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Abstract

Background: Earlier studies reported alterations of the kynurenine (KYN) pathway of tryptophan (TRP) metabolism in Parkinson’s dis-
ease (PD). The first rate-limiting enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase were observed upregulated,
resulting elevated KYN/TRP ratios in the serum and cerebrospinal fluid samples of patients with PD. More and more single nucleotide
polymorphisms (SNPs) have been identified in a population of PD. However, little is known about the impact of genetic variations of
the IDO on the pathogenesis of PD.Methods: SNP analysis of IDO1 was performed by allelic discrimination assay with fluorescently
labelled TaqMan probes and a subgroup analysis was conducted according to the age of PD onset. The frame shifts variant rs34155785,
intronic variant rs7820268, and promotor region variant rs9657182 SNPs of 105 PD patients without comorbidity were analyzed and
compared to 129 healthy controls. Results: No significant correlation was found in three SNPs between PD patients and healthy con-
trols. However, the subgroup analysis revealed that A alleles of rs7820268 SNP or rs9657182 SNP carriers contribute to later onset of
PD than non-carriers. Conclusions: The study suggested that SNPs of IDO1 influenced the age onset of PD and genotyping of SNPs in
certain alleles potentially serves as a risk biomarker of PD.

Keywords: kynurenine; tryptophan; indoleamine 2,3-dioxygenase; IDO; Parkinson’s diseases; single nucleotide polymorphisms;
biomarker; age; onset

1. Introduction

Parkinson’s disease (PD) is the second most prevalent
chronic progressive neurodegenerative disease character-
ized by motor symptoms such as tremor, rigidity, and hy-
pokinesia. The prevalence of PD is approximately 0.2%
on average in the general population, but it is increasing
with age up to 1.9% [1]. The disease affects primarily the
elderly, imposing a serious burden on the aging societies.
The non-motor symptoms may appear in early stages of the
disease and even before the appearance of classical motor
symptoms [2]. The comorbidity is common in PD patients
[3–8]. Relatively significant findings are autonomic dys-
function including arrhythmia, blood pressure irregularity,
asymmetric sweating, and incontinence and psychobehav-
ioral manifestations including dementia, depression, anxi-
ety, paranoia, and psychosis [9,10]. The occurrence of dys-
functions in autonomic modulation in PD patients mostly
impacts on psychobehavioral responses, and usually over-
laps with behavioral disorders [11–15]. The histopatholog-

ical and clinical hallmarks of PD include the degeneration
of dopaminergic neurons in the substantia nigra pars com-
pacta, the presence of Lewy bodies, and the positive re-
sponse to dopamine (DA) replacement therapy [16,17].

The etiology of PD remains poorly understood. Ge-
netic disposition, neurodevelopmental insuts, and environ-
mental factors are considered to play an important role in
the pathogenesis of PD [18]. Pathognomic findings are ab-
normal protein aggregation, elevated oxidative stress, mito-
chondrial dysfunction, increased glutamate excitotoxicity,
alteration of immune response, disturbance of the kynure-
nine pathway (KP) of tryptophan (TRP) metabolism, and
among others [19–27]. Altered levels and ratios of kynure-
nine (KYN) metabolites have been observed in neurologic
and psychiatric diseases; furthermore, KYN metabolites
have attracted a growing attention not only as potential
biomarkers, but also as cross-species and environmenen-
tal indicators [10,22–36]. Earlier studies revealed that
the activities of indoleamine 2,3-dioxygenase (IDO) 1/TRP
2,3-dioxygenase (TDO) were upregulated in PD patients
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compared to controls, which was indicated by elevation
of L-KYN/TRP ratios in the serum and in cerebrospinal
fluid (CSF) samples of the patients [37]. The cascade
of the KP produces several neuroactive metabolites such
as 3-hydroxykynurenine (3-HK) quinolinic acid (QUIN),
3-hydroxyanthranillic acid (3-HAA), and kynurenic acid
(KYNA) [38].

3-HK and 3-HAA generate reactive oxygen species
(ROS) [16]. An elevation of 3-HK levels was related to
excitotoxic injury and is observed in patients with neu-
rodegenerative diseases [10]. The neurotoxic effects of 3-
HK and 3-HAA involve the generation of superoxide an-
ion and hydrogen peroxide, which contribute to the oxida-
tive processes implicated in the pathophysiology of menin-
gitis [39]. QUIN is a free-radical metabolite. Inter-
feron (IFN)-γ activates IDO, formamidase, and kynurenine
3-monooxygenase (KMO) activities in human microglial
cells and macrophages, increasing QUIN synthesis [40].

KYNA is a broad-spectrum, competitive antagonist of
all three ionotropic excitatory glutamate receptors includ-
ing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor, kainate receptor, and N-methyl-
D-aspartate (NMDA) receptor [41]. However, KYNA
exhibited dual actions at AMPA receptors dependent
on its concentration: inhibitory at micromolar concen-
trations, while excitatory at nanomolar concentrations.
The micromolar concentrations are inhibitory, while the
nanomolar concentrations are facilitatory by allosteric
modulation of the AMPA receptor [42,43]. Furthermore,
KYNA facilitates memory enhancement in low doses [44].
The actions of KYNA at the α-7 nicotinic acetylcholine
receptor remain controversial [45]. KYNA has antioxidant
properties that scavenges ROS to suppress overshooting
inflammation in damaging tissues. Reduced concentra-
tions of KYNA may contribute to tissue damage and
inflammatory cell proliferation neurodegenerative diseases
[10,16,46]. In addition, KYNA was reported to contribute
to weight reduction without affecting osteogenesis [46].

The indoleamine 2,3-dioxygenase IDO1 is one of
the first rate-limiting enzymes that converts L-TRP to N-
formyl KYN in TRP metabolism, which play a crucial role
in governing concentrations of downward bioactive KYN
metabolites [16] (Fig. 1). Activation of IDO1 and the KYN
system promotes immunosuppressive effects by inhibition
of Natural Killer cells, inhibition of T cell functions, and ac-
tivation of the regulatory T cells [47]. The relationship be-
tween PD and the KP have been investigated in in vivo and
in vitro studies; however, only limited data are available on
the significance of genetic alterations of KP enzymes in PD
patients [48,49].

In this study we performed single nucleotide polymor-
phisms (SNPs) analysis in three loci of IDO1 in PD patients
and healthy controls. The frameshift mutation rs34155785
SNP causes a drastic change in the gene product. Both in-
tronic variant rs7820268 SNP, and promotor region variant

rs9657182 SNP affect the immune system. The T allelic
variants of the rs7820268 showed impaired CD8+ regula-
tory T cell function, while the C allele of rs9657182 SNP
was found more susceptible to IFN-alpha treatment, which
induced depressive symptoms [50] (Fig. 2). Secondly, a
subgroup analysis was conducted according to the age of
PD onset in search of the genetic link between the IDO1
variants and PD.

2. Materials and Methods
2.1 Ethics

The blood samples of 105 PD patients and 129 healthy
controls were examined for the study. All patients gave
their informed consent in accordance with the Declaration
of Helsinki, and the study was approved by theMedical Re-
search Council Scientific and Research Ethics Committee
(47066-3/2013/EKU (556/2013)). The samples were col-
lected at two sites (at the Department of Neurology, Fac-
ulty of Medicine, University of Szeged, Hungary, and at the
Department of Neurology and Cerebrovascular Diseases,
Pándy Kálmán County Hospital, Gyula, Hungary). The pa-
tient and the control groups were age- and gender-matched
(gender ratio p = 0.908 by chi-square test; mean age differ-
ence p = 0.310 by Student’s t-test). For data analysis, the
patient’s groupwas divided into two subgroups based on the
appearance of the first symptoms: the early-onset (EOPD;
disease onset≤60 years) and the late-onset (LOPD; disease
onset >60 years) group. The onset of the disease could not
be established for two patients. The sociodemographic data
of the two groups are presented in Table 1.
2.2 DNA Isolation and Polymerase Chain Reaction

Peripheral whole blood samples (stored at –80 °C)
were subjected to genomic DNA isolation by the desalting
method developed by Miller et al. [51]. The purified ge-
nomic DNA were stored at –20 °C at the biobank of the
Department of Neurology, Faculty of Medicine, University
of Szeged (biobank license: Regional Human Biomedical
Research Ethics Committee: 135/2008).

The IDO1 genotypes were determined by allelic dis-
crimination study with TaqMan probes. Three SNP of the
IDO1 gene were investigated. The rs34155785 SNP is a
frame shift mutation in the human genome (results a Phe
(F)>Leu (L) exchange), which localize in the sixth exon of
the IDO1 gene. The rs7820268 SNP is intronic SNP (G/A
change) of the IDO1 gene is localized in the fourth intron.
The rs9657182 SNP (G/A change) is localized 5’ upstream
from the beginning of the IDO1 promoter region.

For the rs34155785 SNP, the following primers were
used for the amplification of the DNA forward primer:
5’- CTA AAC TTC TTG CCT TCC TTA TC-3’; reverse
primer: 5’- AGA CGT ACT TTG ATT GCA GA-3’. The
following probes were applied for allelic discrimination:
wild type allele: 5’-Fam- GAC GTT TTG TTC TCA TTT
CGT G-BHQ-1-3’; and C allele: 5’-Hex- GAC GTT TTG
TTG CTC ATT TCG TG-BHQ-1-3’.
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Fig. 1. The kynurenine pathway (KP). The KP is the degradation route of tryptophan (TRP) metabolism producing an end-product
nicotinamide adenine dinucleotide (NAD). The indoleamine 2,3-dioxygenase (IDO) 1, IDO2, and the tryptophan 2,3-dioxygenase (TDO)
(1) are the first rate-liming enzymes that convert the L-tryptophan (TRP) toN-formyl-L-kynurenine. N-formyl-L-kynurenine is converted
by formamidase (2) to L-kynurenine (L-KYN). L-KYN is metabolized into various bioactive compounds: kynurenic acid, picolinic acid,
3-hydroxy-L-kynurenine (3-HK), and quinolinic acid. The following are main enzymes of the KP: 1: tryptophan dioxygenase (TDO)
and indoleamine 2,3-dioxygenase (IDO), 2: formamidase, 3: kynurenine aminotransferases (KATs), 4: kynurenine 3-monooxygenase
(KMO), 5: kynureninase, 6: kynureninase, 7: non-specific hydroxylation, 8: 2-amino-3-carboxymuconate-semialdehyde decarboxylase
(ACMSD), 9: 3-hydroxyanthranilic acid oxygenase, 10: quinolinic acid phosphoribosyltransferase.
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Fig. 2. Schematic of the indoleamine 2,3-dioxygenase (IDO) 1 gene. The IDO1 gene consist of 10 exons and 9 introns localized in
8p11.21 chromosome region. It has 9 transcript variants. The encoded protein is 403 amino acid long. The rs9657182 SNP is located 5’
upstream from the promoter region of the IDO1 gene. The rs7820268 SNP is localized in the fourth intron and the last rs34155785 SNP,
which is a frame shift mutation, is located in the sixth exon.

Table 1. The sociodemographic data of PD patients and controls.

Group Male Female
Age

Age at onset (Mean ± SD)
Mean ± SD Median Min Max

PD patients (n = 105) 48 57 66.42 ± 9.24 68 34 84 58.81 ± 10.970
Controls (n = 129) 58 71 65.26 ± 8.1 63 53 87 -
Min, minimum age in the group; Max, maximum age in the group.

The rs7820268 SNP, the following primers were ap-
plied for the amplification of the G/A at chromosome 8:
forward primer: 5’- TAA ATG TAA TGC CTA CTG AAG
AA-3’; reverse primer: 5’- CCT TAT GAA AGC AGC
CAT G-3’. The following probes were designed for allelic
discrimination: G allele: 5’-Fam- GTA GCA TTC AAT
CAAATAGCAACAAC-1-3’; and A allele: 5’-Hex- GTA
GCA TTC AAT TAA ATA GCA ACA AC-1-3’.

The rs9657182 SNP, the following primers were used:
forward primer: 5’- ATT GTT GTA GGT CAT AAA AGG
AG-3’; reverse primer: 5’- TGA AGA CAC AAC ACT
TAA GGA-3’. The following probes were applied for the
separation of the alleles: G allele: 5’-Fam- CCA TCT TTA
ACCACGGCCA-BHQ-1-3’; A allele: 5’-Hex- CCATCT
TTA ACC ATG GCC A-1-3’.

The parameters for PCR amplifications were as fol-
lows: 95 °C for 3 min, followed by 44 cycles of 95 °C for
10 s, and then 59 °C for 50 s (rs34155785 SNP) or 57 °C for
50 s (rs7820268 SNP) or 55 °C for 50 s (rs9657182 SNP).
The genotyping specific master mix from the PCR Biosys-
tem (2x PCRBio Genotyping mix Lo-ROX) was used. The
PCR experiments were performed with a Bio-Rad CFX96
C1000 real-time thermal cycler machine, and the data anal-
ysis was carried out with Bio-Rad CFX Manager version
1.6 (Applied Biosystems, University Park, IL, USA).

2.3 Statistical Methods

For the analysis of genotype frequencies and al-
lele distributions SPSS software version 26.0 (IBM Corp.,

Chicago, IL, USA) and GraphPad Prism 6.01 (GraphPad
Software, San Diego, CA, USA) was used. We applied the
chi-square test for comparing the distributions of the exam-
ined genotypes and alleles, and the t-test for comparing the
averages in the two groups. Odds ratio (OR) and 95% con-
fidence interval (CI) was calculated for the SNP variants in
the groups of early and late onset. A p value less than 0.05
was considered statistically significant.

3. Results
We determined the frequencies of three polymor-

phisms of IDO1 gene in PD patients and matching healthy
controls. The observed genotype frequencies of the PD
and the control groups were in accordance with the Hardy-
Weinberg equilibrium.

The genotype distribution of rs34155785 was 105
(100%) homozygous wild-types in the PD patient group,
and 129 (100%) in the control group, we did not detect the
insertion allele in either group. The allele frequencies were
210 (100%) wild-type alleles in the patient and 258 (100%)
in the control group. This SNP variant is probably not as-
sociated with PD and do not affect the age at disease onset
either, as no allelic differences could be observed between
the two groups.

The genotype distribution of rs7820268 in the patient
cohort was 56 GG, 38 GA and 11 AA, and in the control
group was 59 GG, 63 GA and 7 AA. The allele frequencies
were very similar, with 71.4% G allele and 28.6% A allele
in the PD group and 70.2% G and 29.8% A in the controls
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Table 2. Genotype and allele distribution of the rs7820268 and rs9657182 SNPs.
rs7820268

Genotype PD patients Controls χ2 p value

GG 56 (53.3%) 59 (45.7%)
4.744 (df = 2) 0.098AG 38 (36.2%) 63 (48.8%)

AA 11 (10.5%) 7 (5.4%)
Allele
G 150 (71.4%) 181 (70.2%)

0.091 (df = 1) 0.763
A 60 (28.6%) 77 (29.8%)
Allele distribution

G
Carriers 94 (43.5%) 122 (56.5%)

2.079 (df = 1) 0.149
Non-carriers 11 (61.1%) 7 (38.9%)

A
Carriers 49 (41.2%) 70 (51.8%)

1.337 (df = 1) 0.248
Non-carriers 56 (48.7%) 59 (51.3%)

rs9657182

Genotype PD patients Controls χ2 p value

GG 29 (27.6%) 23 (17.8%)
3.368 (df = 2) 0.186AG 48 (45.7%) 70 (54.3%)

AA 28 (26.7%) 36 (24.9%)
Allele Patients
G 106 (50.5%) 116 (49.5%)

1.412 (df = 1) 0.235
A 104 (45%) 142 (55%)
Allele distribution

G
Carriers 77 (45.3%) 93 (54.7%)

0.045 (df = 1) 0.832
Non-carriers 28 (43.8%) 36 (56.3%)

A
Carriers 76 (41.83%) 106 (58.2%)

3.210 (df = 1) 0.073
Non-carriers 29 (55.8%) 23 (44.2%)

(Table 2). This SNP variant is not significantly associated
with the PD (genotype: p = 0.093, G allele: p = 0.149, A
allele: p = 0.248), but it affects the age at disease onset
(genotype: p = 0.042). The frequency of A allele was sig-
nificantly higher in LOPD group than in EOPD group (p =
0.024, OR = 2.471 95% CI (1.117–5.467)) (Table 3).

The genotype distribution rs9657182 was 29 GG, 48
GA and 28 AA in the PD group, and 23 GG, 70 GA and 36
AA in the control group. The allele frequency results did
not show remarkable differences, with 50.5% G allele in
the PD group vs 45% G allele in the controls, and 49.5% A
allele in the PD group vs 55% A allele in the control group
(Table 2). This SNP variant is likewise not associated with
PD (genotype: p = 0.186, G allele: p = 0.832, A allele:
p = 0.073), but it may influence the age at disease onset
(genotype: p = 0.091, G allele: p = 0.131, A allele: p =
0.042) (Table 3). Similarly, the A allele seems to be a factor
affecting the age at onset of PD (Table 3), as carrying the
allele associates with LOPD (54.7% vs 45.3%), and non-
carrying associates with EOPD (67.9% vs 32.1%) (OR =
2.546, 95% CI (1.020–6.351)), p = 0.042 for AA + AG vs
GG).

4. Discussion
DA receptors, catechol-O-methyltransferase,

monoamine oxidase B, NMDA receptors, adenosine
A2A receptors, and cholinergic receptors are main targets
of PD medication approved for clinical use. The drugs
frequently cause serious side effects, become less effectual
during treatment, and eventually lead to development of
drug-resistant PD such as L-DOPA-resistant PD [52,53].
Thus, a search for novel therapeutic targets is under exten-
sive research. Intervention in the KP of TRP metabolism,
adjacent biosystems, and the gut microbiota has been
shed light on in search of novel biomarkers and drugs
for neurodegenerative and psychiatric diseases [54–61].
Glutamate and acetylcholine are main neurotransmitters
responsible for cognition and behavior in which bioac-
tive KYNs mediate neurotoxic, neuromodulatory, and
immunological response in reaction to pathological insults
[10,54,62].

The decreased concentrations of L-KYN and KYNA
in the frontal cortex, putamen and SNpc, and elevated con-
centrations of 3-HK in the putamen and SNpc were ob-
served in postmortem brain of PD patients [62,63]. Clinical
manifestations of dysregulation of kynurenine metabolism,
including impairments in memory and learning (i.e., mem-
ory consolidation, poor planning, defects in set-shifting,
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Table 3. Genotype frequency, allele distribution and age at onset of the PD patients.
rs7820268

Genotype EOPD LOPD χ2 p value OR (95% CI)

GG 34 (64.2%) 21 (42%)
6.352 (df = 2) 0.042 -AG 13 (24.5%) 24 (48%)

AA 6 (11.3%) 5 (10%)
Allele distribution

G
Carriers 47 (51.1%) 45 (48.9%)

0.047 (df = 1) 0.828 1.149 (0.327–4.031)
Non-carriers 6 (54.5%) 5 (45.5%)

A
Carriers 19 (39.6%) 29 (60.4%)

5.073 (df = 1) 0.024 2.471 (1.117–5.467)
Non-carriers 34 (61.8%) 21 (38.2%)

rs9657182

Genotype EOPD LOPD χ2 p value OR (95% CI)

GG 19 (35.8%) 9 (18%)
4.795 (df = 2) 0.091 -AG 23 (43.4%) 24 (48%)

AA 11 (20.8%) 17 (34%)
Allele distribution

G
Carriers 42 (56%) 33 (44%)

2.280 (df = 1) 0.131 0.508 (0.210–1.232)
Non-carriers 11 (39.3%) 17 (60.7%)

A
Carriers 34 (45.3%) 41 (54.7%)

4.141 (df = 1) 0.042 2.546 (1.020–6.351)
Non-carriers 19 (67.9%) 9 (32.1%)

EOPD, Early onset <60 years; LOPD, Late onset ≥ 60.

impaired working memory, and executive dysfunction) are
common in PD and correlate with a typical cognitive pattern
due to prefrontal cortex dysfunction [64–70]. In addition
to the central nervous system, peripheral samples showed
abnormalities such as the increased activity of kynurenine
aminotransferase (KAT) and elevated KYNA levels in red
blood cells, which may be a protective response [71]. Nat-
ural product curcumin was reported to relieve pain and
stress through the KYN metabolic pathway [72]. The KP
is proposed to be a potential biomarker and target for treat-
ment of Alzheimer’s diseases, schizophrenia, and depres-
sion [55,72–77]. Psychedelic psilocybin was reported to
relieve depressive and anxiety symptoms of patients with
terminal illness [78]. The action is considered at least partly
through the KP. Furthermore, delivery of active agents to
the brain through the blood-brain barrier is under extensive
research [79]. Other in vitro and in vivo studies showed
therapeutic opportunities through elevated levels of KYNA
in PD [48,80,81].

However, in recent years growing body of evidence
has accumulated on the importance of the KP in PD patho-
genesis, only limited data are available on the genetic al-
terations of KP enzymes in PD yet. Until now, only two
kynurenine enzymes, ACMSD and KMO genes polymor-
phisms have been investigated in PD [82,83]. ACMSD play
a key role in the KP, generating neuroactive metabolites
whichmay play a crucial role in PD pathogenesis by inhibit-
ing excitotoxicity and inflammation, therefore it could be a
potential therapeutic target in PD [84]. Genome-wide asso-

ciation studies described that ACMSD polymorphisms are
risk factors in PD [85–87], however its importance could
not be confirmed in different populations [88,89].

Previously, SNP analysis of KMO in PD and healthy
controls were compared and a subgroup analysis was con-
ducted according to age of onset. Four loci of SNPs did not
reveal any significance between PD and healthy controls
and between subgroups of age of onset [90].

In this study we compared the frequencies of three
SNPs of IDO1 gene between PD patients and control in-
dividuals. Our results revealed that the investigated SNPs
were not associated with PD, however, the rs7820268 and
the rs9657182 SNPs showed significant associations with
age of onset of the disease. The A allele of rs7820268 and
rs9657182 SNPs associated with LOPD. It is well known
that there are some genetic factors which show associa-
tions with age of onset in PD. Several mutations in PINK-1,
parkin, LRRK2 and GBA genes are associated with EOPD.
Our findings suggest that the A allele of these SNPs poten-
tially delayed the development of PD [91–95].

The IDO1 gene is located on chromosome 8 span-
ning 14,900 nucleotides. It encodes the 403 amino acid
IDO1 enzyme. IDO1 plays a crucial role in the production
of immune and neuroactive KP metabolites, therefore its
importance in immunomodulation and inflammatory pro-
cesses is expected [96]. Previously have been described,
that the minor allele of the rs7820268 SNP was shown
to impair CD8+ regulatory T cell function [97]. The al-
lele may lead to beneficial immunosuppressive effects in
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the rs7820268 SNP carriers in PD. The rs9657182 SNP
is linked to moderate or severe IFN-α-induced depressive
symptoms in Caucasian patients with chronic hepatitis C.
The SNP is located in the linkage disequilibrium block en-
compassing 20 kilobases upstream of IDO1 as well as in-
cludes at least six additional polymorphisms that may con-
tain binding sites for immunoregulatory proteins or may
have epigenetic regulatory function [50]. Furthermore, the
effects of endogenous metabolites and synthetic analogues
on behavioral domains have been extensively studied in an-
imal models [98,99]. The downstream metabolite of the
KP, kynurenic acid showed an antidepressant-like action
in the animal model of depression [100]. Indoximod is a
methylated TRP that inhibits IDO to maintain or elevate
TRP levels important to T cell function. Interestingly, a
case study reported that indoximod induced parkinsonism
in a patient treated for metastatic breast cancer [101]. Re-
cently, an IDO1 inhibitor (1-Methyltryptophan) was tested
inmurinemodel of PD, and the results showed improved lo-
comotor activities, reduced level of neuroinflammatory and
neuronal apoptotic markers. These findings suggest that the
IDO1 inhibition could be a potential alternative in the phar-
macotherapy of PD [102].

PD is a complex multifactorial disease, underlying
mechanisms causing the pathological conditions of PD is
not fully understood yet. In addition to the age, which is
the most important risk factor for neurodegenerative dis-
ease, genetic, epigenetic, environmental and lifestyle are
initiation factors which play a role in the pathogenesis of
PD[16,90,103–113]. The preclinical studies, and diagnos-
tic precision of PD are under extensive research, applying
in vitro, in vivo, and in silico methodologies [114–119].
Until now, 21 PARK genes have been described in human
genome as causative factors of the disease, furthermore, ge-
netic variants of 26 loci have been shown to be important
riskmodifiers for PD. Beside genetic factors, there are more
evidence that epigenetic mechanisms, like DNA methyla-
tion, histonemodifications and dysregulation of non-coding
RNAs (e.g., long non-coding RNA and microRNA) play a
role in pathogenesis of PD [109,120]. Several studies de-
scribed that the gene expression of different genes is al-
tered in PD, which may help predict the PD progression,
and identify new targets for therapeutic intervention [121–
123]. Moreover, it is evident that the KP are involved in the
pathogenesis of PD. Our result, in line with data of others’,
strengthen the involvement of IDO1 in the pathogenesis of
PD. Furthermore, the influence of SNPs on the non-motor
symptoms of PD is of particular interest. The gene variants
of alpha-synuclein SNCA rs11931074 and glucosylcerami-
dase beta 1 rs708606 have been reported to correlate with
hyposomnia in PD [124,125]. The direct involvement of
KP metabolism in the non-motor symptoms of PD is to be
explored.

This study had several limitations including its rela-
tively small sample size, the small number of SNP loci, het-

erogeneity of the study subjects, and the collection of blood
samples at a single center. Furthermore, enzyme activities
of IDO1, IDO2, and TDO were not measured. Thus, it was
not known if IDO2 and/or TDO compensated the polymor-
phic variants of IDO1. Prospective studies in larger patient
number, with the larger number of SNP loci, and data with
IDO2 and TDO activities are needed to validate our find-
ings.

5. Conclusions
This study explored the potential role of IDO1 gene

polymorphisms in PD. None of three IDO1 SNPs investi-
gated in this study were significantly associated with PD;
however, two IDO1 SNPs showed correlated with the age
onset of PD, suggesting that the gene polymorphisms may
not play a direct role in pathogenesis of PD, but may influ-
ence the disease onset probably as secondary risk factors.
The further investigation is expected in search of roles of
gene polymorphism in risk, onset, prognosis, progression
of PD including SNPs, structural variants, and the disease-
related pathways.
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aspartate; PD, Parkinson’s disease; QUIN, quinolinic acid;
ROS, reactive oxygen species; SNP, single nucleotide
polymorphisms; TDO, tryptopan 2,3-dioxygenase; TRP,
tryptophan.
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