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Abstract: Atrial fibrillation is the most common supraventricular arrhythmia affecting an increas-
ing proportion of the population in which mainstream therapy, i.e. catheter ablation, provides free-
dom from arrhythmia in only a limited number of patients. Understanding the mechanism is key in 
order to find more effective therapies and to improve patient selection. In this review, the structural 
and electrophysiological changes of the atrial musculature that constitute atrial remodeling in atrial 
fibrillaton and how risk factors and markers of disease progression can predict catheter ablation 
outcome will be discussed in detail. 
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1. INTRODUCTION 

 Atrial fibrillation (AF) is a disease with a growing inci-
dence, affecting large segments of the population worldwide 
and having a profound effect on morbidity, mortality, and 
the quality of life. Therapies that are truly effective in all 
categories of patients have yet to be discovered. The key to 
progress, aside from critical technological advances, is to 
gain mechanistic insights into the initiation and perpetuation 
of AF to identify upstream therapies, such as the ones target-
ing profibrotic signaling systems.  

 Atrial remodeling in AF is the reorganization of atrial 
anatomy, microstructure and function (impulse generation 
and conduction as well as myocardial contraction) that can 
be attributed to systemic (aging, hypertension, etc.) and local 
factors (valvular disease, cardiomyopathy, etc.) (Fig. 1). Ex-
tensive research is focusing on the nature of remodeling of 
the atrial musculature and how risk factors contribute to it in 
order to discover opportunities for intervention.  

 It was previously hypothesized that since the foci that 
initiate AF are located in the pulmonary veins (PVs), perfect-
ing the technique to isolate them would prevent further epi-
sodes. In a population of paroxysmal AF patients, Taghji et 
al. demonstrated that using contact force catheters and 
achieving certain ablation targets resulted in durable RF le-
sions and a remarkable 12-month ablation success [1]. How-
ever, PV isolation has been proven to be insufficient in pa-
tients with long-standing persistent AF [2-4] and there are  
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reports of AF recurrence despite durable PV isolation [5, 6] 
that underpin the idea of progressive remodeling of the atrial 
myocardium and the importance of extra PV sources of AF 
initiation and maintenance. Understanding the complexity of 
the substrate should be the basis of personalized treatment 
and provide a perspective on ablation outcome and managing 
patient expectations.  

2. ATRIAL REMODELING – CHANGES IN THE HIS-
TOLOGY AND ELECTROPHYSIOLOGICAL PROP-
ERTIES OF THE ATRIAL MYOCARDIUM 

 Fibrosis is a normal process meant to preserve the struc-
ture of an organ or system in response to injury and is a key 
element in the pathogenesis of AF, as it is known to cause 
non-uniform impulse propagation, re-entry and to anchor 
drivers. There is evidence showing that fibrillatory activity is 
linked to fibrotic areas of the atrial microstructure, the poste-
rior left atrium and specifically the antrum of the PVs [7] 
representing a common localization of AF sources, as op-
posed to the left atrial (LA) anterior wall showing the least 
fibrosis [8]. 

 Atrial remodeling is a result of systemic (obesity, hyper-
tension) as well as local processes (atrial wall stretch, activa-
tion of platelets, myocardial infarction) causing an inflam-
matory reaction that involves oxidative stress, alterations in 
Ca-regulation [9], production of pro-inflammatory cytokines, 
proliferation of fibroblasts and myofibroblasts expressing α-
smooth muscle actin (α-SMA) as well as extracellular matrix 
(ECM), resulting in a build-up of fibrotic tissue favoring the 
development and maintenance of AF [10]. Furthermore, on-
going AF has been shown to lead to atrial enlargement and 
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functional mitral regurgitation (MR) [11] and an increase in 
the extent of the epicardial fatty tissue [12, 13].  

2.1. Inflammation and Profibrotic Signals 

 Inflammatory cell infiltration, such as of macrophages, 
neutrophils, and monocytes, plays an important role. Frusta-
chi et al., described lymphomononuclear infiltrates with ne-
crosis of the adjacent myocytes in his histological study [14] 
and Oishi et al., showed that atrial stretch in vitro induced 
macrophage migration via increases in ATP in the gap junc-
tion channels [15]. Furthermore, there is evidence suggesting 
that pro-inflammatory macrophage polarization leads to 
atrial electrical remodeling via IL-1β secretion [16]. Profi-
brotic signals, such as transforming growth factor beta1 
(TGFβ1) and platelet-derived growth factor (PDGF) act on 
cell membrane receptors that lead to the activation of mito-
gen-activated protein kinases. These promote the production 
of ECM proteins, enzymes that process them as well as sig-
naling molecules that further promote fibrosis. Nattel and 
colleagues discerned two types of fibrotic changes: reactive 
(interstitial) fibrosis where there is an increase in fibroblasts, 
myofibroblasts and ECM in the perivascular space and 
around myocardial bundles without substantial changes in 
myocardial architecture and replacement (reparative) fibrosis 
where damaged myocytes are replaced by fibrotic tissue, 
fundamentally changing the electrophysiological properties 
of the myocardium [17]. 

2.2. Fibrosis 

 In AF patients awaiting mitral valve surgery, Corradi et 
al. revealed interstitial fibrosis, a decrease in capillary den-
sity and alterations in myocyte morphology and distribution, 
including loss of sarcomeres, dedifferentiation of myocytes 
into myofibroblasts, as well as evidence of perinuclear myo-
cytolysis and changes in mitochondrial shape [18]. Markers 
of collagen degradation, procollagen III N-terminal propep-
tide (PIIINP), and type I carboxy-terminal telopeptide 

(ICTP) have been shown to be associated with incident AF 
in The Multi-Ethnic Study of Atherosclerosis – a patient 
population free of heart diseases [19]. 

2.3. Myofibroblasts 

 The interplay of fibroblasts and myocytes has a pivotal 
role in atrial remodeling. Fibroblasts secrete autocrine and 
paracrine factors as well as ECM proteins and have an im-
portant role in response to cardiac injury [20]. Myocytes, on 
the other hand, produce reactive species of oxygen, PDGF, 
and TGF-β stimulating fibroblast proliferation and differen-
tiation. Myofibroblasts are fibroblasts that exhibit an in-
crease in the alpha-smooth muscle actin, especially at the 
transition from paroxysmal to persistent AF. They become 
contractile, express adhesive proteins, and by coming in con-
tact with myocytes, they promote their dedifferentiation. 
They interact with each other through gap junction proteins, 
such as CX43, myocyte action potentials generating small 
electrotonic potentials in myofibroblasts [21]. Zlochiver et 
al. conducted numerical simulations in a two-dimensional rat 
myocyte-myofibroblast coculture in order to reconstruct the 
consequences of myocyte-myofibroblast electrical coupling 
through gap junctions. Increasing the myofibroblast ratio 
decreased re-entry frequency, slowed conduction velocity, 
and promoted wave fractionation, increasing intercellular 
coupling stabilized rotors and enhanced the conduction ve-
locity [22]. It is important to note that heterocellular electri-
cal coupling was demonstrated in vitro, but not in vivo.  

2.4. Gap Junction Proteins 

 Gap junction proteins, connexins, are located at the inter-
calated discs of myocytes and cells of the conductive tissue. 
Connexins Cx43, Cx45, and Cx40 [23] have an important 
role in cardiac myocyte to myocyte interaction and are essen-
tial for impulse propagation and determine conduction veloc-
ity. As noted above, they also link fibroblasts and fibroblasts 
to myocytes. In an elegant study, van der Velden et al. char-

 
Fig. (1). Pathogenesis of AF: Risk factors lead to the structural and electrophysiological remodeling of the atria. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 

Proliferation of 
fibroblasts and myofibroblasts

Secretion of ECM proteins
Disregulation of gap junction 

proteins
Ionic channel remodeling
Neurohumoral changes

Aging
Smoking 

Alcohol consumption
Insulin resistance and diabetes 

Obesity
Hypertension

Obstructive sleep apnea
Valvular heart disease

Left ventricular dysfunction
 Ischemic cardiomyopathy

Genetic predisposition
Endurance athletics

Atrial wall stretch and dilatation
Secretion of profibrotic molecules
Secretion of adipokines by the 

epicardial adipose tissue
Myocardial ischemia 

Oxidative stress 
Altered Ca-handling
Platelet activation

       Fatty infiltration of the atrial
 myocardium

Reduced conduction velocity
Shortened APD

Changes in refractoriness 
DAD and triggered activity

Focal ectopic firing 

AF



Atrial Remodeling in Atrial Fibrillation Current Cardiology Reviews, 2021, Vol. 17, No. 2     219 

acterized the gap junction remodeling in AF, looking at the 
main connexin of the atria and the conduction system, CX40, 
as well as CX43. They found that although CX40 mRNA 
levels where unchanged, CX 40 protein levels decreased 
with Western Blot and there was a heterogeneous distribu-
tion of CX40, but not of CX43 with stabilization of AF in 
the atria of goats [24].  

 The idea of longitudinal dissociation as a basis for ar-
rhythmia generation and maintenance was put forward a 
couple of decades ago [25]. Alessie et al. demonstrated its 
validity in persistent AF with high density epicardial map-
ping and wave analysis, showing it to be a consequence of 
fibrosis separating bundles of muscle fibers along their lon-
gitudinal axis and interfering with the side-to-side conduc-
tion of impulses. In paroxysmal AF, they found broad wave-
fronts often colliding, while in persistent AF, impulse propa-
gation occurred via narrow channels bound by dynamically 
shifting lines of block parallel with the orientation of the 
fibers [26].  

2.5. Cardiac Adipose Tissue 

 There are reports explaining, in detail, the role of cardiac 
adipose tissue in the pathophysiology of AF. Haemers et al. 
showed that among patients undergoing cardiac surgery, 
permanent AF was associated with more extensive fatty tis-
sue compared to paroxysmal AF and no history of AF. These 
findings are supported by their sheep long-term tachypacing 
model of AF, where the induction of AF resulted in a signifi-
cant increase of the left atrial epicardial adipose tissue [27]. 
Adipocytes are thought to secrete adipokines that induce 
atrial remodeling. Venteclef et al. demonstrated that adding 
the secretome of human epicardial adipose tissue to the or-
gano-culture of the adult rat atrium induced fibrosis and the 
production of Activin A, member of the TGF-β family [28]. 

2.6. Altered Calcium-handling  

 Voight and colleagues studied the role of altered calcium 
(Ca)-handling in the pathophysiology of chronic AF, show-
ing evidence of a diastolic Ca-leak (an increase of 50%) in 
human RA samples. It was linked to the hyperphosphoryla-
tion of Ryanodine receptor 2 (RyR2) channels with increased 
open probability and upregulation of RYR2 regulatory pro-
teins. They found that the increased Ca2+-release from the 
sarcoplasmic reticulum coupled with the upregulation of the 
sodium-calcium exchanger (NCX) lead to a transient inward 
current that caused delayed after depolarizations (DAD) and 
triggered activity. Furthermore, under experimental condi-
tions, knock-in mice with constitutively phosphorylated 
RyR2 exhibited more Ca2+ sparks and enhanced susceptibil-
ity to pacing-induced AF compared to controls [29]. Ca2+ 
sparks and Ca2+ waves were visualized in AF patients under-
going cardiac surgery more frequently than in patients in 
sinus rhythm, while spontaneous inward NCX current fre-
quency was significantly increased as well [30]. RyR2-leaks 
have been associated with the progression of AF, as evi-
denced by a study by Li and colleagues on cardiomyocyte-
directed expression of the transcriptional repressor CREM-
IbΔC-X (CREM-TG) in transgenic mice that exhibited an 
enhanced diastolic Ca2+-release. The mice had a propensity 
to develop atrial ectopy at first, then atrial fibrillation in ad-

dition to atrial dilatation. The genetic inhibition of CaMKII-
phosphorylation of RyR2 (CREM: S2814A mice) prevented 
the emergence of sustained AF. Furthermore, the normaliza-
tion of RyR2-dependent Ca2+-release halted atrial dilatation 
and atrial conduction abnormalities involved in the genera-
tion of AF as evidenced by optical mapping. Although there 
were some features of the model inconsistent with estab-
lished human AF pathophysiology, namely the prolongation 
of APD due to ICa, L gain-of-function, the expression of this 
transcriptional repressor was increased almost 2-folds in 
atrial samples from AF patients [31]. The role of RyR2 Ca2+-
leaks is underpinned by the higher incidence of AF, sinus 
node dysfunction (SND), and inducible atrial arrhythmias 
during EP study (EPS) in patients with catecholaminergic 
polymorphic ventricular tachycardia CPVT [32].  

2.7. Oxidative Stress 

 Oxidative stress starts shortly after the initiation of AF by 
the formation of free reactive oxygen species. Super-oxide 
generating enzymes nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases (NOX2/4) are one of the cen-
tral players in the cardiovascular system that have a role in 
the pathogenesis of chronic metabolic disorders, such as hy-
pertension, atherosclerosis, diabetes mellitus [33] and are 
involved in atrial fibrillation as well [34], mainly in the early 
stages. Reilly et al. showed that in long-standing AF, how-
ever, uncoupled nitric oxide synthase and mitochondrial oxi-
dases are responsible for reactive oxygen species (ROS) pro-
duction [35]. Oxidative stress contributes to the electrical 
remodeling of the atria via the reduction in the L-type Ca 
current and the increase in inward rectifier K current (IK1) 
that shorten both the action potential and repolarization [36]. 
It has been shown to cause calcium overload via oxidation of 
the Ryanodine Receptor (2RyR2) as well [37]. 

2.8. MicroRNAs 

 MicroRNAs are small non-coding RNA molecules that 
degrade specific mRNAs, and as a result, they decrease the 
transcription of the respective proteins. They are known to 
play a role in growth and differentiation, cell death, and 
metabolic control and are regarded as paracrine factors [38]. 
Their role in cardiovascular disease is exemplified by the 
microRNA miR-21 involved in the pathophysiology of myo-
cardial hypertrophy and fibrosis as well as AF and by MiR-
328 that induces downregulation of the L-type Ca channels 
by suppression of translation and destabilization of mRNA 
[39]. Furthermore, upregulation of Kir 2.1, causing an in-
crease in IK1 current as a result of decreased miR-1, miR-26, 
and miR-101 levels, has been shown to lead to a shortening 
of action potential duration (APD) that promotes perpetua-
tion of AF. 

2.9. Role of the Autonomic Nervous System in AF 

 The activation and interplay between vagal and sympa-
thetic activation have been shown to promote AF in animals 
as well as human studies. While risk factors for the initiation 
of AF, such as obesity, hypertension, and obstructive sleep 
apnea (OSA), lead to the activation of the autonomic nervous 
system, it is thought that AF itself modulates the sympathetic 
and vagal response [40]. β-adrenergic activation leads to 
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intracellular Ca-overload and DADs as well as increases in 
IKur, IKs, and IKACh currents, while α-adrenergic activation 
inhibits Ito. The parasympathetic nervous system, on the 
other hand, via the cholinergic muscarinergic receptors in-
hibits ICaL and If currents and activates IKAch, shortening 
the ERP [41]. Impaired baroreflex sensitivity [42], stimula-
tion of the carotid bodies causing a sympathetic surge [43], 
renal nerves [44], as well as ganglionated plexi [45] likely all 
play a role in AF pathophysiology. 

2.10. Electrophysiological Remodeling 

 The electrophysiological remodeling of the atria com-
prises changes in both excitation and conduction properties. 
The action potential duration is shortened due to the remod-
eling of the L-type Ca-current (shortening the plateau phase) 
and the inward rectifier K+ current (IK1) (affecting the ter-
minal phase of repolarization) that results in promotion of re-
entry [36]. The agonist-induced muscarinic receptor medi-
ated K current (IKAch), which is known to shorten the APD, 
is decreased in AF (50% decrease in channel density com-
pared to sinus rhythm) presumably to counteract the APD 
reduction detailed above [46]. Impulse conduction is slowed 
because of the discontinuous, zig zag propagation due to 
fibrosis, ion channel changes, and the downregulation of gap 
junction proteins (connexins) resulting in tissue heterogene-
ity.  

 The timeline of the above changes is highlighted in an 
ovine tachypacing AF model published by Martins et al. 
[47]. They showed that the rate of increase in the dominant 
frequency (DF) of fibrillatory activity predicted the transi-
tion from paroxysmal AF to persistent AF. During that tran-
sition, the DF of AF increased progressively along with 
changes in the electrophysiological properties of the atrial 
myocardium, followed later by signs of morphological re-
modeling, atrial dilatation, mitral regurgitation, patchy fibro-
sis of the posterior left atrium (LA) and myocyte hypertro-
phy. They recorded a reduction in APD and impaired rate 
adaptation of APD evoked by changes in the expression of 
ion channel proteins for the INa, ICaL, and K currents. In-
ward rectifier potassium current (IK1) current increased 2-3-
fold, but only in long-standing persistent AF. They asserted 
that the changes in ion channel gene expression bring about 
the increase in DF of the fibrillatory activity. 

2.11. Monogenic Ionic Chanel Mutations in AF  

 Monogenic mutations of ionic channels have been shown 
to promote AF, such as gain of function mutations of 
KCNQ1 (coding the α subunit of the IKs current) [48], 
SNC5A (sodium channel) [49], KCNH2 (hERG) [50] as well 
as nitric oxide synthase 3 (NOS3) [51] involved in auto-
nomic regulation [52] and modulating ICaL [53]. 

2.12. P-wave Morphology and PR Prolongation 

 The surface ECG can be telling as well, specifically ab-
normal P-wave morphology and PR prolongation and their 
association with single-nucleotide polymorphisms (SNPs). In 
a genotype study involving 660 patients with paroxysmal 
and persistent AF awaiting catheter ablation, Husser et al. 
showed that 13 SNPs identified with genome-wide associa-

tion studies (GWAS) [54-57] to be related to PR prolonga-
tion, integrin subunit alpha 9 (ITGA9), and SOX5, and were 
significantly associated with left atrial low voltage areas and 
changes in left atrial diameter. They were also shown to have 
an effect on the outcome of catheter ablation. While SOX5 
encodes a transcription factor with a role in cell proliferation 
and maturation in a number of tissues influencing amongst 
other things myogenesis [58], ITGA9 is thought to be in-
volved in regulating the expression of the gene SCN5A [57].  

2.13. Activation of the Layers of the Atrial Myocardium 
During AF 

 De Groot et al. drew attention to the significance of asyn-
chronous activation of the endocardial and epicardial layers 
of the atria and to the transmural propagation of wavefronts 
in sustaining atrial fibrillation in their in vivo RA si-
multaneous multielectrode endocardial and epicardial map-
ping study [59]. They hypothesized that AF maintenance, 
apart from re-entry and focal mechanisms published in the 
literature, can also be due to the layers of atrial myocardium 
constantly activating each other. Intramural re-entry was 
demonstrated using high resolution complementary metal 
oxide semiconductor (CMOS) cameras to map activation and 
3 D GE MRI to map atrial wall structure, transmural fiber 
orientation, and interstitial fibrosis in a study published by 
Hansen and colleagues [60]. They examined coronary per-
fused right atria from explanted hearts and found that AF 
was maintained by spatially and temporally stable intramural 
circuits with an activation delay averaging 67 ms. The acti-
vations occurred alongside myocardial bundles isolated by 
fibrosis and identified with MR imaging, and they found that 
reentrant circuits were more often visualized on the endocar-
dial surface, whereas breakthroughs on the epicardial. The 
highest DF zones were selected and the driver region was 
targeted with ablation in 5 hearts successfully terminating it. 
There are notable differences in the endocardial-epicardial 
activation in different stages of AF as evidenced in a goat 
model of AF created by Eckstein et al. showing an increase 
in the time of endo-epi dyssynchronous activity during AF 
(from 17% during acute AF to 68% after 6 months of AF) 
and in the fractionation of electrograms. They observed a 
longer effective refractory period (ERP) on the endocardial 
side in acute AF, however, differences subsided at 6 months 
[61]. 

3. COMORBIDITIES AND MARKERS OF DISEASE 
PROGRESSION PREDICT CATHETER ABLATION 

OUTCOME 

 There is considerable data available about the predictors 
of ablation success in atrial fibrillation that might aid patient 
selection and ablation strategy (Table 1). Table 2 shows pa-
tient characteristics associated with the good ablation out-
comes. 

3.1. Lone AF 

 The apparent lack of predisposing factors is illustrated by 
an old concept that describes atrial fibrillation without under-
lying heart disease or traditional risk factors, i.e., lone atrial 
fibrillation [62]. It has been used in a variety of ways in the 
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Table 1. Predictors of the outcome of AF ablation. 

Patient Related Variables  Disease Related Variables  Procedure Related Variables  

Age [93] Persistent AF [143] High frequency jet ventilation [94] 

Valvular heart disease [67] Duration of AF [66] Ablation index guided ablation [1] 

Hypertension 

[72] 

Extent of low voltage zones [114] Ablation of triggers elicited with Isoproterenol/Adenosine [95]  

OSA [86, 87] Scar on LGE MRI [115]  Failure to terminate AF during ablation [96] 

Obesity [71] Left atrial appendage asymmetry [79] Number of procedures [97] 

Insulin resistance and diabetes [105, 70]  LA stiffness [122] Confirmation of entry and exit block [98]  

Metabolic syndrome [99] LA strain [121] Recurrence in the blanking period [102] 

LV dysfunction [68] LA antero-posterior diameter [113]  - 

Ischemic heart disease [100] LA volume [75,76, 101]  - 

Alcohol consumption [92] PR prolongation [139]  - 

Smoking [102] P wave duration [140] - 

Clinical scores [110-112]  Cycle length of AF [141] - 

- Dominant frequency of AF [143] - 

- Extent of areas with CFAE [147] - 
  
Table 2. Patient characteristics associated with the best AF ablation outcome. 

Characteristic   Value/Comment 

Age [93] <65 years 

Gender [123] Male 

Paroxysmal AF [65] HR 3.32 for freedom from arrhythmia after repeat ablation(s)  

Duration of persistent AF <6 months [124]  

Absence of comorbidities and structural heart disease – lone AF [102,125] Success rate after repeat AF ablation(s) as high as 96% [102] 

Physical fitness [126]  High cardiorespiratory fitness (>100% predicted METs on treadmill testing) 

Weight loss [127]  ≥ 10% loss conveys a 6-fold increase of probability of freedom from ar-

rhythmia  

Good glycemic control [128] HbA1c <7% or improvement in HbA1c by >10% during the 1-year preceding 

ablation 

Risk factor management (RFM) [129]* HR 4.8 for freedom from arrhythmia 

CPAP treatment in OSA [130] Risk of AF recurrence similar to non-OSA patients  

LA diameter <43 mm [131], <41 mm [113]  

Left atrial appendage (LAA) flow velocity [132]  >47.7 cm/s 

LAVI [77,133] <34.4 mL/m2 

LA volume (CT measurement) [134] <106 mL 

LGE extent  <30% [135], <35% [136]  

Note: *RFM included good blood pressure control, weight and lipid management, glycemic control, sleep-disordered breathing management, smoking cessation and reduction of 

alcohol intake to 30 g/week. 
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literature leading to confusion, but essentially it refers to 
patients <60 years old without significant coronary artery 
disease or diabetes who have normal echocardiography, thy-
roid function tests, and in whom concurrent infection could 
be excluded [63]. Currently, the concept is being challenged 
as investigative repertoire to pick up clinical and genetic 
predisposing factors has improved greatly and groups are 
advocating for the avoidance of the term altogether [64]. 

3.2. Predictors of AF Ablation Outcome 

 It is a well-known fact that more extensive atrial remod-
eling indicates a worse outcome. Known clinical factors in-
fluencing atrial remodeling include type of AF [65], longer 
duration of AF [66], valvular heart disease [67], cardiomy-
opathy [68], sleep apnea (OSA) [69], diabetes [70], obesity 
[71], uncontrolled hypertension [72], etc. Surrogate markers 
of remodeling that predict ablation outcome have been iden-
tified as well, such as a more advanced atrial fibrosis on 
LGE MRI [73] or more extensive low voltage zones (<0.5 
mV) with voltage mapping [74], greater LA volume [75, 76] 
or diameters [77], left atrial asymmetry as evidenced by CT 
angio in persistent AF patients [78], LA appendage structural 
remodeling [79], impaired adaptation to the pressure of the 
LA [80], higher DF of drivers maintaining AF [143], etc.  

3.3. Duration of AF 

 The AFA long term registry revealed the real-life situa-
tion of AF ablation across Europe with a subanalysis show-
ing that an AF history longer than 2 years resulted in a sig-
nificantly lower success rate. Although patients with longer 
duration of AF were older and had more comorbidities, such 
as ischemic heart disease, hypertension, duration of AF was 
an independent predictor of AF recurrence [81]. These find-
ings were corroborated by Hussein and colleagues who 
found that performing catheter ablation after a 3-year history 
of persistent AF resulted in worse outcomes with multivari-
able analysis, as was a significantly higher BNP and CRP 
value and a larger LA diameter, known markers of inflam-
mation and cardiac strain [82]. It is, however, worthwhile 
remembering that the history of AF may not correlate well 
with the duration of AF episodes and the extent of atrial re-
modeling. 

3.4. Obstructive Sleep Apnea 

 Linz et al. demonstrated a significantly higher prevalence 
of OSA in AF patients vs. the general population (21% to 
74% vs. 3% to 49%) [83]. OSA creates episodes of hypoxe-
mia and negative tracheal pressure that, by means of vagal 
activation, shortens the atrial ERP and increases atrial fibril-
lation inducibility from 0% at baseline to 90% [84]. OSA 
related changes to the atrial substrate include lower atrial 
voltage amplitude, slower conduction velocities, a more ex-
tensive electrogram fractionation as well as a higher inci-
dence of extra PV triggers [85], contributing to poorer prog-
nosis of catheter ablation [86, 87]. 

3.5. Alcohol Consumption 

 Alcohol consumption is a risk factor that has been shown 
to alter ionic currents [88], cause oxidative stress [89], and 

modify cellular metabolism [90], among other effects. Regu-
lar moderate alcohol consumption is associated with lower 
LA conduction velocity and a higher degree of atrial fibrosis 
[91]. Furthermore, this modifiable risk factor for AF can 
have an impact on catheter ablation outcomes. Qiao et al. 
reported an increase in AF recurrence with an HR of 1.579 in 
a population of paroxysmal AF patients, an effect at least 
party mediated by more extensive left atrial low voltage 
zones [92].  

3.6. Obesity 

 The effects of obesity have been demonstrated in an ani-
mal study published by Meng et al., showing that a chronic 
high-fat diet induces a widening of the atrial interstitial space 
accompanied by myocyte disarray and downregulation of 
expression and altered distribution of gap junction proteins, 
connexin 40 and connexin 43. These changes were in con-
juncture with an increase in parameters traditionally associ-
ated with fibrosis, namely TGF-β1 and MMP-2 [103]. Oku-
mura et al. showed that in pigs, a high fat diet resulted in 
changes in the electrophysiological characteristics of the 
atria, such as the shortening of ERP in the pulmonary veins 
and the superior vena cava (SVC) and an increase in the in-
ducibility and duration of AF [104]. A 2013 meta-analysis 
confirmed worse catheter ablation outcome in high BMI pa-
tients, however, not on multivariate analysis as comorbidities 
contributed to the effect. Nevertheless, the authors noted a 
significant improvement in the quality of life in these pa-
tients, albeit not due to lesser AF recurrence [71]. 

3.7. Insulin Resistance 

 Hijioka et al. revealed the role of insulin resistance in the 
pathogenesis of AF using HOMA-IR (homeostasis model 
assessment of insulin resistance), a value of � 2.5 independ-
ently predicting ablation failure with an HR of 1.287. Of 
note, patients with insulin resistance did not have a higher 
left atrial volume index (LAVI) or elevated inflammatory 
cytokines, such as TNF-α or TGF-β1 levels, yet they exhib-
ited a significantly lower conduction velocity suggesting an 
effect on the electrophysiological, rather than structural 
properties of the atria. Patients enrolled in this study had 
paroxysmal AF and did not have scar areas on voltage maps 
[105]. Animal studies confirmed that insulin resistance has 
an impact on AF inducibility [106] and genetically modified 
type II diabetes rats were shown to have a significantly 
greater number of repetitive atrial responses as well as longer 
intra-atrial activation times, but no differences in atrial re-
fractoriness with EP testing [107]. Furthermore, Gu et al. 
demonstrated that thiazolidinediones (peroxisome prolifera-
tor-activated receptor (PPAR)-γ agonists), due to their effect 
on growth factor release, cell proliferation, and migration as 
well as extracellular matrix remodeling [108], were inde-
pendent predictors of AF free survival at 12 months (OR= 
0.319) [109]. 

3.8. Clinical Scores for Prediction of AF Ablation Out-
come 

 Several scores for predicting AF ablation outcomes have 
been published incorporating known risk factors for AF pro-
gression and atrial remodeling. LAGO (AF phenotype, struc-
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tural heart disease, CHA2DS2-VASc ≤ 1, LA diameter, and 
LA sphericity) predicted poor ablation outcome with HR of 
3.10 at 3 years [110]. In a study published by Potpara et al., 
the MB-LATER score (1 point for male gender, bundle 
branch block, left atrial diameter ≥47 mm, persistent AF and 
early recurrence of AF during blanking, 2 points for the pre-
ablation history of long-standing persistent AF) significantly 
predicted late recurrence of AF; however, its predictive accu-
racy was poor (AUC 0.62) and none of the other tested pre-
dictive scores (CAAP-AF, CHA2DS2-VASc, and CHADS2) 
yielded better results in this patient population [111]. In con-
trast, in a population of paroxysmal AF patients, Chao et al. 
demonstrated that the CHADS2 scores, along with left atrial 
diameter, were significant predictors of recurrent AF and 
identified patients with low (2.9%, with CHADS2 0 score) 
and high recurrence rates (63.6% with CHADS2 score ≥3) at 
2 years [112]. 

3.9. Echocardiography Parameters 

 Information about left atrial structural changes can be 
gained non-invasively and at low cost with echocardiogra-
phy. Motoc et al. evaluated LA anteroposterior diameter 
(LAD) and LA minimum volume (LAmin) in paroxysmal 
patients, and found that cut offs of 41 mm and 23.69 mL, 
respectively, had a fair predictive value for recurrence of AF 
after catheter ablation (negative predictive values of 73% 
and 87.3%). Interestingly, 30% of the patients with recur-
rence had a LAD within the normal range, however, they 
exhibited remodeling in the infero-posterior axis (longitudi-
nal remodeling) [113].  

3.10. Atrial Scarring  

 There is consensus regarding the fact that extensive low 
voltage areas (LVA) (<0.5 mV) are associated with poorer 
ablation success [114]. Scar tissue can also be quantified 
using MRI, a non-invasive and well-studied imaging modal-
ity. Chelu and colleagues published a study in which LGE 
MRI was performed in patients ablated for AF (which in-
cluded a posterior wall debulking in 90% of patients) and 
showed that during a 5-year follow-up, the degree of atrial 
fibrosis (Utah stage IV versus stage I) was independently 
associated with arrhythmia recurrence with an HR of 2.73. 
All patients with Utah stage IV atrial fibrosis experienced 
recurrent AF after ablation at 5 years [115]. Whether or not 
performing substrate modification, in addition to PVI will 
improve outcome is a subject of debate. The STAR-AF trial 
conducted by Verma et al. did not show any benefit if linear 
ablation or ablation of complex fractionated electrograms 
(CFAE) were performed in addition to pulmonary-vein isola-
tion [116], however, several authors reported higher freedom 
from AF [117, 118] including a 2017 meta-analysis [119].  

3.11. Remodeling of the Left Appendage  

 Suksaranjit and colleagues described a similar impact of 
left atrial appendage structural remodeling (demonstrated by 
LGE on MRI) on the success of catheter ablation, patients in 
the highest tier, or LAA fibrosis experiencing 73.3% AF 
recurrence versus 37.5% in patients in the lowest tier [79]. 
Although empirical isolation of the left atrial appendage 

would seem to be an obvious resolve, it has been shown to 
predispose to thrombus formation and stroke [120]. 

3.12. Left Atrial Function and Stiffness Index 

 Left atrial function can be assessed by measuring LA 
systolic strain, which has been shown to be reduced in pa-
tients with AF and especially in those with AF recurrences 
after catheter ablation. Yasuda et al. compared left atrial 
global strain, LA lateral total strain, as well as LAVI max, in 
patients with and without recurrence and found LA lateral 
strain to be a significant predictor or AF recurrence with an 
AUC 0.84, outperforming LAVImax (having an AUC of 
0.74 and unable to predict the unfavorable outcome if the 
patient was in sinus rhythm during the echocardiographic 
measurements) [121].  

 Khurram et al. introduced the term stiffness index (SI) to 
describe the impaired adaptation of the left atrium to changes 
in loading conditions. It is defined as the ratio of the change 
in left atrial pressure to the change in left atrial volume dur-
ing the passive filling of the LA. The index was higher in 
persistent AF, older age, in patients with previous ablation(s) 
and in patients with AF recurrences after catheter ablation, 
with a recurrence rate of 5% in the lower quartile compared 
to 59% in the highest quartile [122].  

3.13. Predictors Derived from the Surface ECG  

 The surface ECG in sinus rhythm can be revealing as 
well; PR prolongation, a mark of atrial and atrioventricular 
conduction slowing has been shown to predict the develop-
ment of AF [137] and was associated with the presence of 
left atrial low voltage areas [138], older age, the persistent 
form of AF, larger LA dimensions, and higher LAVI. It was 
also a significant predictor of the outcome of catheter abla-
tion (HR=1.969, 95% CI 1.343 to 2.886, P=0.001) [139]. 
These results were reiterated by Hu et al., who measured P 
wave duration (PWD) and the difference between pre- and 
post-procedural values (PWD variation). They found that AF 
ablation shortened PWD in the inferior leads, V1 and a lesser 
shortening was associated with an unfavorable AF ablation 
outcome (PWD variation ≥-2.21 ms in lead II had a sensitiv-
ity and specificity of 85.29% and 83.94%, respectively; 
AUC of 0.868) [140]. 

3.14. Characteristics of Fibrillatory Activity 

 There are insights to be gained from the characterization 
of the fibrillatory activity during AF either based on the sur-
face ECG or intracardiac electrograms that might indicate 
the complexity of the atrial substrate and the prospective 
outcome of AF ablation. Predictors of the success of catheter 
ablation can be derived from the time- and frequency domain 
of fibrillatory activity of the atria indicative of electrical re-
modeling, high dominant frequency (DF) sites representing 
either focal sources or re-entries. A shorter cycle length 
[141], a higher dominant frequency, and a decreased level of 
organization of AF [142-144] were shown to predict poor 
outcomes. A lower ablation success was noted in patients 
with higher RA dominant frequency and lower CSd to RA 
DF gradient, indicating the presence of a RA source not tar-
geted by PV isolation and LA ablation [143]. Of note, no 
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pre-procedural surface ECG spectral parameter has been 
found that is easy-to-use and could reliably guide patient 
selection.  

 Do CFAEs arise at driver sites or are they merely the 
result of wavefront collision, and if so, what is the value of 
their ablation? Some argue they are pivot points, areas of 
local re-entry and slow conduction and are responsible for 
the maintenance of AF [145, 146]. It is known that the per-
cent area of CFAE is larger and the mean CL of the CFAE is 
shorter in patients with a more remodeled LA [147]. The 
STAR-AF II and CHASE-AF trials did not demonstrate any 
added benefit to PVI with CFAE ablation [116, 148], and a 
recent meta-analysis showed that performing additional 
CFAE ablation increased ablation success only in persistent 
AF patients, albeit with a rise in procedure time, fluoroscopy 
time as well as post-procedural ATs [149].  

3.15. Reverse Remodeling  

 There is evidence suggesting the reversal of remodeling 
after catheter ablation. Fujimoto found that a decrease in P-
wave dispersion, a marker of prolonged and inhomogeneous 
impulse conduction starting from 3 months post-ablation, 
indicates the favorable outcome and reverse remodeling 
along with the decrease of left atrial size and BNP level. 
They also noted that the latency in the decrease suggests that 
the maintenance of sinus rhythm might be largely responsi-
ble for it [150]. A subgroup analysis of the CAMERA-MRI 
study showed a significant increase in the RA myocardial 
voltage especially at the posterior and septal segments as 
well as a significant decrease in complex fractionated elec-
trograms besides improvements in LV function and LA area 
in heart failure patients who remained in SR >90% of the 
time after catheter ablation [151]. In an elegant study, how-
ever, Teh et al. demonstrated further progression in terms of 
decrease in bipolar voltage, lengthening of the ERP, slowing 
of the conduction velocity as well as an increase in the pro-
portion of complex signals despite a significant decrease in 
left atrial size. Interestingly, despite no AF reported during 
the follow-up, AF was inducible in the EP lab in 5/11 pa-
tients, three requiring cardioversion for AF lasting >60 min-
utes [152].  

CONCLUSION 

 There is excellent basic science available on the patho-
physiology of AF, including changes in molecular biology, 
histology, ionic channel remodeling, as well as computa-
tional models that demonstrate the arrhythmogenicity of fi-
brosis. Understanding the mechanism of AF initiation and 
maintenance, and the profound and multifaceted effect risk 
factors have on the structure and function of the atrial myo-
cardium is key in developing more effective treatments.  

 It is important to identify patients at risk of developing 
AF and manage factors that contribute to disease progression 
and have an impact on ablation success. It will help patient 
selection and planning of the procedure – more extensive 
ablation for more remodeled atria as well as managing pa-
tient expectations. 
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