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Abstract
The ability to grasp relevant patterns from a continuous stream of environmental information is called statistical learning. 
Although the representations that emerge during visual statistical learning (VSL) are well characterized, little is known about 
how they are formed. We developed a sensitive behavioral design to characterize the VSL trajectory during ongoing task 
performance. In sequential categorization tasks, we assessed two previously identified VSL markers: priming of the second 
predictable image in a pair manifested by a reduced reaction time (RT) and greater accuracy, and the anticipatory effect on 
the first image revealed by a longer RT. First, in Experiment 1A, we used an adapted paradigm and replicated these VSL 
markers; however, they appeared to be confounded by motor learning. Next, in Experiment 1B, we confirmed the confound-
ing influence of motor learning. To assess VSL without motor learning, in Experiment 2 we (1) simplified the categorization 
task, (2) raised the number of subjects and image repetitions, and (3) increased the number of single unpaired images. Using 
linear mixed-effect modeling and estimated marginal means of linear trends, we found that the RT curves differed significantly 
between predictable paired and control single images. Further, the VSL curve fitted a logarithmic model, suggesting a rapid 
learning process. These results suggest that our paradigm in Experiment 2 seems to be a viable online tool to monitor the 
behavioral correlates of unsupervised implicit VSL.
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Introduction

During perception and sensory learning, we can extract con-
textually relevant information from the environment. Due 
to the infovore nature of our sensory system, it is capable 
of dividing the continuous information stream into chunks 
and grasping relations between them (Biederman & Ves-
sel, 2006). The implicit process by which these patterns are 
recognized and built into internal representations is called 
statistical learning (SL).

This approach was used initially in studies related to lan-
guage acquisition (Saffran, Aslin, & Newport, 1996a; Saf-
fran, Newport, & Aslin, 1996b), where segmentation of sen-
sory streams is described as “the use of regularities to parse 
the world into meaningful lexical units” (Giroux & Rey, 

2009). Additionally, SL has been demonstrated in audition 
(Saffran et al., 1999) and haptics (Conway & Christiansen, 
2005), and studied extensively regarding vision in the con-
text of spatial (Fiser & Aslin, 2001; Fiser & Aslin, 2005) and 
temporal regularities (Fiser & Aslin, 2002; Kaposvari et al., 
2018; Meyer et al., 2014; Olson & Chun, 2001), including 
in multisensory contexts (Seitz et al., 2007).

Initial studies employed a passive familiarization phase 
during which a continuous stream of stimuli was presented 
to participants, followed by an “offline” post-presentation 
test of learning outcome (Fiser & Aslin, 2001; Fiser & Aslin, 
2002; Fiser & Aslin, 2005; Saffran et al., 1999). During the 
familiarization phase, participants either pay attention pas-
sively or perform unrelated cover tasks so that the learning 
process is supposed to be implicit. The most frequently used 
offline measurement of SL is the familiarity test where the 
participants have to choose between the earlier presented 
patterns and randomly generated (novel) patterns. This para-
digm provides information about the learning outcome, but 
not about the progression of learning, the strategies used, or 

 * Péter Kaposvári 
 kaposvari.peter.1@med.u-szeged.hu

1 Department of Physiology, Albert Szent-Györgyi Medical 
School, Faculty of Medicine, University of Szeged, 10. Dóm 
tér, Szeged 6720, Hungary

/ Published online: 4 April 2022

Memory & Cognition (2022) 50:1530–1545

1 3

http://orcid.org/0000-0002-5345-5987
http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-022-01302-5&domain=pdf


the attention of subjects (Barakat et al., 2013; Bertels et al., 
2012; Jonaitis & Saffran, 2009.

The world around us is changing dynamically, therefore 
it is necessary to make continuous inferences and adapt our 
knowledge accordingly. Thus, perception consists of not 
a series of static snapshots of the surroundings, but rather 
an ever-changing environmental model that is constantly 
updated based on the successes and errors of its predictions 
(Maloney & Mamassian, 2009). SL studies have provided 
evidence that the measured SL is the result of a complex 
dynamic process involving perceptual learning (Barakat 
et al., 2013; Fiser & Lengyel, 2019). However, the dynam-
ics of learning cannot be investigated with those initial 
approaches using “static” offline measurements focusing 
only on the learning outcome. Thus, there is a compelling 
need for online measurement of SL to investigate this com-
plex learning process. Such an online approach could also 
provide information about how a statistical pattern is gradu-
ally integrated into the representation, and how predictions 
influence perception. Additionally, online measurements 
with unrelated parallel tasks may be superior for control-
ling the level of attention, which is essential for SL (Turk-
Browne et al., 2005), compared to offline studies using a 
passive fixation paradigm during which the level of attention 
may vary widely. First, parallel tasks occupy participants 
and help to keep the task implicit. Second, since the task is 
object related, it focuses attention on the stimuli.

Previous studies of SL have focused on language acquisi-
tion, and they represent use of explicit knowledge (Amato & 
MacDonald, 2010; Gómez et al., 2011; Misyak et al., 2010) 
as the participants knew that the syllables could be part of 
an artificial language and so actively searched for artificial 
words. This may result in more robust inferences compared 
to an implicit task design and even rely on distinct underly-
ing mechanisms (Batterink, Reber, Neville, & Paller, 2015a; 
Batterink, Reber, & Paller, 2015b). Moreover, the higher 
level of attention of participants in an explicit procedure 
affects the resulting learning trajectory (Turk-Browne et al., 
2005).

A few previous studies have examined visual statistical 
learning (VSL) online. For instance, Siegelman and col-
leagues used a self-paced paradigm (Karuza et al., 2014) 
to monitor the trajectory of VSL (Siegelman et al., 2018) 
and were able to describe the learning curve. However, 
the participants were informed before the test that the pre-
sented information stream contains regularities that may 
have affected the learning mechanism. Since explicit and 
implicit processes likely differ mechanistically, there is still 
a need for an online measurement task that assesses implicit 
SL. Turk-Browne et al. (2010) came closest to achieving 
online measurement of implicit SL. They measured VSL 
using a two-alternative forced-choice (2AFC) categoriza-
tion task with associated stimulus pairs as the regularity 

during event-related functional magnetic resonance imag-
ing (fMRI). As they applied a control condition consisting 
of single stimuli (i.e., stimuli with no statistical relation to 
any other stimuli), it was possible to identify two markers 
of learning: an effect of anticipation on the first stimulus of 
the pair as shown by a prolonged reaction time (RT), and a 
priming effect on the second stimulus of the pair relative to 
single stimuli manifested by a reduced RT.

Processing of the first image in a pair is affected because 
it has an anticipatory role through portending the next image 
in the stimulus pair without explicit knowledge of the sub-
ject. This effect has been characterized by a longer RT for 
this condition in that study. Since the second image is always 
preceded by the first, the second one becomes predictable, 
which can be monitored with a shortened RT. Familiarity 
testing was used to confirm learning at the end of each ses-
sion (Turk-Browne et al., 2010).

However, the task used by Turk-Browne et al. (2010) may 
have been confounded by motor priming. In their paradigm, 
there were two categories (scenes and faces) and three con-
ditions (first image of a pair, second image of a pair, and sin-
gle image). In the stimulus pairs, the picture categories were 
always different (face-scene or scene-face). Therefore, the 
appropriate response was somewhat predictable since if the 
current picture is a face, there is about a 65% chance that the 
next one will be a scene, and this predictor becomes 100% 
accurate in the case of stimulus pairs. Also, repetition of a 
category can only occur in the case of a single image or the 
first image of a pair, prolonging their RTs. This unbalanced 
category transition could introduce additional procedural or 
motor learning.

Our main goal was to develop an online measurement to 
test the behavioral correlates of unsupervised implicit VSL 
and to characterize the learning process. We adapted the 
paradigm of Turk-Browne et al. (2010), and our first aim was 
to investigate the presence of a possible motor learning con-
found. After we confirmed and eliminated this confound by 
balancing the category transitions, the design showed a dras-
tically reduced effect on anticipation and priming. Therefore, 
our next aim was to modify the paradigm in order to acquire 
sufficient data for measuring the priming and/or anticipa-
tion effects and tracking the learning process online. Using 
our novel design, we successfully demonstrated the prim-
ing effect. Moreover, our results suggest very fast learning 
dynamics. Overall, our paradigm could be a useful online 
measure of unsupervised, implicit VSL.

Experiment 1A

Considering recent literature, we decided to reproduce the 
behavioral part of the experiment designed by Turk-Browne 
et al. (2010) with some modification, both to reveal the 
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learning effect and to acquire sufficient data for characteri-
zation of the learning trajectory.

First, we increased the sample size (both the number of 
subjects and the number of runs) to increase the statistical 
power. Second, since the accuracy (ratio of correct answers) 
in the original study was not sensitive enough to show the 
anticipation or priming effect, we made the task more chal-
lenging by introducing a complex discrimination require-
ment for the different sets of stimuli and by increasing the 
stimulus duration while retaining the original regularity. 
These modifications reduced the ceiling effect and increased 
the sensitivity of categorization speed (RT) and accuracy as 
indicators of SL.

Material and methods

Participants

Thirty-eight healthy right-handed volunteers with normal or 
corrected-to-normal vision participated in Experiment 1A 
(20 females, mean age: 25.34 years; range: 21–41 years). All 
provided written informed consent and the study protocol 
was approved by the Human Investigation Review Board of 
University of Szeged (266/2017-SZTE)

Stimuli

Complex gray-scale images of everyday objects were pre-
viously selected from the Bank of Standardized Stimuli 
(BOSS) (Brodeur et al., 2010; Brodeur et al., 2014). Selec-
tion was based on the results of a previous 2AFC discrimi-
nation task in which five subjects who were not participants 
of the current experiments were asked to decide whether a 
presented object fits into an imaginary shoebox (33 cm × 19 
cm × 12 cm). Those stimuli for which the responses were 
concordant across the five participants were selected and 
labeled “Large” or “Small.” In Experiment 1A, 48 stimuli 
were used from both categories (96 distinct stimuli in total), 
of which 12 (six Large, six Small) were used for each of the 
eight runs constituting one experimental session. All stimuli 
subtended approximately 7.5° × 7.5° in visual angle.

Design

A sequence of these object images was presented to the par-
ticipants, and behavioral responses (RT and accuracy) were 
recorded across eight runs. For one run, six-six randomly 
chosen images were used from both categories of the stimu-
lus set to create a temporal sequence in a pseudo-random 
order. The same stimuli were never presented again in subse-
quent runs. The 12 stimuli formed information chunks con-
sisting of four single stimuli and four associated stimulus 
pairs. One run contained a sequence of 72 trials divided into 
six cycles. In each cycle, all information chunks appeared 
once in random order with the constraint that at the juncture 
of cycles, a stimulus could be repeated only after three dif-
ferent stimuli had been presented. Thus, the stimulus pairs 
were well distributed within the sequences to control repeti-
tion effects.

Task and procedure

The Serial Reaction Time (SRT) protocol was adapted from 
Turk-Browne et al. (2010) with modifications. The partici-
pants performed the discrimination task in a sound-attenu-
ated room with dimmed light. They were requested to indi-
cate whether the presented object could fit into a shoebox 
(was “Small”) by pressing button 1 with their right index 
finger or not (was “Large”) by pressing button 2 with their 
right middle finger on a numeric keyboard (Fig. 1). No feed-
back was provided during the task. The response accuracy 
(correct responses/total responses) and RTs were recorded. 
Stimuli were presented for 300 ms, and the next stimulus 
was presented only after the participant responded to the 
current stimulus (so trials were subject paced). The intertrial 
interval (ITI) was fixed to 500 ms. The experiment was run 
in Matlab (Mathworks, Natick, MA, USA) Psychtoolbox 
(Brainard, 1997) using an HP 650 ProBook G4 (screen: 15.6 
in., resolution 1,920 × 1,080 pixels, 60 fps). Participants 
were seated approximately 60 cm from the screen. They 
were naïve to the pattern of the stimulus stream (see below 
for details of the pattern). After each experimental session, 
participants were asked the following questions to deter-
mine if the regularity was explicitly recognized: (1) What 

Fig. 1  Schematic of the task trial design for Experiments 1A and 1B
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is your impression of the experiment? (2) Do you have any 
observations about the experiment? (3) Did you recognize 
any pattern regarding pressing the response keys? (4) Did 
you find any pattern regarding the images? (5) Did you find 
any systematic regularities about the order of the images?

RT and accuracy were measured in a discrimination task 
in which the participants were asked to categorize the pre-
sented objects according to real-world size as fitting in a 
shoebox (“Small,” as the badminton shuttlecock at right) 
or not (“Large” as the piano at left). The stimulus duration 
was 300 ms and a subsequent image was presented only 
after a response (subject paced). The intertrial interval was 
constant (500 ms).

Pattern

To counterbalance the possible effects of individual stim-
uli, six stimuli were randomly chosen from both categories 
for each participant (Fig. 2A). Eight selected stimuli were 
grouped into associated pairs in fixed order. Here, we would 
like to introduce two definitions: category-repeating pair 
and category-alternating pair. By category-repeating pair, 
we mean that the categories of the images in the stimulus 
pair are the same (both do fit or do not fit into the shoe-
box), while category-alternating pair means the categories 
of the images are different in the pair (one of them fits into 
the box, the other does not). In Experiment 1A, pairs were 
category-alternating, while in Experiments 1B and 2, some 
were category-repeating. In Experiment 1A, two of the 
four pairs per run started with Small objects (Small–Large) 
and the other two with Large objects (Large–Small). The 
remaining two Large and two Small objects were presented 
as unpaired single stimuli. The stimulus combinations in 
the associated pairs formed the information chunks in the 
sequence (Fig. 2B).

Data processing

We measured RT and categorization accuracy as indices 
of performance. Accuracy was determined by concordance 
with the labels assigned during the aforementioned 2AFC 
experiment, where five participants’ concordant answers 

determined the label of the stimuli. Only data from correct 
answers were used to calculate average RTs. The following 
criteria were used to filter the trials for both the RT and 
accuracy analyses: responses slower than mean + 3 stand-
ard deviations (SDs) (following the exclusion criteria of the 
original study (Turk-Browne et al., 2010)) or faster than 200 
ms were trimmed. All runs with under 80% accuracy were 
excluded. Also, five subjects were excluded from the analy-
sis of Experiment 1A because their average accuracies were 
under 60%. Because of the increased signal-to-noise ratio, 
the first three trials were also removed from the beginning 
of each run. This only affects the visualization since the first 
presentations of stimuli (12 trials) were not used for statisti-
cal analysis. According to these criteria, 9.5% of all trials 
were excluded in Experiment 1A (0.3% of trials with RTs 
greater than mean + 3 SD, 0.1% trials with RT shorter than 
200 ms, and 9.1% trials in runs with accuracy under 80%).

Statistics

We analyzed three conditions (P1, P2, and S denoting the 
first image in the pairs, the second image in the pairs, and 
the single stimuli, respectively) based on their position in the 
pattern. Two conditions (P1 and P2) are related to learning. 
Stimuli positioned as the first events (P1) of the associated 
pairs have a function of anticipation. Thereby the second 
events (P2) of the stimulus pairs become predictable. Stimuli 
positioned as the second events (P2) represent a priming 
effect. The condition of the single stimuli (S) serves as a 
reference, as it does not have a role in the learning. Although 
the difference in RT or accuracy between P1 and P2 may 
reflect mixed effects of priming and anticipation, the sum-
mation of these two effects could be an even more sensitive 
index of VSL. For statistical analysis, the first presentation 
of the chunks was removed from each run since no learning 
effect is possible.

Mean RTs for P1, P2, and S were compared among runs 
within subjects by one-way repeated-measures ANOVA fol-
lowed by Tukey-Kramer post hoc tests for pairwise com-
parisons, while median accuracies were compared by the 
Friedman and post hoc Wilcoxon signed-rank tests.

Results and discussion

After the evaluation of the responses for the interview ques-
tions of the participant, we found only one participant who 
reported suspecting some pattern in stimulus presentation 
order according to post-test interview questions (Task and 
procedure section). However, we decided not to exclude 
these data from the analysis as the participant could not 
recall specific examples of image pairs.

In line with the results of Turk-Browne et al. (2010), RT 
data revealed a strong learning effect (F(2,64) = 10.002, 

Fig. 2  Schematics of the task designs for Experiment 1A and 1B. 
(A) Examples of randomly chosen stimuli from the Large and Small 
categories. (B) In Experiment 1A, four category-alternating stimulus 
pairs (Large–Small [L S] and Small–Large [S L]) were created, while 
the remaining four stimuli were unpaired. The constructed infor-
mation chunks were used to create a 72-trial long sequence in each 
run. (C) In Experiment 1B, four associated pairs were created, two 
category-alternating pairs (Large–Small [L S] and Small–Large [S 
L]) and two category-repeating pairs (Large–Large [L L] and Small–
Small [S S]). Four stimuli remained unpaired, two from the Large (L) 
category and two from the Small (S) category

◂
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p < 0.001) (Fig. 3B). Specifically, pairwise comparison 
showed a significant priming effect (lower mean RT) for 
categorization of P2 (mean = 0.592 s, SD = 0.123 s) com-
pared to categorization of S (mean = 0.611 s, SD = 0.133 
s; q = −3.484, p = 0.004, Cohen’s d = 0.148). There was 
also a significant difference in mean RT between condi-
tions P1 (mean = 0.614 s, SD = 0.133 s) and P2 (q = 
3.94, p = 0.001). A post hoc power analysis was performed 
(Monte Carlo simulation with 1,000 iterations), and a 
power of 98.7% was obtained. In contrast to the original 
findings of Turk-Browne et al. (2010), there was no sig-
nificant difference in RT between P1 and S, indicating no 
detectable effect of anticipation.

As the difficulty of the task was increased compared to 
the original task of Turk-Browne et al. (2010), it was also 
sufficiently sensitive to show a learning effect on catego-
rization accuracy (n = 33, χ2 = 20.33, p < 0.001 by the 
Friedman test) (Fig. 3D). Pairwise comparisons revealed dif-
ferences in median accuracy between condition P2 (median 
(MED) = 0.95, interquartile range (IQR) = 0.063) and S 
(MED = 0.919, IQR = 0.070) (z = -3.806, p < 0.001, r = 
0.663) and between P1 (MED = 0.931, IQR = 0.086) and 
P2 (z = -3.45, p < 0.001). In the case of the accuracy data, 

the post hoc power analysis (with the same parameters as 
previously) showed a power of 99.0%.

Therefore, using a task modified from the original, we 
demonstrated that the first image in pairs (P1) primed cat-
egorization of the second image (P2), thereby demonstrat-
ing a robust VSL. This priming effect was manifested by 
both shorter P2 RTs and greater categorization accuracy. 
However, there was a possible confound in this experiment, 
which we already indicated in the Introduction. The catego-
ries in all pairs were category-alternating (Small–Large or 
Large–Small), therefore there were more category-altera-
tions than repetitions of consecutive stimulus categories in 
the sequence. This more frequent alternation between the 
responses could result in procedural learning of alternat-
ing key pressings. Consequently, the faster and more accu-
rate responses to the P2 condition might only reflect that it 
always required an alternating response, which was much 
more frequent in the experiment.

In an attempt to identify a confounding effect of motor 
learning, we ran an additional analysis where the category-
repeating trials had been excluded. Hypothetically, the 
responses in these trials were slower than in the other trials, 
because category-repeating trials were rare in the sessions. 

Fig. 3  Performance on Experiment 1A. (A) Changes in P1, P2, and S 
reaction times (y-axis) within runs as a function of presentation num-
ber (x-axis). (B) Comparisons of mean reaction times among condi-
tions ((F(2,64) = 10.002, p < 0.001 by repeated-measures ANOVA) 
(mean P1 = 0.614 s, SD = 0.133 s; mean P2 = 0.592 s, SD = 0.123 
s; mean S = 0.611 s, SD = 0.133 s.). (C) Changes in median P1, P2, 
and S accuracy (y-axis) as a function of presentation number (x-axis). 

(D) Comparisons of median [interquartile range (IQR)] accuracies 
(n = 33, χ2 = 20.37, p < 0.001 by the Friedman test) (P1: median 
(MED) = 0.931, IQR = 0.085; P2: MED = 0.95, IQR = 0.064; S: 
MED = 0.919, IQR = 0.07, ** p < 0.01 and *** p < 0.001 by post 
hoc pairwise comparisons). The error bars in B indicate the standard 
error of the mean, while those in D indicate the IQR
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These occurred only at junctions of unpaired stimuli and 
stimulus pairs, but not within pairs, which means that the 
excluded trials contained stimuli only from the P1 and S 
conditions.

With this and the above-mentioned criteria, we lost 38% 
of all trials. After removal, neither mean RT nor median 
accuracy differed among conditions (P1 mean RT = 0.595 
s, SD = 0.112; P2 mean RT = 0.592 s, SD = 0.119; S mean 
RT = 0.594 s, SD = 0.132; F(2,64) = 0.145, p = 0.866; P1 
MED accuracy = 0.942, IQR: 0.084; P2 MED accuracy = 
0.95, IQR: 0.064; S MED accuracy = 0.94, IQR: 0.057; n = 
33, χ2 = 0.14, p = 0.934).

Thus, this reanalysis excluding category-repeating tri-
als suggests that the observed priming effect is the product 
of motor learning. Further, the effect of this motor learn-
ing confound appeared to increase from run to run inde-
pendently from the changed stimuli set, as the difference 
between conditions already appears at the beginning of the 
runs (Fig. 3A, C). Therefore, the design is not appropriate 
for investigating the VSL trajectory. In the next experiment, 
we investigated whether the previously observed priming 
effect reflects the combination of VSL and motor learning 
using a modified sequential categorization task including 
both category-alternating and category-repeating pairs 
(Fig. 2C).

Experiment 1B

To verify our presumption that motor learning contributed 
to the results of Experiment 1A, the regularity of the image 
sequence was modified in Experiment 1B by equalizing 
the numbers of category-alternating and category-repeat-
ing pairs. All other parameters of the design and the task 
remained the same as in Experiment 1A.

Material and methods

Participants

Thirty-eight healthy right-handed volunteers with normal 
or corrected-to-normal vision participated in Experiment 
1B (18 females, mean age: 27.6 years; range: 21–42 years). 
All gave written informed consent and the protocol was 
approved by the Human Investigation Review Board of 
University of Szeged. Three subjects were excluded from 
analysis because their average accuracies were under 60%. 
Based on the exclusion criteria described for Experiment 1A 
(Data processing), we excluded overall 2.61% of all trials 
in Experiment 1B (0.8% of trials due to RT > mean + 3 SD, 
0.02% due to RT < 200 ms, and 1.8% of trials in runs with 
accuracy < 80%).

Pattern

Similar to Experiment 1A, the stimuli were grouped into 
four associated pairs, but only two were category-alternating 
(Large–Small and Small–Large) while the other two were 
category-repeating (Large–Large and Small–Small). The 
unpaired stimuli included two Large and two Small object 
images as before (Fig. 2C). Using this combination of stim-
uli, the ratio of different transitions between categories was 
close to 1:1 (47.6% probability of category repetition within 
trials). Therefore, the transitions of successive categories 
could not create a motor pattern biasing the VSL process. 
Other parameters (exposition time, ITI) were the same as in 
Experiment 1A.

Results and discussion

One participant reported suspecting regularity but the data 
were retained for the same reason as in Experiment 1A.

A one-way repeated-measure ANOVA revealed a ten-
dency in RT among conditions (Fig. 4A, B) (F(2,68) = 
2.458, p = 0.093; P2: mean = 0.611 s, SD = 0.097 s; S: 
mean = 0.617 s, SD = 0.097 s; P1: mean = 0.618 s, SD = 
0.097 s), while there were no differences in median accuracy 
according to the Friedman test (Fig. 4C, D) and pairwise 
comparisons (P1: MED = 0.944, IQR: 0.064, P2: MED = 
0.95, IQR: 0.052; S: MED = 0.944, IQR: 0.064). Since nei-
ther VSL markers were statistically significant, we did not 
investigate learning trajectories.

Comparing the results between experiments 1A 
to 1B

Experiment 1B replicates the design of Experiment 1A 
but with modification of the regularity in image category 
sequence. Adding category-repeating pairs roughly balanced 
the category transitions, thereby eliminating the possibility 
of motor or procedural learning. As expected from a sub-
stantial contribution of motor or procedural learning to the 
results of Experiment 1A, this modification largely elimi-
nated the differences in RT and accuracy among conditions 
(the anticipation and priming effects) despite doubling the 
subject sample size compared to the original study of Turk-
Browne et al. (2010)).

A direct comparison between the results of Experiments 
1A and 1B (Fig. 5) revealed a tendentiously higher prim-
ing effect in Experiment 1A as evidenced by the greater 
difference in mean P2 and S (P2-S) RTs than in Experi-
ment 1B (mean = 0.019 s, SD = 0.031 s vs. mean = 0.006 
s, SD = 0.019 s, t = 2.083, df = 66, p = 0.082 by t-test 
with Holm–Bonferroni correction). Further, the difference 
in median accuracy between P2 and S was also significantly 
greater in Experiment 1A than in Experiment 1B (MED 
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=−0.025, IQR = 0.028 vs. MED = 0.0, IQR = 0.044, p = 
0.0315 by the Mann–Whitney U-test with Holm–Bonfer-
roni correction) (Fig. 5B, E). The difference between mean 
P1 and P2 RTs (P1-P2) was also tendentiously higher in 
Experiment 1A than in Experiment 1B (mean = 0.022 s, SD 
= 0.032 s vs. mean = 0.006 s, SD = 0.021 s; t = 2.421, df = 
66, p = 0.054 by t-test with Holm–Bonferroni correction). In 
addition, the difference in median accuracy was significantly 
greater in Experiment 1A than in Experiment 1B (MED = 
−0.025, IQR = 0.052 vs. MED = 0.0, IQR = 0.061, p = 
0.039 by the Mann–Whitney U-test with Holm–Bonferroni 
correction) (Fig. 5A, D). These differences can be explained 
by additional procedural or motor learning in Experiment 
1A. There were no significant differences or trends between 
Conditions P1 and S (Fig. 5C, F).

In the additional analysis of the category alternating pairs 
in Experiment 1A, the significance of SL effect was lost. The 
effect sizes and differences in mean RT and median accuracy 
among conditions in Experiment 1A were reduced when cat-
egory transitions were balanced. These results seen in the 
additional analysis of Experiment 1A and the analysis of 
Experiment 1B and their comparison imply that the learning 
observed in Experiment 1A was most likely due to priming 
of the motor response pattern rather than VSL.

In this relatively difficult task in Experiment 1B, we did 
not find any sign of learning in the accuracy data. Addition-
ally, some participants reported categorization difficulties 
with certain pictures, which may have further reduced dif-
ferences in RT and accuracy among conditions (i.e., markers 
of learning) by introducing chance trials. Nonetheless, the 
mean P1-P2 RT was nonzero in Experiment 1B, suggesting 
some degree of VSL. Therefore, we repeated these measure-
ments with additional task modifications aimed at increasing 
the effect sizes of such differences.

Experiment 2

After we eliminated the motor learning effect by balanc-
ing the category transitions, the design in Experiment 1B 
showed a drastically smaller effect in the two markers of 
VSL compared to Experiment 1A. Hence our next goal was 
to demonstrate priming and/or anticipation effects and thus 
establish the learning trajectory across runs. To this end, the 
following modifications were made to the protocol used in 
Experiment 1B: (1) we simplified the discrimination task, 
(2) we increased the number of control, single stimuli, (3) 
we raised the number of subjects and presentations, (4) we 

Fig. 4  Performance in Experiment 1B. (A) Changes in P1, P2, and S 
reaction times (y-axis) as a function of presentation number (x-axis). 
(B) Comparison of mean reaction times (F(2,68) = 2.458, p = 0.093 
by repeated-measures ANOVA) (P2: mean = 0.611 s, SD: 0.097 s; S: 
mean = 0.617 s, SD = 0.097 s; P1: mean = 0.618 s, SD = 0.097 s). 
Error bars indicate the standard error of the mean. (C) Median accu-

racies for categorizing P1, P2, and S (y-axis) as a function of presen-
tation number (x-axis). (D) Comparison of median accuracies (n = 
35, χ2 = 0.41, p = 0.814) by the Friedman test (P1: median (MED) 
= 0.944, interquartile range (IQR) = 0.064; P2: MED = 0.95, IQR 
= 0.052; S: MED = 0.944, IQR = 0.064). The error bars indicate the 
IQR
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added a random initial phase at the beginning of each run, 
and (5) we applied a random ITI.

(1) The rationale behind using the difficult task in Experi-
ments 1A and 1B is to increase the sensitivity of the 
design for the learning effect. However, since the accu-
racy was not sensitive enough for the paradigm, we did 
not continue to use the difficult task in Experiment 2. 
Moreover, using easier tasks is expected to increase the 
sensitivity of the RT data for learning.

(2) The transition probabilities between stimuli within 
pairs were always 100% in the protocol used for Experi-
ments 1A and 1B, while the transition probabilities for 
other cases were 14.3%. In Experiment 2, the number 
of single stimuli was increased from four to eight to 

reduce the transition probabilities between the second 
image of a pair and a single image to 12.5% and that 
between any two single images to 9.1%. Adding more 
single images thus increased the contrast between the 
transition probabilities of the first and second images 
in pairs versus the transition probabilities for all other 
stimulus transitions. This change may also decrease the 
speed of learning by increasing the temporal distance 
among associated stimulus pairs.

(3) To increase the chances of acquiring sufficient data to 
detect learning across runs, we further increased the 
repetition number of the information chunks. In addi-
tion to potentially increasing the effect size, this change 
could also reduce the speed of learning and enhance the 
temporal resolution (if behavioral changes are observed 

Fig. 5  Performance differences between Experiments 1A and 1B 
indicating a contribution of procedural or motor learning to the learn-
ing trajectories in Experiment 1A. (A) The difference in reaction time 
between conditions P1 and P2 (P1-P2) was tendentiously greater in 
Experiment 1A than in Experiment 1B (mean = 0.022 s, SD = 0.032 
s vs. mean = 0.006 s, SD = 0.021 s). (B) The difference in reaction 
time between conditions S and P2 (S-P2) was also tendentiously 
greater in Experiment 1A than in Experiment 1B (mean = 0.019 
s, SD = 0.031 s vs. mean = 0.006 s, SD = 0.019 s). (C) The differ-
ence in reaction time between P1 and S (P1-S) was not altered by the 

experimental modifications. (D) The difference in median accuracy 
between P1 and P2 (P1-P2) was significantly greater in Experiment 
1A than in Experiment1B (median (MED) = −0.025, interquartile 
range (IQR) = 0.052 vs. MED = 0.0, IQR = 0.061. (E) The difference 
in median accuracy between P2 and S (P2-S) was also significantly 
greater in Experiment 1A (MED = −0.025, IQR = 0.027 vs. MED = 
0.0, IQR = 0.044. (F) The difference in median accuracy between P1 
and S was similar for both experiments. Error bars from A–C indicate 
the SEM and those from D–F indicate the IQR (*p < 0.05 and #p < 
0.1)
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across a greater number of presentations). However, 
slower learning would reduce the expected change in 
RT over a given repetition number, so we also raised 
the number of subjects to increase the statistical power.

(4) The most critical period of the measurement is the first 
few presentations when the naïve participants face the 
procedure and the stimuli for the first time. Without 
routine, the data from this period can contain noise that 
can alter the learning curve. The procedural learning 
effect and task familiarization (Manahova et al., 2019) 
are indicated by a quick drop in RT at the start of each 
run. Therefore, we tried to eliminate this skewing effect 
by inserting an additional warm-up period at the begin-
ning of each run.

(5) Random ITI was used to reduce the monotony of the 
task, which may help sustain attention on the images.

Method

Participants

Eighty-seven healthy right-handed volunteers with normal 
or corrected-to-normal vision participated in Experiment 2 
(48 females, mean age: 21.26 years; range: 18–28 years). 
All provided written informed consent and the protocol was 
approved by the Human Investigation Review Board of Uni-
versity of Szeged. Four subjects were excluded from the 
analysis because their average accuracies were under 60%.

In Experiment 2, the same exclusion criteria were used 
as in the previous experiments, except that we excluded RT 
measures above mean + 2 SD. The reason behind this change 
was due to the inclusion of the warm-up period, which elimi-
nated the sudden RT drop during the early phase of each 
run and reduced the overall variance (allowing a stricter 
criterion, see further details in the Online Supplementary 
Material (OSM)). Overall, we excluded 4.15% of all trials 
in Experiment 2 (2.1% of trials due to RT > mean + 2 SD, 
0.2% due to RT < 200 ms, and 1.8% of trials in runs with 
accuracy under 80%).

Stimuli

Eight complex images of everyday objects and eight images 
of animals were previously selected for each run from the 
BOSS (Brodeur et al., 2010; Brodeur et al., 2014).

Design

A stream of visual stimuli was presented to each participant 
and responses and RTs were measured across two runs. For 
one run, eight-eight randomly chosen images were used 
from both categories of the stimulus set. The same stimuli 
were not presented again in the second run. The number of 

presented stimuli was increased from 12 to 16 per run. The 
randomly chosen 16 novel stimuli were used to create a tem-
poral sequence specific for each run. A warm-up period was 
also inserted at the beginning of each run where the same 
16 stimuli were presented ten times in completely random 
order. After this period, the presentation of the images was 
continued without any cue, but this time they formed infor-
mation chunks as single stimuli or associated stimulus pairs 
in a similar way to the way they did in the previous experi-
ments. The information chunks were presented 15 times in 
a pseudo-random order. Each run contained a sequence of 
400 trials (160 random, 240 structured).

Task and procedure

The task used a 2AFC design in which subjects had to decide 
whether the image was of an object by pressing button 1 
with the right index finger or an animal by pressing button 
2 with the right middle finger on a numeric keyboard with 
no feedback. After their response, a jittered ITI was applied 
(500–1,200 ms). Participants were seated approximately 
60 cm from a desktop computer screen (resolution 1,920 × 
1,080 pixels, 23-in., 60 fps), and all were naïve to the pat-
tern of the stimulus stream. After each measurement, the 
participants were asked the same five questions regarding 
recognition of patterns as in Experiment 1 to determine if 
learning had become explicit, using the same questions we 
described in Experiment 1A.

Pattern

The pattern was similar to that used in Experiment 1B, but 
the number of stimuli in the single condition was increased 
from four to eight and each stimulus pair was followed by at 
least one unpaired stimulus. In other aspects, the regularity 
was the same (Fig. 6). Thus, each sequence contained two 
associated pairs with alternating categories (Animal–Object 
and Object–Animal) and two pairs with repeating categories 
(Animal–Animal and Object–Object). The remaining four-
four images of objects and animals were presented as single 
stimuli.

Statistics

To evaluate the RT data, we used a linear mixed-effect model 
with restricted maximum likelihood criterion. The model 
was fit to the data using the lme4 package in R (Bates et al., 
2014). The linear mixed-effect model was chosen instead of 
a generalized linear mixed-effect model based on residual 
diagnostics (for further details, see OSM) and the robustness 
of the linear mixed-effect model. The model included the 
natural logarithm of repetition number and condition (P1, 
P2, and S) as fixed effects and the log (repetition number) 
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× condition interaction. The natural logarithm of repetition 
number was used because reduced model (without the ran-
dom slope) including this measure had a smaller Akaike 
information criterion value than the non-logarithmic repeti-
tion model (−58674 and −58672, respectively). Also, the 
non-logarithmic repetition model with added random slope 
for repetition failed to converge.

In addition, the jittered ITI was added as a fixed effect. 
For random effects, we included random intercept and slope 
terms for subjects, a random intercept for the different pic-
tures, and a random intercept for a new variable NVAR rang-
ing between 1 and 4 based on current and previous answers 
because the proper processing of the preceding stimulus is 
assumed to be crucial in the paradigm. The trial was scored 
“NVAR 1” if current and previous answers were both cor-
rect, “NVAR 2” if the current answer was correct but the 
preceding answer was incorrect, “NVAR 3” if the preceding 
answer was correct but the current answer was incorrect, and 
“NVAR 4” if both were incorrect.

The random effects were evaluated with the likelihood 
ratio test (lmtest package, models refit with maximal likeli-
hood criterion (Zeileis & Hothorn, 2002)) using a restricted 
model without the given random effect. For appraisal of 
fixed effects, type III ANOVA was used from the lmerTest 
package (Kuznetsova et al., 2017). To obtain p values, we 
used Satterthwaite's method for the calculation of degrees 
of freedom.

If ANOVA revealed a significant effect, we conducted 
pairwise comparisons using the z test. For fixed effects, 
estimated marginal means were used (emmeans package 

(Lenth et al., 2021)) and the p values were adjusted accord-
ing to Tukey. For the interaction, we used estimated marginal 
means of linear trends (emmeans package) with the natu-
ral logarithm of repetition number as the linear predictor. 
Again, p values were adjusted according to Tukey.

For the accuracy data, a generalized linear mixed-effect 
model was fit with binomial distribution (lme4 package) 
because the only possible responses were correct (1) and 
incorrect (0). The fixed effects were then tested with type 
III Wald χ2 test (using the lmerTest package (Kuznetsova 
et al., 2017)). The model included the natural logarithm of 
repetition number, condition, their interaction, and ITI. The 
subject number and identity of the picture were added as 
random effects.

In case of a significant result, we performed a post hoc 
power analysis using the simr package (Green & MacLeod, 
2016).

Results and discussion

No participant reported explicit knowledge of regularity, and 
as expected, the participants could easily perform the task 
with high accuracy. Thus, the ceiling effect diminished the 
sensitivity of accuracy data for the learning effect with this 
simpler task. (Fig. 7B). Neither the fixed effects nor their 
interactions showed a significant difference in the responses 
except for the length of the jittered ITI (repetition: χ2 = 
1.9488, df = 1, p = 0.163; condition: χ2 = 2.3084, df = 
2, p = 0.315; interaction: χ2 = 1.2366, df = 2, p = 0.539; 
ITI: χ2 = 14.9357, df = 1, p < 0.001). Since neither of the 

Fig. 6  Examples of stimuli from the two categories Object (O) and 
Animal (A) used in Experiment 2. Eight of the 16 pictures were used 
to create four stimulus pairs (Animal–Object, A O; Object–Animal, O 

A; Animal–Animal A A; Object–Object, O O) as in Experiment 1B. 
The remaining eight stimuli were unpaired stimuli (condition S)
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expected fixed effects nor the interaction was significant, 
we conducted no further analysis of error rates. (Figure 8) 

In contrast to accuracy, there was a significant 
log(repetition number) × condition interaction effect on RT 
(Table 1, Fig. 7A). Similar to accuracy, there was also a 
significant fixed effect of ITI (Fig. 7A, Table 1).

The pairwise comparison of the estimated marginal 
means (Table 2A) under the different conditions were incon-
clusive as none reached significance (Table 2C). However, 
post hoc testing of the interaction was more satisfactory. 
Comparison of the linear trends (Table 2B) under the three 

conditions revealed that the slopes for S and P2 differed 
significantly, while P1 and P2 slopes showed a tendentious 
difference (Table 2D).

Estimated marginal means (EMM) of the different condi-
tions (A) and of the linear trends (EMM trend) in the differ-
ent conditions (B) with the presentation number as the linear 
predictor. Pairwise comparisons of the estimated marginal 
means (C) and linear trends (D) between conditions

Fig. 7  Reaction times and response accuracies in Experiment 2. (A) 
Average reaction time (y-axis) as a function of repetition number for 
the three conditions P1, P2, and S. (B) Average accuracy (y-axis) as 
a function of repetition number for the three conditions. The gray 

vertical dotted lines mark the repetition number at which regularities 
started (i.e., after the random sequence warm-up period from presen-
tation numbers 1 to 10)

Fig. 8  Learning trajectory in Experiment 2 as indicated by the change 
in reaction time difference between conditions S and P2 (S-P2) 
(y-axis) as a function of repetition number (x-axis)

Table 1  Results of ANOVA for fixed effects in the linear mixed-effect 
model

Degrees of freedom 
(Satterthwaite’s method)

F value p value

Repetition 1, 85 0.178 0.674
Condition 2, 38030 3.344 0.035
Intertrial interval 1, 38048 407.456 <0.001
Interaction 2, 38018 4.303 0.014

Table 2  Evaluation summary of the linear mixed effects model for 
RT

A EMM (s) SE C z value p value
S 0.463 0.0281 S-P1 −1.804 0.168
P1 0.465 0.0282 S-P2 0.158 0.986
P2 0.462 0.0282 P1-P2 1.701 0.205

B EMM trend SE D z value p value
S 0.00117 0.0002 S-P1 0.320 0.945
P1 0.00058 0.0023 S-P2 2.856 0.012
P2 −0.00408 0.0023 P1-P2 2.195 0.072
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We performed a post hoc power analysis using 1,000 iter-
ations to test how many times a difference in the interaction 
of the fixed effects would emerge. Using the same statistical 
methods as described above (type III ANOVA and Satterth-
waite’s method) yielded 76% observed power.

The trends of the S and P2 RT curves (representing the 
priming effect) differed significantly in the linear mixed 
model, suggesting VSL, so we analyzed the change in RT 
difference (S-P2) across repetitions. The S-P2 RT difference 
as a function of repetition numbers was fit to a linear regres-
sion model and used to test the hypothesis that learning pro-
gressed logarithmically. For this analysis, we fit two model 
variants to the data, one with a linear predictor (model a: 
RT difference by repetition number) and one with a loga-
rithmic predictor [model b: RT difference by log(repetition 
number)]. Both models reached significance (model a, R2 = 
0.005, F(1,1243) = 6.296, p = 0. 012; model b, R2 = 0.008, 
F(1,1243) = 9.767, p = 0.002), so to evaluate the loga-
rithmic nature, we performed an encompassing test using 
the encomptest() function in R (part of the lmtest package 
(Zeileis & Hothorn, 2002)). This encompassing test indi-
cates whether a new model combining model a and b pro-
vides additional information compared to the original mod-
els (hence reaching significance). We also found that model 
b with the logarithmic scale was a better fit to the combined 
model (model a vs. encompassed model: F(−1, 1242) = 
4.984, p = 0.026, model b vs. encompassed model: F(−1, 
1242) = 1.528, p = 0.217), as comparing the encompassed 
model to model b did not yield additional information.

General discussion

The primary goal of the present study was to develop a task 
design for investigating unsupervised implicit VSL online, 
thereby both validating behavioral correlates of VSL mark-
ers (priming and anticipation) and revealing the dynamic 
properties of the learning process. A modified version of 
the task developed by Turk-Browne et al. (2010) with coun-
terbalanced category transitions and a greater number of 
control images yielded a significant change in the priming 
effect on the second image (P2) in a pair across repetitions 
as measured by RT. Furthermore, this effect could not be 
explained by procedural learning. The change in priming 
across repetitions was best fit by a model including the loga-
rithm of repetition number, suggesting that VSL is a rela-
tively rapid process.

Priming refers to the facilitated recognition or classifica-
tion of the second stimulus in a pair by the first stimulus, 
manifesting as faster RT or greater accuracy. Anticipation, 
on the other hand, influences processing of the first image in 
an associated pair because it predicts the characteristics of 
the second. We adapted and modified the paradigm of Turk-
Browne et al. (2010) and replicated their results showing 

priming of the second image in category-alternating pairs as 
evidenced by reduced P2 RT. These modifications included 
increasing the number of test subjects along with the number 
of runs for statistical power, and using a more challenging 
discrimination task to increase the sensitivity to VSL. In 
accordance with the original study, this paradigm (Experi-
ment 1A) revealed a priming effect on P2 RT but no sign of 
anticipation. A priming effect was also found in the accuracy 
data. However, reanalysis suggested that motor and proce-
dural learning accounted for these results.

Therefore, we examined the possible contributions of 
motor learning using a task with additional modifications 
including the addition of category-repeating pairs (images 
from the same category) in Experiment 1B. The findings of 
Experiment 1B confirmed the contribution of motor learn-
ing in Experiment 1A but also drastically reduced effects 
on VSL markers. We therefore modified the task again to 
increase the sensitivity of the priming effect.

Subsequently, we aimed to modify our paradigm in sev-
eral aspects to achieve a sufficient amount of data to prove 
the priming and/or anticipation effects as well as to investi-
gate the learning progression: (1) we simplified the discrimi-
nation task, (2) we increased the number of control single 
stimuli, (3) we raised the number of subjects and presenta-
tions, (4) we added a random initial phase in the beginning 
of the run, and (5) we applied a random ITI. With these 
modifications, we achieved our goal to find a model fitting 
of the learning trajectory based on RT priming revealed that 
VSL is progressive and relatively rapid.

Statistical and motor learning

Many researchers have argued that in SRT tasks the pre-
sumed behavioral correlates of implicit learning was the 
result of motor learning instead of perceptual learning 
(Lungu et  al., 2004; Willingham et  al., 1989; Ziessler, 
1994). While it has been shown that implicit perceptual 
and sequence learning can occur in the absence of motor 
response patterns (Heyes & Foster, 2002; Mayr, 1996; Rob-
ertson & Pascual-Leone, 2001), Dennis et al. (2006) have 
stated that in many cases these paradigms failed to com-
pletely eliminate motor learning.

Driven by the presumption that the adopted regularity 
resulted in a pattern of motor responses, the structure of 
the information chunks was modified in Experiment 1B. In 
the original paradigm the associated pairs only contained 
category-alternating stimuli. This higher-level regularity 
resulted in a shortened RT in case of a category alternating 
response and impaired the RT of those stimuli that were 
repeating categories, which are the non-predictable stimuli 
(first member of the associated stimulus pair and the control, 
single stimuli). In Experiment 1B, we added stimulus pairs 
that were category-repeating, thus the category alternations 
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and repetitions were balanced out among the responses 
and among the second members of the associated stimulus 
pairs, hence we were able to eliminate the motor learning 
confound.

Temporal dynamics of implicit VSL

Beyond the studies from the domain of language acquisi-
tion using online measurement, there is a similar investiga-
tion from Siegelman and his colleagues (Siegelman et al., 
2018). They described the learning curve of VSL with an 
explicit self-paced paradigm involving explicit learning as 
the participants were informed about stimulus regularity and 
actively searched for patterns in the stimulus sequence. By 
contrast, our results revealed the dynamics of implicit VSL 
as only one participant in each of Experiments 1A and 1B 
reported some explicit knowledge of stimulus regularity, 
while in Experiment 2, all participants remained naïve to 
the regularity even at the end of the measurement.

In Experiment 2, we found that a linear mixed-effect 
model fit the learning trajectory and the progression of the 
priming effect (linear trend) differed significantly between 
P2 and S. Thus, this marker develops during the continu-
ous presentation of an environmental regularity and reduces 
the RT to a predictable stimulus. In contrast, we found no 
behavioral correlates of the anticipatory effect or associa-
tions with SL.

Further, the trajectory was best fit by a logarithmic 
model, indicating that this form of VSL emerges rapidly 
during stimulus presentation. This finding is in line with the 
results of Siegelman and colleagues, although again learning 
in their case had an explicit component. This modeling of 
the temporal dynamics of VSL will be essential for future 
studies investigating the underlying neural correlates. By 
modeling the learning trajectory, we can determine not only 
the final result of the learning but the different parts of the 
learning process, and with this knowledge, we can tie the 
neural data to segmented parts of the learning. This way 
determining crucial areas and function of the central nervous 
system related to VSL can be achieved.

Limitations and future directions

A major limitation of this study is that in the second experi-
ment many changes have been made in one step compared to 
the first paradigm (Exps. 1A and 1B). Although the effect of 
each modification cannot be proven at this point, they can be 
deduced. The most important change was an increase in the 
number of repetitions. This is the only change that actually 
helps to achieve a greater effect. Using a higher number of 
single trials increases the transitional probabilities between 
P2-S and S-P1, thus the contrast is greater. However, this 
change did not increase the RT reduction for condition P2. 

Also, using an easier task and a warm-up period reduced 
the variance in RT. Future studies are needed to verify the 
inferences of these changes.

Using two markers, our design is suitable to investigate 
the priming and anticipatory effect separately as two of the 
components of SL. We could not detect any anticipatory 
effect, even though the perception of the first stimuli is sup-
posedly affected by learning. A future aim is to develop a 
new design with which we can create a more optimized 
model that can describe SL and eventually can be sensitive 
enough to show an anticipatory effect. The ability to observe 
the two markers separately could yield additional informa-
tion about SL.

Conclusion

We have developed a viable online tool to measure the 
dynamic behavioral correlates of unsupervised implicit VSL. 
We applied an SRT method with associated image pairs and 
single images investigating two VSL markers: priming of 
the second, predictable image in a pair and anticipation of 
the first image.

First, we assessed a paradigm adapted for a previous 
study that seemed to be confounded by motor learning, 
which was tested and the motor confound was confirmed 
and excluded. Second, using an improved novel paradigm, 
linear mixed-effect modeling, and estimated marginal means 
of linear trends, we measured implicit VSL, specifically the 
priming effect on predictable stimuli. The learning curve fit-
ted a logarithmic model, suggesting a rapid learning process.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13421- 022- 01302-5.
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