, ξl
⊥, ξr

⊥, ξ0) �→ (q, p, τξl
⊥τ

−1, τξr
⊥τ

−1, ξ0), ∀ τ ∈ T
n. (4.31)
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In terms of these variables, the first reduced Poisson bracket (3.43) can be written as

{F, H}red
1 (q, p, ξl

⊥, ξr
⊥, ξ0) =

n∑
i=1

(
∂F
∂qi

∂H
∂pi

− ∂H
∂qi

∂F
∂pi

)

+ 〈ξl
⊥ + ξ0, [dξl

⊥
F + dξ0F, dξl

⊥
H + dξ0H]〉+ 〈ξr

⊥ − ξ0, [dξr
⊥

F, dξr
⊥

H]〉.

(4.32)

Remark 4.8. The Tn invariance of H implies that

〈ξl
⊥, [dξ0F, dξl

⊥
H]〉+ 〈ξr

⊥, [dξ0F, dξr
⊥

H]〉 = 0. (4.33)

By using this identity, and its counterpart with F and H exchanged, one may write the terms con-
taining dξ0 in the second line of (4.32) in many alternative ways. Upon imposing the constraint
ξl = 0, and putting ξ := ξr

⊥, J in (4.22) reproduces J− in (4.19). Setting also all derivatives with
respect to ξ0 and ξl

⊥ to zero, the Poisson bracket (4.32) reproduces the first reduced Poisson
bracket of the spin Sutherland model (1.7) described in remark 4.4. Of course, by setting ξr = 0
instead of ξl = 0 one reaches the same model.

Remark 4.9. Let us recall from remark 2.4 that the master system behind the spin Sutherland
model (1.15) is a degenerate integrable system. It is known [27, 53] that degenerate integrabil-
ity is generically preserved under Hamiltonian reduction. The degenerate integrability of the
model (1.15) on generic symplectic leaves of the first Poisson structure follows as a special
case of results of [45]. It would be nice to enhance these results by explicitly exhibiting the
required number of independent constants of motion. We here restrict ourselves to display-
ing a large number of U(n) × U(n) invariant elements of the ring A of unreduced constants of
motion, discussed in remark 2.4, which descend to constants of motion of the reduced system.
Namely, let P be an arbitrary product of non-negative powers of J+ and J−. That is, P has the
form

P = (J+)k1 (J−)k2 (J+)k3 (J−)k4 . . . , (4.34)

with non-negative integers k1, k2, k3, k4 etc. On account of the transformation rules (3.1) and
(3.2), the real and imaginary parts of tr(P) are U(n) × U(n) invariant elements of A. Similarly,
using (2.34), one obtains U(n) × U(n) invariant unreduced constants of motion by taking the
trace of an arbitrary product of powers of J̃+ and J̃−. Degenerate integrable systems are also
known to be Liouville integrable under very general conditions [27]. Considering the restriction
of the model to generic symplectic leaves, a construction of sufficient number of constant of
motion in involution can be found in [29].

5. Conclusion

We here introduced a bi-Hamiltonian hierarchy on the cotangent bundle of the real Lie group
GL(n,C) and analyzed its quotient with respect to the symmetry group U(n) × U(n). We
described the form of the compatible reduced Poisson brackets (theorems 3.4 and 3.5) as well
as the bi-Hamiltonian vector fields generated by the commuting reduced Hamiltonians (propo-
sitions 3.6 and 3.8). We found that the restriction of the reduced bi-Hamiltonian hierarchy to a
joint Poisson subspace of its two Poisson brackets reproduces the hyperbolic spin Sutherland
hierarchy associated with the Hamiltonian (1.7). In the general case, the reduced system was
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identified as a Sutherland model coupled to two spin variables according to the Hamiltonian
(1.15). Thus the commuting flows of the model that are generated by the spectral invariants of
the Lax matrix (4.22) all admit bi-Hamiltonian description, which may be considered as our
main result.

The spin Sutherland interpretation arose from using the variables (q, p, ξl, ξr) instead of
(eq, J), in which the first reduced Poisson bracket takes the form displayed in proposition 4.7.
It is in principle possible to present also the second Poisson bracket in these variables, but the
resulting formulae are not expected to have a transparent structure. At least on the subspace
where J is Hermitian and positive definite, it should be possible to construct an alternative
parameterization that would allow tr(J) to be interpreted as a spin Ruijsenaars–Schneider
Hamiltonian. In the corresponding trigonometric case, such a change of variables is known
[19], and it permits one to recover the spinless trigonometric Ruijsenaars–Schneider model
on a special symplectic leaf of the reduced second Poisson bracket. Thus we suspect that
the spinless hyperbolic Ruijsenaars–Schneider model should be found on a symplectic leaf
of the second Poisson structure described in theorem 4.3. However, we do not know how to
characterize the symplectic leaves of this Poisson structure. We encountered difficulties when
trying to find them by ‘analytic continuation’ from the trigonometric to the hyperbolic case.
This poses a very interesting open problem for future work. It is worth mentioning that, at
least to our knowledge, no derivation of the real, hyperbolic Ruijsenaars–Schneider model
by Hamiltonian reduction is known at present, as opposed to the real trigonometric model
and its complex holomorphic counterpart, for which several reduction treatments are avail-
able [3, 8, 22, 25, 40]. It would be important to construct such a derivation, and finding
the symplectic leaves of the Poisson bracket (4.15) could help to resolve this long-standing
conundrum.
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Appendix A. An explanation of the second Poisson bracket

We below outline how the second Poisson bracket (2.16) arises by a change of variables from
Semenov–Tian–Shansky’s Poisson bracket [49] on the Heisenberg double G × G. We will be
brief since this explanation closely follows the appendix in [20]. However, note that in [20] we
considered holomorphic complex functions, while now we deal with real smooth functions.

We begin by introducing a non-degenerate, invariant bilinear form on the real Lie algebra
G ⊕ G by

〈(X1, X2), (Y1, Y2)〉2 := 〈X1, Y1〉 − 〈X2, Y2〉, (A.1)

where (X1, X2) and (Y1, Y2) are from G ⊕ G, and (2.1) is applied. It is not difficult to see that
G ⊕ G is the vector space direct sum of the subalgebras

Gδ := {(X, X)|X ∈ G} (A.2)

and

G∗ := {(r+(X), r−(X))|X ∈ G}. (A.3)
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Recall that r± are defined in (2.5), i.e. r+(X) = X> + 1
2 X0 and r−(X) = −X< − 1

2 X0 for X writ-
ten as in (2.2). These are isotropic subalgebras, meaning that the bilinear form (A.1) vanishes
on them separately. After identifying G with Gδ , we can use the bilinear form to take G∗ (A.3)
as a model of the dual space of G, which explains the notation.

Let us define the linear operator ρ on G ⊕ G by

ρ :=
1
2

(
PGδ − PG∗

)
(A.4)

using the projections PGδ onto Gδ and PG∗ onto G∗ associated with the vector space direct sum
G ⊕ G = Gδ + G∗. It features in two well-known [49] Poisson brackets on C∞(G × G,R). For
F ∈ C∞(G × G,R), the G ⊕ G-valued left- and right-derivatives are determined by

〈DF (g1, g2), (X1, X2)〉2 :=
d
dt

∣∣∣∣
t=0

F (etX1g1, etX2g2),

〈D′F (g1, g2), (X1, X2)〉2 :=
d
dt

∣∣∣∣
t=0

F (g1etX1 , g2etX2 ),

(A.5)

where t ∈ R, (X1, X2) runs over G ⊕ G and (g1, g2) ∈ G × G. With these notations, the two
Poisson brackets read

{F ,H}± := 〈DF , ρDH〉2 ± 〈D′F , ρD′H〉2. (A.6)

The minus bracket is called the Drinfeld double bracket, and the plus one the Heisenberg double
bracket. The former makes G × G into a Poisson–Lie group, and the latter is symplectic in a
neighbourhood of the identity [49].

Now we introduce new variables in a neighbourhood of (1n, 1n) ∈ G × G. We need the con-
nected subgroups of G corresponding to the subalgebras in (2.3). These are denoted G>, G<

and G0, respectively, where G> contains the upper triangular complex matrices in G having 1
in their diagonal entries, and G0 contains the diagonal matrices in G. Then the connected Lie
subgroups of G × G associated with the subalgebras Gδ (A.2) and G∗ (A.3) are

Gδ := {gδ|gδ := (g, g), g ∈ G} (A.7)

and

G∗ =
{
η∗|η∗ :=

(
η>η0, (η0η<)−1

)
, η> ∈ G>, η0 ∈ G0, η< ∈ G<

}
. (A.8)

Since G ⊕ G = Gδ + G∗, there exist open neighbourhoods of the identity in G × G whose
elements can be factorized uniquely as

(g1, g2) = gδLη
−1
∗R = η∗Lg−1

δR , (A.9)

where (gδL, η∗R) and (gδR, η∗L) vary in corresponding open sets around the identity in Gδ × G∗.
Let us write

gδR = (g, g) and η∗R =
(
η>η0, (η0η<)−1

)
, (A.10)

and use the factorizations (A.9) to define the map

ψ : (g1, g2) �→ (g, J) with J := η>η
2
0η<. (A.11)
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By suitably choosing its domain, ψ gives a diffeomorphism between open subsets of G × G
containing (1n, 1n), but it is advantageous for us to regard its image as a subset of G × G.

The following statement can be verified by essentially the same calculations that were
presented in [20].

Proposition A.1. Let F and H be smooth real functions on the domain of the local
diffeomorphism ψ (A.11). Referring to (A.6), for F := F ◦ ψ−1 and H := H ◦ ψ−1 define

{F, H}2 := {F ,H}+ ◦ ψ−1. (A.12)

Then {F, H}2 (A.12) yields a Poisson bracket for smooth functions defined locally around
(1n, 1n) ∈ G × G, and it has the explicit form displayed in (2.16).

The proposition guarantees that the Jacobi identity holds for the restriction of the second
Poisson bracket (2.16) to an open set around (1n, 1n). This implies that (2.16) gives a Poisson
bracket on C∞(M,R), too. Indeed, as determined by (2.16), the Poisson brackets of the coor-
dinate functions on M provided by the matrix elements (2.19) and the components of J are
real-analytic functions on M, and thus the Jacobi identity holds for them globally since we
know from the proposition that it holds on an open set.

Remark A.2. Incidentally, by writing ∇1F(g, J) = gd1F(g, J), where d1F is defined simi-
larly to (2.13) using that G is an open subset of G, one may extend both Poisson brackets
(2.15) and (2.16) to C∞(G × G,R) as well.

Remark A.3. For the aficionados of Poisson–Lie groups, we remark that u(n)δ < Gδ has the
property that its annihilator inside G∗ (A.3) with respect to the pairing (A.1) is a Lie subalgebra
ofG∗. By applying the general theory [49], one can trace back the closure statements of lemmas
3.1 and 3.2 to this property. We gave direct proofs of these lemmas, and thus there is no need
to elaborate this point.

Appendix B. A remark on the proof of lemma 4.2

The goal of this appendix is to help those readers who wish to go through the details of the last
step of the proof of lemma 4.2, which requires the demonstration of the following identity:

X := 〈(∇2 f )−, (∇′
2h)−〉+ 〈(∇′

2 f )+, (∇2h)+〉 − E( f , h)

= 4〈(d2 f )+, (J+(d2h)+J−)+〉+ 4〈(d2 f )−, (J−(d2h)−J+)−〉, (B.1)

where E( f , h) stands for the two terms obtained by exchanging f and h. We note that X as
defined above can be expressed in the alternative form

X = 〈[d2 f , J]+, (Jd2h + d2hJ)+〉+ 〈Jd2 f , d2hJ〉 − E( f , h). (B.2)

This was also used in the proof of theorem 3.5, and one can easily check it. When spelling out
the expression (B.2), it is convenient to write

f ± := (d2 f )± and h± := (d2h)±. (B.3)

With this notation, we have

[d2 f , J]+ = [ f +, J+] + [ f −, J−],

(Jd2h + d2hJ)− = (J+h+ + h+J+) + (J−h− + h−J−), (B.4)
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(Jd2h + d2hJ)+ = (J−h+ + h+J−) + (J+h− + h−J+). (B.5)

To verify the subsequent statements, one only needs to use the cyclic property of the trace form
(2.1) and that G+ is perpendicular to G−.

Lemma B.1. The following identity holds:

〈Jd2 f , d2hJ〉 − E( f , h) = 〈[ f +, h+] + [ f −, h−], J+J− + J−J+〉

+ 〈[ f +, h−] + [ f −, h+], (J−)2 + (J+)2〉. (B.6)

Lemma B.2. The following identity holds:

〈[d2 f , J]+, (Jd2h + d2hJ)+〉 − E( f , h)

= 2〈 f +, J+h+J− − J−h+J+〉

+ 2〈 f −, J−h−J+ − J+h−J−〉

+ 〈[h+, f +] + [h−, f −], J+J− + J−J+〉

+ 〈[h−, f +] + [h+, f −], (J−)2 + (J+)2〉. (B.7)

Finally, the claimed formula (B.1) follows by combining the statements displayed above.

Appendix C. Proof of proposition 4.7

We introduce the notations

S(x) := sinh x, C(x) := cosh x, q̂ := adq, (C.1)

and parameterize J according to (4.22), i.e.

J = p− R(q)ξl
⊥ − S(q̂)−1ξr

⊥ − ξl, ξl = ξl
⊥ + ξ0, (C.2)

where p = diag(p1, . . . , pn) ∈ G−
0 and R(q) = coth q̂ on G⊥. Note that S(q̂)−1 denotes the

inverse of the restriction of S(q̂) on G⊥. Referring to the functional calculus of linear oper-
ators, we have the identity S(q̂)−1 = (1/S)(q̂) on G⊥. We shall use that R(q) and S(q̂) both map
G±
⊥ to G∓

⊥ (3.29), respectively, and they vanish on G0, while G± are invariant subspaces of C(q̂).
We put

f (eq, J) = F(q, p, ξl
⊥, ξr

⊥, ξ0), h(eq, J) = H(q, p, ξl
⊥, ξr

⊥, ξ0). (C.3)

This leads to

(d2 f )− = dpF + S(q̂)dξr
⊥

F, (C.4)

(d2 f )+ = −dξ0F − dξl
⊥

F + C(q̂)dξr
⊥

F, (C.5)

and

∇1 f = dqF −
[
R(q)S(q̂)−1ξr

⊥ + S(q̂)−2ξl
⊥, S(q̂)dξr

⊥
F
]−

0
. (C.6)
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Here, dqF, dpF belong to G−
0 , and for the other derivatives see (4.28). We recall the formula

{ f , h}red
1 (eq, J) = 〈∇1 f , (d2h)−0 〉 − 〈∇1h, (d2 f )−0 〉

+ 〈R(q)[d2 f , J]+, (d2h)−〉 − 〈R(q)[d2h, J]+, (d2 f )−〉

+ 〈J+, [(d2 f )−, (d2h)−] − [(d2 f )+, (d2h)+]〉, (C.7)

which we have to rewrite in terms of F and H (C.3). To make the subsequent equations shorter,
we denote

Fq := dqF, Fp := dpF, F0 := dξ0F,

Fr
⊥ := dξr

⊥
F, Fl

⊥ := dξl
⊥

F, Fl :=Fl
⊥ + F0,

(C.8)

and will often omit the argument q, q̂ in R(q), S(q̂) etc. We shall write E(F, H) for any expression
obtained by exchanging the roles of F and H.

We start by inspecting

〈R[d2 f , J]+, (d2h)−〉 = 〈R[(d2 f )−, J−], (d2h)−〉+ 〈R[(d2 f )+, J+], (d2h)−〉.
(C.9)

Lemma C.1. We have the identity

〈R[(d2 f )−, J−], (d2h)−〉 − E( f , h) = 〈ξr
⊥, [Fr

⊥, Hr
⊥]〉+ 〈Cξl

⊥, [Fr
⊥, Hr

⊥]〉

+
(
〈Fp, [S−1ξr

⊥, CHr
⊥] + [Rξl

⊥, CHr
⊥]〉 − E(F, H)

)
. (C.10)

Proof. We first note that

〈R[(d2 f )−, J−], (d2h)−〉 = −〈[(d2 f )−, J−], R(d2h)−〉, (C.11)

and

R(d2h)− = R(dpH + SHr
⊥) = CHr

⊥. (C.12)

Then we substitute (d2 f )− and J−, which gives

〈R[(d2 f )−, J−], (d2h)−〉 − E( f , h)

=
(
〈[Fp + SFr

⊥, S−1ξr
⊥ − p], CHr

⊥〉 − E(F, H)
)

+
(
〈Fp, [Rξl

⊥, CHr
⊥]〉+ 〈CHr

⊥, [SFr
⊥, Rξl

⊥]〉 − E(F, H)
)
. (C.13)

By expanding S and C in terms of exponentials, one can check that

[SFr
⊥, CHr

⊥] − E(F, H) = S[Fr
⊥, Hr

⊥]. (C.14)

By combining this with the equality 〈V , S(q̂)W〉 = −〈S(q̂)V , W〉 (∀ V , W ∈ G), we find that

〈[Fp + SFr
⊥, S−1ξr

⊥ − p], CHr
⊥〉 − E(F, H)

= 〈ξr
⊥, [Fr

⊥, Hr
⊥]〉+

(
〈Fp, [S−1ξr

⊥, CHr
⊥]〉 − E(F, H)

)
, (C.15)

and

〈[CHr
⊥, SFr

⊥], Rξl
⊥〉 − E(F, H) = 〈[Fr

⊥, Hr
⊥], Cξl

⊥〉. (C.16)
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To get the last equality, we also used that S(q̂)R(q)ξl
⊥ = C(q̂)ξl

⊥. Putting together these
identities, the claim is proved. �

The other terms in the second and third lines of (C.7) can be spelled out straightforwardly,
and the result is summarized as follows.

Lemma C.2. The following equalities hold. First,

〈R[(d2 f )+, J+], (d2h)−〉 − E( f , h) = −2〈ξl, [CFr
⊥, CHr

⊥]〉

+
(
〈ξl, [Fl, CHr

⊥]〉 − E(F, H)
)
. (C.17)

Second,

〈J+, [(d2 f )−, (d2h)−]〉 = −〈ξl, [SFr
⊥, SHr

⊥]〉+
(
〈Fp, [ξl

⊥, SHr
⊥]〉 − E(F, H)

)
.

(C.18)

Third,

−〈J+, [(d2 f )+, (d2h)+]〉 = 〈ξl, [Fl, Hl] + [CFr
⊥, CHr

⊥]〉

+
(
〈ξl, [CHr

⊥, Fl]〉 − E(F, H)
)
. (C.19)

The next statement results by collecting the terms from the preceding two lemmas.

Lemma C.3. Denote by X the sum of the last two lines of (C.7). Then we have

X = 〈ξl, [Fl, Hl]〉+ 〈ξr, [Fr
⊥, Hr

⊥]〉

+
(
〈Fp, [Rξl

⊥ + S−1ξr
⊥, CHr

⊥] + [ξl
⊥, SHr

⊥]〉 − E(F, H)
)

+ 〈Cξl, [Fr
⊥, Hr

⊥]〉 − 〈ξl, [CFr
⊥, CHr

⊥] + [SFr
⊥, SHr

⊥]〉. (C.20)

To obtain (C.20), we used that Cξ0 = ξ0, and rewrote 〈ξr
⊥, [Fr

⊥, Hr
⊥]〉 coming from lemma

C.1 as

〈ξr
⊥, [Fr

⊥, Hr
⊥]〉 = 〈ξr, [Fr

⊥, Hr
⊥]〉+ 〈Cξ0, [Fr

⊥, Hr
⊥]〉 with ξr = ξr

⊥ − ξ0.

(C.21)

By spelling out C and S in terms of e±q̂ and using [eq̂V , eq̂W] = eq̂[V , W] (∀ V , W ∈ G) we get

[CFr
⊥, CHr

⊥] + [SFr
⊥, SHr

⊥] = C[Fr
⊥, Hr

⊥], (C.22)

which implies that the third line in lemma C.3 vanishes.

Lemma C.4. The following equalities hold:

〈∇1 f , (d2h)−0 〉 = 〈Fq, Hp〉+ 〈[Rξr
⊥ + S−1ξl

⊥, Fr
⊥], Hp〉, (C.23)

and

〈Hp, [Rξl
⊥ + S−1ξr

⊥, CFr
⊥] + [ξl

⊥, SFr
⊥]〉 = 〈[Rξr

⊥ + S−1ξl
⊥, Fr

⊥], Hp〉. (C.24)
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Proof. We use the identity (C.6) to write

〈∇1 f , (d2h)−0 〉 = 〈Fq − [RS−1ξr
⊥ + S−2ξl

⊥, SFr
⊥], Hp〉

= 〈Fq, Hp〉 − 〈RS−1ξr
⊥ + S−2ξl

⊥, S[Fr
⊥, Hp]〉

= 〈Fq, Hp〉+ 〈[Rξr
⊥ + S−1ξl

⊥, Fr
⊥], Hp〉. (C.25)

Regarding the second equality, we have

〈Hp, [Rξl
⊥ + S−1ξr

⊥, CFr
⊥] + [ξl

⊥, SFr
⊥]〉

= 〈R[Hp, ξl
⊥] + S−1[Hp, ξr

⊥], CFr
⊥〉 − 〈S[Hp, ξl

⊥], Fr
⊥〉

= 〈C2S−1[Hp, ξ
l
⊥] + R[Hp, ξ

r
⊥], Fr

⊥〉 − 〈[Hp, Sξl
⊥], Fr

⊥〉

= 〈Hp, [(S + S−1)ξl
⊥ + Rξr

⊥, Fr
⊥]〉 − 〈Hp, [Sξl

⊥, Fr
⊥]〉

= 〈Hp, [Rξr
⊥ + S−1ξl

⊥, Fr
⊥]〉, (C.26)

which finishes the proof. �

In terms of the new variables, we have {F, H}red
1 (q, p, ξl

⊥, ξr
⊥, ξ0) := { f , h}red

1 (eq, J). The
combination of lemma C.3, where the third line of the formula was shown to vanish, with
lemma C.4 gives

{F, H}red
1 = 〈Fq, Hp〉 − 〈Hq, Fp〉+ 〈ξl, [Fl, Hl]〉+ 〈ξr, [Fr

⊥, Hr
⊥]〉. (C.27)

This is the same as (4.32), and thus proposition 4.7 is proved.
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