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Abstract: The quantitative analysis of datasets achieved by single molecule localization microscopy
is vital for studying the structure of subcellular organizations. Cluster analysis has emerged as a
multi-faceted tool in the structural analysis of localization datasets. However, the results it produces
greatly depend on the set parameters, and the process can be computationally intensive. Here we
present a new approach for structural analysis using lacunarity. Unlike cluster analysis, lacunarity can
be calculated quickly while providing definitive information about the structure of the localizations.
Using simulated data, we demonstrate how lacunarity results can be interpreted. We use these
interpretations to compare our lacunarity analysis with our previous cluster analysis-based results in
the field of DNA repair, showing the new algorithm’s efficiency.

Keywords: lacunarity; dSTORM; quantitative analysis

1. Introduction

The spatial resolution of conventional optical microscopes is limited by the diffraction
of light. In any imaging system, the image of an arbitrarily small light source is an extended
blob referred to as the point spread function (PSF) [1], the size of which depends on the
wavelength, the numerical aperture and the optical aberrations. In the diffraction limited
case, using a clear circular aperture, the PSF is an airy pattern [2], with a central peak
approximately half the wavelength in width. Below this spatial scale, images become
blurred and structures cannot be resolved. In biological samples this means that most
subcellular organizations and molecular complexes remain undetected by conventional
microscopy methods. To overcome this diffraction barrier, several super-resolution mi-
croscopy techniques have been developed such as structured illumination microscopy
(SIM) [3], stimulated emission depletion (STED) [4] and single molecule localization mi-
croscopy (SMLM) [5]. The SMLM techniques determine the positions of single emitting
fluorophores with precision of an order of magnitude higher than the diffraction limit. This
allows for image resolution in the scale of tens of nanometers and provides the highest
resolution super-resolution method. The most prominent SMLM techniques used in biolog-
ical studies include (direct) stochastic optical reconstruction microscopy ((d)STORM) [6,7],
photo activated localization microscopy (PALM) [8,9], points accumulation for imaging
in nanoscale topography (PAINT) [10], ground state depletion microscopy followed by
individual molecule return (GSDIM) [11], and MINFLUX [12].
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The quantitative analysis of SMLM datasets has gained considerable interest in recent
years [13]. However, the different data format (SMLM provides the 3D coordinates of
fluorescent molecules) requires new merit functions [14,15], evaluation algorithms [16,17]
and visualization methods [18]. To assess the underlying structure and density of target
molecules in biological samples consistently with previous studies, several quantitative
analysis methods have been proposed. These methods require the introduction of new
metrics which are ideally analogous to the terms used in regular optical microscopy. SMLM
images are formed by localization points showing the positions of individual fluorescent
molecules that are bound to the target molecules, usually proteins, by linkers. A typical
arrangement for these proteins of interest is clusters. Therefore, cluster analysis methods
such as DBSCAN [19] and Voronoi tessellation [20] are widely used when the size, area
and composition of clusters can be directly determined from the raw localization data. The
number of target molecules is not equal to the number of accepted localizations for a variety
of reasons. Labelling density depends on the number of epitopes and the dye molecules
on antibodies. Individual fluorophores can blink multiple times throughout the image
acquisition process before they are finally bleached. Such processes can be statistically
investigated by searching for the traces of single emitters in the data [21]. The fluorescent
ON-state lifetime is matched to the exposure time, but due to the stochastic nature of indi-
vidual blinking events, sometimes sequential frames capture the very same dye molecules
and thus create several less accurate localizations instead of one of high accuracy. This
problem can be rectified by the use of trajectory fitting algorithms unifying the signal of
the molecule in question [22]. Colocalization cannot be determined by measuring intensity
ratios. Techniques solving this problem and providing quantitative colocalization analysis
for SMLM are either based on DBSCAN, where the change in localization densities defines
the relation between the two channels [23], or the Voronoi analysis, where colocalization
is defined using Manders’ coefficients [24]. The importance of quantitative analyses for
determining the biological significance of SMLM data can be observed through the nu-
merous novel methods that have been developed in recent years. A technique that is yet
to be implemented for use in SMLM but has proven itself in material sciences could be
lacunarity analysis.

Lacunarity was first introduced by Mandelbrot to describe how certain patterns fill
space and provide information about texture [25]. It was mainly used in fractal analysis
to distinguish between fractals with the same dimensions but with different structures.
Lacunarity can characterize patterns in a flexible yet theoretically consistent manner across
different scales. Lacunarity has been found to be beneficial in various scientific fields, from
micro-CT analysis [26] and astronomy [27] through food chemistry [28] and geography [29]
to neuroscience [30] and oncology [31]. We believe that lacunarity analysis can be a
competitive method for describing the structure of nanoscale cellular structures unraveled
by single molecule localization microscopy. To demonstrate the effectiveness of lacunarity
analysis, we revisited two of our previous quantitative dSTORM results [21,32] where
cluster analysis played a central role in the evaluation process.

The DNA in the nucleus is constantly targeted by different damaging agents derived
from different sources, causing various types of damage to the genetic code. DNA double-
strand breaks (DSBs) are the most deleterious lesions, and therefore they must be repaired
as quickly and efficiently as possible to prevent chromosomal loss and translocation. These
repair mechanisms are carried out by several DNA repair proteins forming focuses [33,34]
around the DSB. The size of these foci is in the range of a hundred nanometers, and
their structure is crucial for understanding the process of DNA repair. Comparative
dSTORM and confocal measurements have revealed the advantages and limitations of the
two microscopy methods.

In this paper we propose a new, lacunarity based quantitative analysis method that
can assess the structure and homogeneity of target molecules in SMLM based datasets,
providing fast and accurate information about the structure of biological samples. We
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demonstrate the effectiveness of our lacunarity based algorithm by comparing its results
with previously conducted DBSCAN produced results in the field of DNA repair.

2. Materials and Methods
2.1. Lacunarity Calculation

The gliding box algorithm for evaluating 2D datasets was published by Allain and
Cloitre in 1991 [35]. In this method, lacunarity is obtained at a certain size “ε” by placing
an ε2 size box at every possible different position on the image. The mass of these boxes
is calculated by counting the number of object pixels inside them. Lacunarity can then
be calculated from the sums of the first and second moments of the box masses. As we
previously mentioned, in 2D SMLM the data consist of coordinate pairs, wherefore the
calculation of lacunarity must be modified accordingly. Figure 1a shows a regular SMLM
dataset consisting of numerous coordinate pairs in an L by L area where “L” is the side
length of the region of interest (ROI) in nanometers. To calculate lacunarity we need to
redefine the mass of a box as the number of localizations inside the box. We also need to
define a step size “s” with which the boxes will glide through the image. As a consequence,
the smallest possible box size will be equal to “s”. This gliding can be seen in Figure 1b.
As the boxes glide through the image, one can calculate the mass of each box and write
the value into a matrix “BM(i,j)” as shown in Figure 1c. To speed up the calculations, the
SMLM data can be pixelized into an M by M image, where

M =
L
s

, (1)

and the pixel values are the number of localizations in each pixel. The number of boxes for
a given ε in case of a square ROI is

N(ε) = (M− ε+ 1)2. (2)

As previously shown by Tolle in 2008 [36], lacunarity can be more efficiently calculated
from the box masses as

Λ(ε) =
N(ε)·∑N(ε)

i,j=1 (BM(i, j))2(
∑

N(ε)
i,j=1 BM(i, j)

)2 , (3)

than by creating the probability distributions for the box masses. To further increase the
speed of the calculations, we implemented the idea published by Backes 2013 [37], which
notes that to calculate the box mass of a neighboring box of an already calculated one, only
those edges of the box need to be visited that do not overlap with the already calculated
box. These changes allow our software to calculate lacunarity at a rate of 0.2 megapixels
per second on an AMD Ryzen 9 3900X system for box sizes equal to the divisors of 8000.
Showcasing the speed on a typical sample consisting of 1,300,000 localizations over a 10 µm
by 10 µm area using a step size of 1 nm takes 341.32 s, while on this same sample the
DBSCAN algorithm used in our previous studies takes 1687.92 s to complete on the same
system. The runtime can be sped up by, for example, using a step size of 5 nm, which takes
only 2.53 s at the cost of losing the information about box sizes smaller than 5 nm. The
runtime of lacunarity analysis is proportional to the area of the sample, while DBSCAN’s
runtime is proportional to the number of localizations. In dense small samples, this can
allow the lacunarity analysis to be a thousand times faster than DBSCAN. In SMLM, the
typical pixel size equals the achieved resolution, which is around 20 nanometers. We
recommend the use of step sizes smaller or equal to this value. The full system specs,
runtime analysis and step size comparison are listed in the Supplementary Materials. To
compare the lacunarity of different datasets we developed a new normalization method for
lacunarity curves. This was necessary because unlike with binary images, the lacunarity
value at box size one (ε = 1 pixel) will not be mathematically the same for images with the
same object pixels. Our new normalization method compares the lacunarity curve of a
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sample (Figure 1a) to a random dataset (Figure 1d) with the same number of localizations.
The lacunarity curves, calculated for the sample (black line) and for the random data (red
line), are depicted in Figure 1e. Normalization is performed by calculating the relative
difference of each point on the two lacunarity curves

Relative Lacunarity Difference(ε) =
Λsample(ε)−Λrandom(ε)

Λrandom(ε)
. (4)

Cells 2022, 11, x FOR PEER REVIEW 4 of 14 
 

 

method for lacunarity curves. This was necessary because unlike with binary images, the 
lacunarity value at box size one (ε=1 pixel) will not be mathematically the same for images 
with the same object pixels. Our new normalization method compares the lacunarity 
curve of a sample (Figure 1a) to a random dataset (Figure 1d) with the same number of 
localizations. The lacunarity curves, calculated for the sample (black line) and for the ran-
dom data (red line), are depicted in Figure 1e. Normalization is performed by calculating 
the relative difference of each point on the two lacunarity curves Relative Lacunarity Difference(ε) = Λ (ε) − Λ (ε)Λ (ε) . (4) 

The result, which we will call the lacunarity difference (LD) curve of the sample, can 
be seen in Figure 1f; such a normalization highlights the box sizes at which heterogeneity 
deviates as opposed to a random dataset. The box size at which the LD curve peaks shows 
the size where the heterogeneity of the sample is maximal. While this peak box size does 
not correspond to the cluster size, it can characterize the sample and its movement can 
give valuable information about changing sample parameters. 

  
(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 1. Step by step representation of the lacunarity calculation process and visualization. Local-
ization cluster of a hundred localizations in a Gaussian distribution of 150 nm sigma on an area of 
1000 nm by 1000 nm (a). Zoomed in on the cluster showing the gliding of an “ε” sized box at a step 
size of “s” (b). The box masses in the zoomed in area, calculated from the number of localizations 
in each box (c). Random set of a hundred localizations on the same area of 1000 nm by 1000 nm with 
an even distribution (d). Lacunarity curves of the cluster and the random dataset (e). Lacunarity 
difference curve created by calculating the relative difference between the lacunarity curve of the 
cluster and that of the random dataset of the same number of localizations at each point (f). 

2.2. TestSTORM Simulation 
Simulated test data were generated in the dSTORM simulation software called 

TestSTORM [38] to mimic real life samples in which target molecules form several clusters 
that consist of nanofoci (dense, 10–50 nm diameter clumps of localizations). To create the 
simulated data, 8000 frames were generated using a modified version of the inbuilt “discs 
pattern” generator, which randomly places epitopes in a circular area at a set density and 
orientation. These circular clusters were placed in a three by three grid. The nanofoci were 

Figure 1. Step by step representation of the lacunarity calculation process and visualization. Local-
ization cluster of a hundred localizations in a Gaussian distribution of 150 nm sigma on an area of
1000 nm by 1000 nm (a). Zoomed in on the cluster showing the gliding of an “ε” sized box at a step
size of “s” (b). The box masses in the zoomed in area, calculated from the number of localizations in
each box (c). Random set of a hundred localizations on the same area of 1000 nm by 1000 nm with
an even distribution (d). Lacunarity curves of the cluster and the random dataset (e). Lacunarity
difference curve created by calculating the relative difference between the lacunarity curve of the
cluster and that of the random dataset of the same number of localizations at each point (f).

The result, which we will call the lacunarity difference (LD) curve of the sample, can
be seen in Figure 1f; such a normalization highlights the box sizes at which heterogeneity
deviates as opposed to a random dataset. The box size at which the LD curve peaks shows
the size where the heterogeneity of the sample is maximal. While this peak box size does
not correspond to the cluster size, it can characterize the sample and its movement can give
valuable information about changing sample parameters.

2.2. TestSTORM Simulation

Simulated test data were generated in the dSTORM simulation software called Test-
STORM [38] to mimic real life samples in which target molecules form several clusters
that consist of nanofoci (dense, 10–50 nm diameter clumps of localizations). To create the
simulated data, 8000 frames were generated using a modified version of the inbuilt “discs
pattern” generator, which randomly places epitopes in a circular area at a set density and
orientation. These circular clusters were placed in a three by three grid. The nanofoci were
created using several labels per epitope with higher linker lengths. The dye and acquisition
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parameters were left at default values, only the “Non-spec. l. dens. (1/um3)” and the
“Number of frames” were changed. No sample drift was introduced and a Gaussian PSF
was used. Each blinking event was fitted with the rainSTORM reconstruction software
using the multi-Gaussian 2D analysis algorithm. The following sample parameters were
evaluated at five values: the number of clusters defined as the number of clusters in the
region of interest, the size of clusters defined as the radius of a single cluster, the distance
of clusters defined as the distance between the center of two neighbouring clusters, the
density of nanofoci defined as the number of nanofoci over a square micron area inside of
the clusters, the size of nanofoci defined as the radius of a single nanofocus, the number
of localizations per nanofoci defined as the number of fluorophores belonging to a sin-
gle nanofocus, and nonspecific localization density defined as the number of nonspecific
localizations in a cube micron volume.

2.3. DNA DSB dSTORM Images

The dSTORM datasets of DNA double-strand break repair research, used for demon-
strating the effectiveness of our technique, were chosen from previous studies. In these
studies the DSBs were artificially induced and visualized using the phosphorylated H2AX
at Ser139 (referred to as γH2AX) as a double strand break marker in the nuclei of the
cells [39]. The radiation treated U251, the neocarzinostatin (NCS) treated U2OS, and
4-hydroxytamoxifen (4-OHT) treated DIvA cell lines (U2OS cell line-based systems, which
express and activate AsiSI homing endonuclease upon 4-OHT addition [40]) were studied
in Brunner 2021 [32] and in Varga 2019 [21], respectively.

3. Results
3.1. Lacunarity Behaviour Examined through TestSTORM Simulations

The TestSTORM simulation data can be divided into three groups based on the charac-
teristics of the parameters. In the first group, parameters related to the clusters, i.e., cluster
number, cluster size and cluster distance, were analyzed. In the second group, parameters
of the nanofoci, i.e., nanofocus density, nanofocus size and localizations per nanofocus,
were studied. In the third group, the density of nonspecific localizations was studied.
The simulation results will be discussed based on the super-resolution images and the
lacunarity difference curves; the raw lacunarity curves are available in the Supplementary
Materials. For each simulation, all other parameters were kept at their base value and only
the studied parameter was changed. The base values and simulated parameter ranges are
shown in Table 1.

Table 1. Table showcasing the values of the simulation parameters and their respective ranges.

Names of the
Simulation Parameters

Base Values of the
Simulation Parameters

Ranges of the
Simulation Parameters

Cluster number 9 1–9
Cluster size (nm) 560 140–980

Cluster distance (nm) 2500 500–2500
Nanofocus density

(nanofoci/µm2) 40 10–70

Nanofocus Size (nm) 55 11–99
Localizations per nanofocus

(localizations/µm2) 150 10–290

Nonspecific localization
density (localizations/µm3) 70 0–560

During the simulations, the five studied cluster numbers were one, three, five, seven
and nine. The super-resolution images for one, five and nine clusters can be seen in
Figure 2a–c. The higher the number of clusters, the more homogeneous the image becomes,
therefore the lacunarity difference (LD) curve is flattened (Figure 2j). This homogenization
is caused by the clusters covering a larger portion of the image evenly, where the different
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parts of the image become more alike to one another. The peak of the LD curve describes
the box size at which the difference from a homogeneous sample is the greatest. We can
observe that the peak moves towards the smaller box sizes (127 nm→ 70 nm) as the number
of clusters increases (Figure 2j). This means that the image is homogenized more at larger
box sizes when the number of clusters is increased.
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   Figure 2. Effects of changing cluster parameters on lacunarity. Lacunarity difference curves of

TestSTORM generated datasets of different cluster numbers (a), cluster sizes (b), cluster distances (c).
Three super-resolution images of the simulated data are also shown for each lacunarity difference
curve. Cluster numbers of one (d), five (e) and nine (f). Cluster sizes of 140 nm (g), 560 nm (h) and
980 nm (i). Cluster distances of 500 nm (j), 1500 nm (k) and 2500 nm (l). Scale bars are 1 µm.

For the cluster sizes, the five settings for the radius of the circular clusters were 140 nm,
350 nm, 560 nm, 770 nm and 980 nm. The super-resolution images for 140 nm, 560 nm and
980 nm cluster sizes can be seen in Figure 2d–f. Larger clusters cover a larger part of the
image evenly, thus increasing homogeneity and flattening the LD curve. The peak of the
lacunarity difference curve shifts towards the smaller box sizes as the size of the clusters
increases (100 nm→ 53 nm) (Figure 2k). Changes in cluster size or the number of clusters
results in similar trends since they increase the area that is covered by the clusters while
maintaining the localization density.

For the study of cluster distances, a constant, 3 by 3 grid was used with different
cluster distances. The five settings were 500 nm, 1000 nm, 1500 nm, 2000 nm and 2500 nm.
The super-resolution images for 500 nm, 1500 nm and 2500 nm cluster distances can be
seen in Figure 2g–i. In the denser cases of 500 nm and 1000 nm, the 560 nm radius clusters
overlap and form a continuous area. This overlap decreases the size of the covered area
and increases the localization density. The result for the LD curve is a sharp increase in
heterogeneity and the peak moves towards the larger box sizes (143 nm and 85 nm). In the
other cases where the clusters are well separated, the amplitude and position of the LD
curve peaks remain the same (70 nm, 70 nm, 69 nm) (Figure 2l).

Generally describing the first category, we can say that an increase in the cluster
number or size makes the image more homogeneous and shifts the LD curve peak towards
the smaller box sizes. However, the cluster distance does not affect the lacunarity difference
curve significantly in the case of spatially separated clusters. Overlapping clusters introduce
significant inhomogeneity and shift the LD peak towards the larger box sizes.

In the second category for nanofocus density, the five studied settings were 10 nanofoci/µm2,
25 nanofoci/µm2, 40 nanofoci/µm2, 55 nanofoci/µm2 and 70 nanofoci/µm2. The super-
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resolution images for 10/µm2, 40/µm2 and 70/µm2 nanofocus densities can be seen in
Figure 3a–c. An increase in the density of nanofoci increases the number of localiza-
tions inside the clusters. The localization density increases from 3800 localizations/µm2 to
7200 localizations/µm2, 9700 localizations/µm2, 11,300 localizations/µm2 and
12,500 localizations/µm2, creating a more even distribution. This effect results in an in-
crease in homogeneity to a certain point determined by the cluster size and shape. The
peak of the lacunarity difference curve slightly shifts (69 nm→ 78 nm) towards the larger
box sizes, indicating that the homogenization effect is greater for the smaller box sizes
(Figure 3j). This is explained by the fact that the introduction of new nanofoci only affects
the image in a small localized area.
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Nanofocus sizes were set with the length of linker parameter in TestSTORM. The five
analyzed settings were 11 nm, 33 nm, 55 nm, 77 nm and 99 nm. The super-resolution
images for 11 nm, 55 nm and 99 nm nanofocus sizes can be seen in Figure 3d–f. An increase
in the nanofocus size homogenizes the image in a localized area, however nanofocus size
slightly affects the effective cluster size, i.e., the increase in homogeneity does not stop
abruptly. The peak of the lacunarity difference curve moves (30 nm→ 88 nm) towards
the larger box sizes (Figure 3k). Changes in nanofocus density or nanofocus size have
similar effects on lacunarity because they both affect the homogeneity of the image inside
the clusters. Consequently, they have a larger effect on smaller box sizes.

The number of localizations per nanofocus setting was studied at 10, 80, 150, 220 and
290 localizations. The super-resolution images for 10, 150 and 290 localizations per nanofo-
cus can be seen in Figure 3g–i. At 10 localizations per nanofocus, the clusters blend into the
nonspecific localizations, resulting in low heterogeneity. Higher than 80 localizations per
nanofocus values result in no changes in heterogeneity, because the geometry of the image
does not change. This means that both the peak value and peak box size remain the same
on the lacunarity difference curve, as can be seen in Figure 3l.

In the second category, an increase in the density or size of nanofoci results in an
increase in homogeneity, and this effect is more pronounced at smaller box sizes pushing
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the peak of the lacunarity difference curve towards the larger box sizes. Changing the
number of localizations per nanofocus leads to no change in geometry, thus it has no effect
on the lacunarity difference curve when the signal to noise ratio is adequate.

Finally, the density of nonspecific localizations was studied at 0/µm3, 70/µm3, 140/µm3,
280/µm3 and 560/µm3. The super-resolution images for 0/µm3, 140/µm3 and 560/µm3

nonspecific localization densities can be seen in Figure 4a–c. Higher densities of nonspecific
localizations evenly homogenize the whole image, while the peak of the curve only moves
very slightly (69 nm→ 64 nm) towards the smaller box sizes (Figure 4d).
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Figure 4. Effects of changing nonspecific localization densities on lacunarity and summary of the
simulation results. Lacunarity difference curves of TestSTORM generated datasets of different
nonspecific localization densities (a). Three super-resolution images of the simulated data with
nonspecific localization densities of 0/µm3 (b), 140/µm3 (c) and 560/µm3 (d) are also shown. Scale
bars are 1 µm. The peak positions for each simulation in order (e). Number of clusters (NC), cluster
size (CS), cluster distance (CD), nanofocus density (ND), nanofocus size (NS), localizations per
nanofocus (LPN) and nonspecific localization density (NSL).

One can draw conclusions about the underlying mechanisms and changing parameters
by evaluating the shift of the LD curve peak both in height and position. As can be seen in
Figure 4e, each different parameter moves the peak of the LD curve on different curves in
the relative lacunarity difference-box size space. While a certain parameter would be hard
to isolate, the different parameter groups (cluster and nanofocus) are distinct enough to be
separated. These changes are not specific to the cluster shapes we have chosen. In the case
of structures of other shapes consisting of substructures (like clusters consisting of nanofoci)
the increase of the covered area, either through a rise in structure size or structure number,
would result in similar homogenization. The distance of the structures would not affect
lacunarity until an overlap is apparent. The effect of substructures increasing in density
or size would homogenize the structures’ interior, while the number of localizations per
substructure would have a noticeable effect neither on geometry nor lacunarity. The increase
in nonspecific localization density always homogenizes the image. These conclusions can
be derived from the properties of lacunarity and how it is calculated.
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3.2. Dose Dependent Lacunarity Study of the X-ray Radiation Treated Cell Line

For the biological samples we selected three datasets to study different aspects of
the DSB repair mechanism. In the first one we investigated the nuclei of cells that were
treated with different dose levels of X-ray radiation. For the second set we studied how the
formation of DSB foci change in time after the radiation event. In the third set the effects of
different DSB inducing chemical agents were analyzed. As we have previously, we will
only show the super-resolution images of the area of the nuclei that the lacunarity analysis
was executed on, as well as the lacunarity difference curves. The lacunarity curves are
available in the Supplementary Materials. The box size for the highest lacunarity difference
value of the average curve (peak box size) and the box size of the center of mass of the
lacunarity difference curve (center box size) are highlighted on each graph.

Regarding the radiation dosage we chose the 0 Gy (or control), 2 Gy and 5 Gy cell
groups that we observed 30 min after they were subject to radiation induced damage. The
higher the dosage the higher the expected number of DSBs, which results in more repair
focus. The super-resolution images of the representative areas from each dose group can be
seen in Figure 5a,b. We can observe in Figure 5d–f that the lacunarity difference curve is
flattened by higher radiation doses. The images become more homogeneous as the foci get
more numerous. The peak of the lacunarity difference curve moves towards the smaller
box sizes with an increase in homogeneity. This indicates that the change induced by the
higher radiation doses occurs at the scale of the foci and not at the scale of nanofoci. As
we have shown for simulation data, this behaviour is caused by the clusters increasing in
either number or size.
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Figure 5. Super-resolution images and lacunarity difference curves of Alexa Fluor 647 labelled
γH2AX in the nuclei of U2OS cells grouped by radiation dosage. Each cell was observed 30 min after
being subjected to 0 Grays (a,b), 2 Grays (c,d) and 5 Grays (e,f) of ionizing radiation. Scale bars are
1 µm. The number of studied cells is 6, 7 and 9, respectively. On each lacunarity difference curve, the
average of the curves for each cell is shown in red and the average of the untreated U2OS is shown in
dashed blue.
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3.3. Kinetic Lacunarity Study of the X-ray Radiation Treated Cell Line

Time dependent studies were performed on the cells subjected to 5 Gys of radiation at
30 min, 24 h and 72 h after the treatment. The super-resolution images of the representative
areas from each time group can be seen in Figure 6a,b. Figure 5d–f shows that the lacunarity
difference curve peaks up as the DSBs are repaired and the nuclei become more like the
control. From the peak moving towards the larger box size as heterogeneity increases, we
can conclude that the number and size of the focuses are decreasing as the repair is done.
We see that while the peak box size returns to the control value, heterogeneity ends up
higher after the radiation dose and repair. This means that the nuclei may have undergone
permanent changes.
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Figure 6. Super-resolution images and lacunarity difference curves of A647 labelled γH2AX in the
nuclei of U2OS cells grouped by time after treatment. The cells were observed 30 min (a,b), 24 h (c,d)
and 72 h (e,f) after being subjected to 5 Grays of ionizing radiation. Scale bars are 1 µm. The number
of studied cells is 9, 6 and 5, respectively. On each lacunarity difference curve, the average of the
curves for each cell is shown in red and the average of the untreated U2OS is shown in dashed blue.

3.4. Lacunarity Study of Chemically Treated Cell Lines

The chemically treated cells consisted of U2OS control, U2OS treated with neocarzi-
nostatin (NCS) and DIvA treated with 4-hydroxytamoxifen (4-OHT). Super-resolution
images of representative areas from each treatment group can be seen in Figure 7a–c. Slight
homogenization was observed for the NCS treated U2OS cells, but the most dominant
change in the treatments was the shift of the peak of heterogeneity, as can be seen in
Figure 6d–f. Compared to the control, in both treatments the heterogeneity decreased at
the larger box sizes while it increased at the smaller box sizes, resulting in the peak being
pushed significantly towards the smaller box sizes. This phenomenon indicates that the
number and size of the foci increased, while the size or density of the nanofoci decreased.
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Figure 7. Super-resolution images and lacunarity difference curves of A647 labelled γH2AX in the
nuclei of U2OS and DIvA cells grouped by treatment. Untreated U2OS (a,b), NCS treated U2OS (c,d)
and 4-OHT treated DIvA (e,f) cells. Scale bars are 1 µm. The number of studied cells is four, five, and
six, respectively. On each lacunarity difference curve, the average of the curves for each cell is shown
in red and the average of the untreated U2OS is shown in dashed blue.

4. Discussion

Using the gliding-box method for lacunarity calculation, we have developed an algo-
rithm capable of quantitative homogeneity assessment in SMLM data. Using simulated and
measured datasets we have demonstrated how the lacunarity data can be interpreted and
used for describing the structure of localizations in a quantitative manner. The quantitative
analysis of SMLM data has always posed a challenge computationally because of the large
datasets. Our lacunarity algorithm is capable of providing accurate information about
the structure of SMLM data faster than previous techniques, such as cluster analysis. The
use of a new visualization method, where the lacunarity curve is compared against the
curve of a random dataset, enables us to instantly assess the relative homogeneity of an
image at each studied box size. The previously conducted DBSCAN based cluster analyses
shown in Varga 2019 [21], Figure 2 as well as Brunner 2021 [32], Figures 5 and 6 are in
perfect agreement with our results. The effects of radiation and DSB inducing chemical
agents were shown to cause an elevation in the number of DSBs and the formation of larger
repair foci. Our algorithm was capable of revealing these changes shown previously but
significantly faster.

There are, however, a few important limitations to our lacunarity analysis method.
The most obvious one is that any lacunarity based algorithm describes the structure of a
sample at a given size by only using a single number. This results in different processes
having similar effects on lacunarity. For example, in our simulation data an increase in
cluster size or cluster number had a very similar effect on the lacunarity curve. This can
make interpreting lacunarity results difficult without a preliminary simulation analysis.
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We recommend the proposed lacunarity analysis algorithm for preliminary investigations
in biological studies where it can provide fast and accurate information about the structure
of samples, i.e., sample screening.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11193105/s1, Figure S1: Size of each evaluated dSTORM image
in megapixels plotted against the calculation time in seconds; Figure S2: Lacunarity difference curves
of the same dataset using different step sizes; Figure S3: Lacunarity curves and conventionally
normalized lacunarity curves of the TestSTORM simulations; Figure S4: Lacunarity curves and
conventionally normalized lacunarity curves of the radiation treated cells grouped by exposure.;
Figure S5: Lacunarity curves and conventionally normalized lacunarity curves of the radiaton treated
cells grouped by time after treatment; Figure S6: Lacunarity curves and conventionally normalized
lacunarity curves of the chemically treated cells grouped by treatment.
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