One-Step Ring-Closure Procedure for 4,5-Dihydro-1,3thiazino[5,4-*b*]indole Derivatives with Lawesson's Reagent. The Fifth Dihydro-1,3-thiazino[*b*]indole Isomer

Péter Csomós,^{a,b} Lajos Fodor,^{a,b}* Gábor Bernáth,^a† Antal Csámpai,^c and Pál Sohár^{c,d}*

 ^aInstitute of Pharmaceutical Chemistry, University of Szeged, and Research Group of Stereochemistry of the Hungarian Academy of Sciences, Eötvös u. 6., Hungary
 ^bCentral Laboratory, County Hospital, H-5701 Gyula, Hungary
 ^cInstitute of Chemistry, Eötvös Loránd University, Hungary
 ^dProtein Modelling Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, H-1518 Budapest, Hungary
 *E-mail: fodor@pandy.hu (or) sohar@chem.elte.hu
 [†]Deceased Received April 19, 2010 DOI 10.1002/jhet.607
 Published online 19 May 2011 in Wiley Online Library (wileyonlinelibrary.com).

We report a convenient approach for the synthesis of a new ring system: 4,5-dihydro-1,3-thiazino[5,4b]indoles. The procedure involves the use of Lawesson's reagent in the presence of silica to achieve the one-step ring-closure reactions of 2-benzoylamino-3-hydroxymethylindole intermediates to furnish 4,5-dihydro-2-aryl-1,3-thiazino[5,4-b]indoles. 2-Phenylimino-1,3-thiazino[5,4-b]indoles were obtained via the corresponding 3-phenylthiourea-2-carboxylic acid ester derivatives by chemoselective reduction of the ester group, followed by ring closure under acidic conditions. The structures of the novel products were elucidated by IR, ¹H-NMR, and ¹³C-NMR spectroscopy, including 2D-HMQC, 2D-HMBC, and DEPT measurements.

J. Heterocyclic Chem., 48, 1079 (2011).

INTRODUCTION

In contrast with their valuable pharmacological activities, few derivatives are known of the six possible 1,3thiazinoindoles condensed at bond b of the indole skeleton (Fig. 1). Probably the best-known compounds of this family are 1,3-thiazino[6,5-b]indole phytoalexins [1]. The phytoalexins, not present in healthy plant tissues, are synthesized in plants in response to by attack pathogens or physical or chemical stress, probably as a result of the *de novo* synthesis of enzymes [2]. Takasugi et al. isolated the first thiazinoindole phytoalexin, cyclobrassinin (2-methylthio-thiazino[6,5-b]indole), from Chinese cabbage [3], and ~ 30 phytoalexins are now known in cruciferous plants, 6 of them possessing a thiazinoindole skeleton [1]. Besides its antimicrobial activity, cyclobrassinin exerts an antiproliferative effect against human cancer cell lines [4]. As concerns the remaining thiazino[6,5-b]indoles, only a few derivatives of cyclobrassinone [5] and 2-phenyl analogues of cyclobrassinin [6] have been synthesized and investigated.

We recently prepared two regioisomeric 1,3-thiazinoindoles (2, Fig. 1); 2-methylthio-1,3-thiazino[5,6-*b*]indole (isocyclobrassinin) and its 2-benzylthio analogue, both of which exerted good *in vitro* antiproliferative effects on cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF7), and squamous skin carcinoma (A431) cell lines [7]. For structure-activity relationships, further analogues were synthesized [8]. The highest cytotoxic effect was displayed by 2-phenylimino-1,3-thiazino[5,6-*b*]indole, which demonstrated inhibition activity comparable to that of cisplatin on the above three cell lines. This sulfur analogue of β -carboline proved to be a novel type of antitumor compound [7].

Procedures were also devised for a further two new thiazinoindole ring systems: 4-thiaharmalan analogues (2,5-dihydro-1,3-thiazino[5,6-*b*]indoles, **3** Fig. 1) [9] and γ -carboline analogue 2,9-dihydro-4-aryl-1,3-thiazino[6,5-*b*]indoles (**4**, Fig. 1) were obtained [10].

Among the remaining positional isomers (types **5** and **6**, Fig. 1), 1,5-dihydro-1,3-thiazino[5,4-*b*]indole-2,4-dithione was prepared from 3-aminoindole with carbon disulfide [11]. A series of 2-alkyl- or arylimino-1,3-thiazino[5,4-*b*]indol-4-one derivatives have been synthesized by ring closure of the appropriate indolylthiourea derivatives in polyphosphoric acid [12]. Members of this class

Figure 1. R^1 = MeS, Ar; R^2 = MeS, BnS, Ar, PhN.

of compounds inhibit human leukocyte elastase and α chymotrysin. To the best of our knowledge, a procedure for the synthesis of 4,5-dihydro-1,3-thiazino[5,4*b*]indoles (**5**, Fig. 1) has not yet been published previously.

As a continuation of our work on S,N heterocycles [13–15], including thiazinoindoles [6–10], we now describe an efficient route for the synthesis of the fifth 1,3-thiazinoindole isomer: 4,5-dihydro-1,3-thiazino[5,4-*b*]indoles (**13a**–**c**, Scheme 1) and 2-phenylimino derivatives **17a**–**c** (Scheme 2). These compounds are bioisosteres of 4,5-dihydro-1,3-thiazino[5,6-

b]indoles (**2**, Fig. 1) [7] possessing *in vitro* antiproliferative effects.

RESULTS AND DISCUSSION

For the preparation of different 1,3-thiazines, 1,3aminoalcohols are generally used by using two-component reactions [16]. In our hands, the reduction of ethyl 3-aminoindole-2-carboxylate (7) to obtain aminoalcohol 8 under different reduction conditions failed. One step procedures for 1,3-S,N heterocycles generally utilize thioamides containing a hydroxy group [17] or amides containing a hydroxy group [18]. In the latter case 1,3-thiazines are formed in low yields, and side products can also be isolated. To attempt one-component ring-closure reactions, we prepared substituted ethyl 3-benzoylaminoindole-2-carboxylate derivatives 10a-c from ethyl 3-aminoindole-2-carboxylate 7 and the corresponding benzoyl chlorides 9a-c under Schotten-Baumann conditions. The chemoselective reduction of benzamido esters 10a-c with lithium aluminum hydride in THF provided substituted N-benzoyl aminoalcohols 11a-c under mild reaction conditions. The one-step cyclization reaction of 11a-c with Lawesson's reagent in toluene proceeded smoothly and various side-products were observed on TLC. Interestingly, when silica gel was added to the reaction mixture (Lawesson's reagent in toluene at 90°C), the target thiazines were achieved within a relatively short reaction time and in good yield. Thus, 2-aryl-1,3-thiazino[5,4-b] indole derivatives 13a-c were obtained, most probably via intermediates 12a-c.

To prepare 2-phenylimino-substituted thiazinoindoles, 7 was reacted with phenyl isothiocyanates at 110°C to provide thioureas **15a**–**c**. Chemoselective reduction of

Scheme 1. Reagents and conditions: (i) Toluene, chloroform, 6% NaOH, 20 min; (ii) LiAlH₄, THF, 0°C, 1 h; (iii) Lawesson's reagent, silica gel, toluene, 90° C, 1 h.

a: X = H; **b**: X = Cl; **c**: X = Me

Scheme 2. Reagents and conditions: (i) Neat, 110°C, 30 min; (ii) LiAlH₄,THF, 0°C, 1 h; (iii) 5% HCl/EtOH, reflux, 20 min.

the ester functionality with lithium aluminum hydride in THF gave 2-hydroxymethylindole derivatives 16a-c. 2-Phenylimino-1,3-thiazino[5,4-*b*]indoles 17a-c were obtained from 16a-c in HCl/EtOH, followed by column chromatographic purification.

The spectral data (IR, ¹H- and ¹³C-NMR) on the new compounds are reported in Tables 1 and 2. The presumed structures follow unambiguously from these data. Only the following additional remarks are necessary:

The lower amide-I frequencies of 11a-c (1627 \pm 1 cm^{-1}) are noteworthy relative to those of **10a–c** (1655) \pm 6 cm⁻¹). The values observed for the compounds of type 11 do not lie in the expected interval characteristic of secondary amides [19]. This can be explained by the strong polarization of the amide group resulting in a lower bond order and consequently lower amide-I frequency in such derivatives. This effect is hindered in **10a-c** by the electron-withdrawing influence of the 2carbethoxy group. This phenomenon confirms strong conjugation between the ester and arylamide groups via the 2,3-double bond of the indole skeleton of 10a-c. In accord with this, the ¹³C-NMR chemical shifts of C-3 are higher for 10a-c (120-124 ppm) than for 11a-c (110 ppm), indicating lower electron density for the former carbons. A similar delocalization is not present in thioureas 16a-c as the other NH substituent attached to the thiocarbonyl group acts as an electron reservoir. The high ¹H-NMR chemical shift of the *ortho* aryl hydrogens (7.92 \pm 0.03 ppm) is a consequence of the tautomeric preference with a C=N bond for 17a-c; this can be explained by the substitution of the electron-attracting C=N bond (instead of NH) on CAr-1 and by the upfield shift of the indole C-2 line in the ¹³C-NMR spectra (113.4 \pm 0.1 ppm) as compared with those for **13a–c** (116.2 \pm 0.2 ppm).

In summary, we report a convenient approach for the synthesis of a new ring system: 4,5-dihydro-1,3-thiazino[5,6-*b*]indoles. Indole 3-benzamido- and 3-phenylthiourea-2-carboxylic acid esters (10a-c, 15a-c) were chemoselectively reduced to the corresponding 2hydroxymethylindole derivatives (11a-c, 16a-c). Treatment of intermediates 11a-c with Lawesson's reagent in the presence of silica gel provided thiazinoindoles 13a-c in good yields in a one-step protocol. The target 2-phenyliminothiazinoindoles (17a-c) were obtained from 16a-c by acidic treatment.

EXPERIMENTAL

Melting points were determined on a Kofler micro melting apparatus and are uncorrected. Elemental analyses were performed with a PerkinElmer 2400 CHNS elemental analyser. Merck Kieselgel 60F₂₅₄ plates were used for TLC, and Merck Silica gel 60 (0.063–0.100) for column chromatography. Ethyl 3-aminoindole-2-carboxylate (7) was prepared by a literature method [20].

The ¹H- and ¹³C-NMR spectra were recorded in CDCl₃ solution in 5 mm tubes at room temperature, on a Bruker DRX 500 spectrometer at 500.13 (¹H) and 125.76 (¹³C) MHz, with the deuterium signal of the solvent as the lock and TMS as internal standard. The standard Bruker micro-program to generate NOE was used. DEPT spectra were run in a standard manner, using only the $\theta = 135^{\circ}$ pulse to separate CH/CH₃ and CH₂ lines phased "up" and "down," respectively. The 2D-HSC spectra were obtained by using the standard Bruker pulse program.

General procedure for substituted ethyl 3-benzoylaminoindole-2-carboxylates (10a-c). Amino acid ester 7 (0.72 g, 3.5 mmol) was dissolved in a mixture of toluene (25 mL) and chloroform (50 mL). To this solution, sodium hydroxide (0.62 g, 15.4 mmol) dissolved in water (10 mL) was added. After the addition of benzoyl chloride (0.42 g, 3.9 mmol), the reaction mixture was shaken intensively for 20 min. The crystals that separated out were filtered off, washed in turn with water and with toluene, and dried. The white crystalline benzamides were recrystallized.

Ethyl 3-benzoylaminoindole-2-carboxylate (10a). White crystalline needles, mp: 166–168°C (from EtOH), Lit [21] mp: 171–171.5°C yield 1.00 g (92%). Anal. Calcd. for $C_{18}H_{16}N_2O_3$ (308.33): C, 70.12; H, 5.23; N, 9.09. Found: C, 70.38; H, 5.39; N, 8.89.

Ethyl 3-(4-chlorobenzoyl)aminoindole-2-carboxylate (10b). White crystalline powder, mp: 245–246°C (from EtOH, CHCl₃), yield 1.02 g (85%). Anal. Calcd. for $C_{18}H_{15}ClN_2O_3$ (342.78): C, 63.07; H, 4.41; N, 8.17. Found: C, 63.28; H, 4.55; N, 8.09.

Ethyl 3-(4-methylbenzoyl)aminoindole-2-carboxylate (10c). White crystalline needles, mp: $204-206^{\circ}C$ (from EtOH), yield 0.94 g (83%). Anal. Calcd. for $C_{19}H_{18}N_2O_3$ (322.36): C, 70.79; H, 5.63; N, 8.69. Found: C, 70.65; H, 5.83; N, 8.84.

General procedure for chemoselective reduction of substituted ethyl 3-benzoylaminoindole-2-carboxylates (10a-c). To intensively stirred and cooled (ice-water) THF (5 mL), lithium aluminum hydride (0.24 g, 6.3 mmol) was added in small portions. To this cooled suspension a solution of 10a-c (2.5

Table 1	
Characteristic IR frequencies ^a and ¹ H NMR data ^b for compounds 10a-c , 11a-c , 13a-c , 15a-c , 16a-c , and 1	7a–c.'

Compound	vNH + vOH band ^d	vC=O band ^e	$\substack{\gamma C_{Ar}H\\ band^f}$	$CH_3 t(3H)^g$	$\begin{array}{c} \text{XCH}_2^{\text{h}}\\ s, d \text{ or}\\ qa \end{array}$	$^{\text{H-4}}_{\sim d^{\mathrm{f}}}$	$H-5 \sim t^{f}$	$^{\text{H-6}}_{\sim t^{\mathrm{f}}}$	$^{\text{H-7}}_{\sim d^{\mathrm{f}}}$	$\begin{array}{c} \text{H-2',6'}\\ \sim d\\ (\text{2H})^{\text{i}} \end{array}$	H-3',5' $\sim t$ $(2H)^j$	$ \begin{array}{c} \text{H-4'} \\ \sim t \\ (1\text{H})^{\text{k}} \end{array} $	NH amide	NH indole
10a	3322	1681	737	1.27	4.32	7.76	7.10	7.14	7.32	8.09	7.57	7.60	10.14	11.80
10b	3313	1678	741	1.25	4.30	7.67	7.08	7.30	7.46	8.07	7.64	_	10.2	11.8
10c	3322	1676	740	1.26	4.31	7.72	7.08	7.30	7.46	7.96	7.36	_	10.03	11.76
11a	~ 3250	1627	723	-	4.62	7.42	7.00	7.10	7.38	8.08	7.55	7.59	9.90	11.06
11b	3355, 3265	1628	746	-	4.56	7.38	6.97	7.07	7.35	8.07	7.61	-	9.94	11.05
11c	3352, 3266	1626	743	-	4.56	7.38	6.97	7.07	7.35	7.96	7.34	-	9.78	11.02
13a	3250-2800	1582	758	-	4.52	7.73	7.12	7.16	7.39	8.04	7.51^{1}	7.50^{1}	_	11.35
13b	3383	1534	750	-	4.51	7.71	7.11	7.16	7.39	8.03	7.56	-	_	11.38
13c	~ 3245	1532	742	_	4.49	7.70	7.10	7.14	7.37	7.92	7.31	_	_	11.30
15a	3311	1653	736	1.33	4.33	7.57	7.08	7.27	7.44	7.52	7.32	7.12	9.38	11.78
15b	3311	1651	735	1.32	4.32	7.55^{1}	7.08	7.28	7.45	7.55^{1}	7.36	-	9.53, 9.72	11.81
15c	3306	1658	738	1.34	4.32	7.57	7.08	7.27	7.43	7.35	6.89	_	9.22, 9.50	11.75
16a	3350-2800	1661	735	_	4.58	7.36 ¹	7.00	7.09	7.36 ¹	7.47 ^m	7.29 ^m	7.10	8.8, 9.3 ⁿ	9.3 ⁿ
16b	3166	1524	744	-	4.58	~ 7.35	7.00	7.09	~ 7.36	~ 7.35	~ 7.35	-	8.88, 9.52	11.2
16c	3299, 3180	1535	738	-	4.58	7.37	7.01	7.09	7.36	$\sim 7.3^{1}$	6.87	-	$\sim 7.3^{1}, \sim 8.7$	11.18
17a	3200-2800	1605	741	_	4.38	7.57	7.02	7.07	$\sim 7.3^{1}$	7.91	$\sim 7.3^{1}$	6.94	9.10	10.85
17b	3390	1600	747	-	4.39	7.57	7.02	7.07	7.30	7.95	7.35	-	9.25	10.88
17c	3406	1592	737	-	4.35	7.54	7.00	7.05	7.28	7.82	6.90	-	~ 8.93	10.79

^a In KBr discs (cm⁻¹). Further bands, Amide-I: 1661 (10a), 1649 (10b), 1651 (10c); vC—O: 1253 (10a), 1248 (10b,c), 1023 (11a), 1007 (11b), 1015 (11c), 1271 (15a and 16a), 1263 (15b), 1243 (15c and 16b,c); γC_{Ar}H and γC_{Ar}C_{Ar} bands (*mono-* or *para*-disubst. benzene ring): 710 (10a), 843 (10b), 834 (10c), 688 (11a), 845 (11b), 836 (11c), 737, 686 (11a), 828 (13b, 15c, 16c and 17b), 819 (13c and 15b), 693 (16a), 832 (16b and 17c) 690 (17a).

^b In DMSO-d₆ solution at 500.1 MHz. Chemical shifts in ppm ($\delta_{TMS} = 0$ ppm), coupling constants in Hz. Further signals: ArCH₃, *s* (3H): 2.40 (**10c** and **11c**), 2.37 (**13c**); OCH₃, *s* (3H): 3.74 (**15c**, **16c** and **17c**); OH, *t*, *J*: 5.3 (1H): 5.20 (**11a**), 5.16 (**11b**,c and **16c**), 5.18 (**16a**,b).

^c Assignments were supported by HMQC (except for 10c, 11c, 13c, 15c and 17a), HMBC (except for 10a,c, 11a,c, 13c, 15c and 17a)

^d Broad or very broad overlapping bands of NH and OH groups, separated maximum at 3395 (17a).

^e Ester (10a-c and 15a-c), amide I (11a-c), vC=N (13a-c and 17a-c), thiourea (16a-c). Split, with the second maximum at 1511 (16a), 1583 (17a), 1579 (17c).

^f Indole ring.

^g Ethyl group, *J*: 7.1, 7.3 (**15a,b**).

^hX=O, *qa* (10a-c and 15a-c), X=O, *d* (*J*: 5.2, (11a,c), 5.5 (11b and 15b) 4.9 (16a,c), X=S, s (13a-c and 17a-c).

^{i,j,k} A/B/C part of an AA'BB'C (for **a**-type compd.) or AA'BB' spectrum (**b** and **c**-type compd.).

^{1,n}Overlapping signals.

^m Broad signal due to hindered rotation of the thiourea moiety.

mmol) in THF (10 mL) was added dropwise over a period of 30 min. The reaction mixture was stirred at the same temperature for 30 min. Ethyl acetate (40 mL) was then added dropwise during 5 min, followed by the dropwise addition of water (30 mL) during 10 min. After stirring for 10 min, the phases were separated, the organic phase was dried (sodium sulfate) and evaporated (water bath <50°C) and the residue was purified by column chromatography, with ethyl acetate:*n*-hexane (2:1) as eluent to give **11a–c** as a crystalline powder.

3-Benzoylamino-2-hydroxymethylindole (11a). Pale-brown crystalline needles, mp: 222–224°C, yield 0.47 g (71%). Anal. Calcd. for $C_{16}H_{14}N_2O_2$ (266.29): C, 72.16; H, 5.30; N, 10.52. Found: C, 72.28; H, 5.41; N, 10.39.

3-(4-Chlorobenzoyl)amino-2-hydroxymethylindole (11b). Palebrown crystalline powder, mp: $219-221^{\circ}$ C, yield 0.56 g (74%). Anal. Calcd. for C₁₆H₁₃ClN₂O₂ (300.74): C, 63.90; H, 4.36; N, 9.31. Found: C, 64.15; H, 4.39; N, 9.09.

3-(4-Methylbenzoyl)amino-2-hydroxymethylindole (11c). Palebrown crystalline powder, mp: 208–212°C, yield 0.46 g (65%). Anal. Calcd. for $C_{17}H_{16}N_2O_2$ (280.32): C, 72.84; H, 5.75; N, 9.99. Found: C, 72.71; H, 5.57; N, 9.72.

General procedure for 4,5-dihydro-2-aryl-1,3-thiazino[5,4-b]indoles (13a-c) from 3-benzoylamino-2-hydroxymethylindole (11a-c). To a suspension of 3-benzoylamino-2hydroxymethylindoles (11a-c) (1.6 mmol) in toluene (20 mL), Lawesson's reagent (0.7 g, 1.7 mmol) was added in one portion, followed by the addition of silica gel powder (0.5 g). The reaction mixture was stirred at 95°C for 3 h. After evaporation, the residue was purified by column chromatography, with *n*-hexane:ethyl acetate 4:1 as eluent, to give 13a-c as a crystalline powder.

4,5-Dihydro-2-phenyl-1,3-thiazino[5,4-b]indole (13a). Brownishgreen crystalline powder, mp: 180–186°C, yield 0.26 g (61%). Anal. Calcd. for $C_{16}H_{12}N_2S$ (264.35): C, 72.70; H, 4.58; N, 10.60; S, 12.13. Found: C, 72.92; H, 4.44; N, 10.51; S, 12.31.

4,5-Dihydro-2-(4-chlorophenyl)-1,3-thiazino[5,4-b]indole (**13b**). Brownish-green crystalline powder, mp: 185–189°C, yield 0.25 g (53%). Anal. Calcd. for C₁₆H₁₁ClN₂S (298.79): C, 64.32; H, 3.71; N, 9.38; S, 10.73. Found: C, 64.54; H, 3.65; N, 9.22; S, 10.97.

4,5-Dihydro-2-(4-methylphenyl)-1,3-thiazino[5,4-b]indole (13c). Brownish-green crystalline powder, mp: 164–168°C,

September 2011 One-Step Ring-Closure Procedure for 4,5-Dihydro-1,3-thiazino[5,4-*b*]indole Derivatives with Lawesson's Reagent. The Fifth Dihydro-1,3-thiazino[*b*]indole Isomer

 Table 2

 ¹³C NMR chemical shifts^a for compounds 10a-c, 11a-c, 13a-c, 15a-c, 16a-c, and 17a-c.^b

Com- pound	CH ₃ (Et)	C=O ester	C=O amide ^c	C-2	C-3	C-3a	C-4 Indole	C-5 Ring	C-6	C-7	C-7a	OCH ₂ or SCH ₂ ^d	C-1′	C-2',6' Aryl	C-3',5' Group	C-4′
pound 10a 10b 10c 11a 11b 11c 13a 13b 13c 15a 15b 15c	(Et) 15.1 15.1 15.1 - - - - 15.2 15.2 15.2	ester 162.3 162.1 162.3 - - - - - - 161.7 161.6 161.7	amide ⁻ 165.9 165.0 165.7 166.7 165.6 166.6 149.3 147.9 149.3 181.6 181.7 181.8	C-2 119.7 ^e 120.2 ^e 119.5 ^c 134.2 134.16 ^e 134.1 124.4 124.5 124.4 121.8 120.6 ^e 121.69 ^e	C-3 123.7 120.7 ^e 123.6 110.4 110.1 110.5 116.2 116.3 116.0 121.0 122.0 121.1 ^e	C-3a 121.4° 123.9 121.5° 125.3 125.2 125.3 125.1 125.1 124.7 124.7	122.9 122.5 123.0 119.1 119.1 119.1 117.7 117.7 117.7 121.6 121.4 121.75	Ring 120.5 120.6 120.4 119.4 119.4 119.4 119.3 120.9 121.0 120.8 120.7 120.8 120.7 120.8	C-6 126.1 126.1 126.1 121.9 121.8 122.8 122.9 122.8 125.8 125.9 125.8 125.9	113.5 113.5 113.4 112.2 112.2 112.7 112.6 113.6 113.5	C-7a 136.2 136.1 136.2 134.8 134.8 134.1 135.5 135.6 135.5 136.0 136.0 136.0 136.0	SCH ₂ - 61.3 61.3 61.3 55.8 55.7 55.8 24.0 24.0 24.0 24.0 61.3 61.3 61.3 61.3	C-1 135.3 134.0 132.4 135.5 134.2 ^e 132.6 138.7 137.4 136.0 140.6 139.7 133.4	Aryl 128.4 130.4 129.9 128.6 130.5 128.6 127.5 129.1 130.0 124.8 126.5 127.1 130.0	Group 129.4 129.5 128.5 129.2 129.3 129.7 129.5 129.5 129.5 129.7 129.5 129.7 129.5 129.1 128.9 114.4 120.0	C-4 132.5 137.3 142.5 132.2 137.0 142.1 131.1 135.7 141.0 125.3 129.1 157.4 125.2
16a 16b 16c 17a 17b 17c		- - - -	181.9 181.9 182.3 144.2 ^e 144.1 144.3	135.6 135.6 ^e 135.1 124.3 ^g 124.1 124.5 ^e	127.4 113.4 113.5 113.3	125.0 125.2 124.5 ^g 124.4 124.6 ^e	118.5 118.4 118.5 117.6 117.6 117.6	119.9 119.9 119.9 119.5 ^h 119.7 119.6	122.2 122.1 122.1 122.0 ^k 122.1 122.0	112.5 112.5 112.5 112.3 112.3 112.3 112.2	135.0 135.0 ^f 135.7 135.2 135.2 135.1	55.4 55.4 25.0 25.0 25.0	140.7 139.8 133.5 142.4 ^e 141.3 135.8	125.3 ^k 127.5 127.4 122.13 ^k 120.9 121.0	129.0 128.8 114.2 129.4 129.3 114.6	125.3 [°] 129.1 157.4 119.7 ^h 125.5 154.8

^a In ppm ($\delta_{TMS} = 0$ ppm) at 125.7 MHz. Solvent: DMSO-d₆. Further signals, ArCH₃: 21.9 (**10c** and **11c**), 21.8 (**13c**); OCH₃: 56.1 (**15c** and **16c**), 56.0 (**17c**). Due to slow motion (hindered rotation) of the thiourea moiety, it was not possible to identify the C-3 (**16a,b**) and C-3a lines(**16a**). ^b Assignments were supported by DEPT (except for **16b** and **15a**), HMQC (except for **10c**, **11c**, **13c**, **15c** and **17a**) and HMBC (except for **10a,c**,

11a,c, 13c, 15c and **17a**) measurements.

^c C=S (15a-c and 16a-c), C=N (13a-c and 17a-c).

^d For **13a–c** and **17a–c**.

^{e g,h,k} Reversed assignments are also possible.

^fOverlapping lines.

yield 0.33 g (75%). Anal. Calcd. for $C_{17}H_{14}N_2S$ (278.37): C, 73.35; H, 5.07; N, 10.06; S, 11.52. Found: C, 73.18; H, 4.92; N, 9.83; S, 11.77.

General procedure for thiourea derivatives (15a-c) from ethyl 3-aminoindole-2-carboxylate (7) and substituted phenylisothiocyanates (14a-c). Amino acid ester 7 (1.2 g, 4.8 mmol) was mixed thoroughly with the corresponding substituted phenyl isothiocyanate (14a-c) (5 mmol) in a round bottle, and the mixture was heated at 110° C for 30 min. To the crystalline thiourea derivatives, ethyl acetate was then added. The crystals were filtered off, washed with ethyl acetate, and recrystallized.

Phenyl thiourea ester derivative (15a). White crystalline powder, mp: 194–196°C (from EtOH, CHCl₃), Lit [3] mp: 184–185°C, yield 1.50 g (92%). Anal. Calcd. for $C_{18}H_{17}N_3O_2S$ (339.41): C, 63.70; H, 5.05; N, 12.38; S, 9.45. Found: C, 63.49; H, 5.12; N, 12.51; S, 9.67.

4-Chlorophenyl thiourea ester derivative (15b). White crystalline powder, mp: $187-188^{\circ}$ C (from EtOH, CHCl₃), Lit [22] mp: $179-180^{\circ}$ C, yield 1.68 g (94%). Anal. Calcd. for C₁₈H₁₆ClN₃O₂S (373.86): C, 57.83; H, 4.31; N, 11.24; S, 8.58. Found: C, 58.04; H, 4.53; N, 11.26; S, 8.42.

4-Methoxyphenyl thiourea ester derivative (15c). White crystalline flakes, mp: $181-182^{\circ}C$ (from EtOH), yield 1.15 g (65%). Anal. Calcd. for $C_{19}H_{19}N_3O_3S$ (369.43): C, 61.77; H, 5.18; N, 11.37; S, 8.68. Found: C, 61.52; H, 5.07; N, 11.49; S, 8.72.

General procedure for chemoselective reduction of thiourea derivatives (15a-c). To an intensively stirred and cooled (ice water) THF (5 mL) lithium aluminum hydride was added (0.24 g, 6.3 mmol) was added in small portions. To this cooled suspension a solution of 15a-c (3.2 mmol) in THF (10 mL) was added dropwise over a period of 30 min. The reaction mixture was stirred at the same temperature for 30 min. Ethyl acetate (40 mL) was then added dropwise (5 min), followed by the dropwise addition of water (1 mL). After stirring for 10 min. the reaction mixture was filtered, and the filtrate dried (sodium sulphate) evaporated (water bath <50°C), and the residue was purified by column chromatography, using ethylacetate:*n*-hexane (2:1) as eluent to give **16a-c** as a crystalline powder.

Phenyl thiourea alcohol derivative (16a). Pale-brown crystalline powder, mp: $195-197^{\circ}$ C, yield 0.51 g (54%). Anal. Calcd. for C₁₆H₁₅N₃OS (297.38): C, 64.62; H, 5.08; N, 14.13; S, 10.78. Found: C, 64.82; H, 5.21; N, 13.91; S, 10.89.

4-Chlorophenyl thiourea alcohol derivative (16b). Palebrown crystalline powder, mp: 177–178°C, yield 0.58 g (55%). Anal. Calcd. for $C_{16}H_{14}ClN_3OS$ (331.82): C, 57.91; H, 4.25; N, 12.66; S, 9.66. Found: C, 58.21; H, 4.07; N, 12.42; S, 58.48.

4-Methoxyphenyl thiourea alcohol derivative (16c). Palebrown crystalline powder, mp: 190–192°C, yield 0.65 g (62 %). Anal. Calcd. for $C_{17}H_{17}N_3O_2S$ (327.40): C, 62.36; H, 5.23; N, 12.83; S, 9.79. Found: C, 62.55; H, 5.49; N, 12.61; S, 9.51.

General procedure for preparation of 2-arylimino-1,3thiazino[5,4-b]indoles 17a–c from thiourea alcohol derivatives (16a–c). The appropriate thiourea alcohol derivative 16a–c (0.9 mmol) was suspended in absol. EtOH (10 mL). 20% HCl/EtOH (2.5 mL) was added to the mixture, and it was refluxed for 20 min. After evaporation the residue was dissolved in an extraction funnel in CHCl₃ (20 mL) and MeOH (1 mL), water was added (10 mL) and the mixture was neutralized with 10% NaHCO₃ solution. The organic layer was separated, extracted with water (10 mL), dried and evaporated. The residue was purified by column chromatography, with ethyl acetate:*n*-hexane (3:2) as eluent, to give 17a-c as a crystalline powder.

2-Phenylimino-1,3-thiazino[5,4-b]indole (17a). Pale-brown crystalline powder, mp: 179–183°C, yield 0.11 g (42%). Anal. Calcd. for $C_{16}H_{13}N_{3}S$ (279.36): C, 68.79; H, 4.69; N, 15.04; S, 11.48. Found: C, 68.71; H, 4.88; N, 14.87; S, 11.73.

2-(4-Chlorophenylimino)-1,3-thiazino[5,4-b]indole (17b). Palebrown crystalline powder, mp: 184–190°C, yield 0.11 g (40%). Anal. Calcd. for $C_{16}H_{12}ClN_3S$ (313.81): C, 61.24; H, 3.85; N, 13.39; S, 10.22. Found: C, 61.10; H, 4.02; N, 13.61; S, 10.51.

2-(4-Methoxyphenylimino)-1,3-thiazino[5,4-b]indole (17c). Palebrown crystalline powder, mp: 174–177°C, yield 0.14 g (49 %). Anal. Calcd. for $C_{17}H_{15}N_3OS$ (309.39): C, 66.00; H, 4.89; N, 13.58; S, 10.36. Found: C, 65.82; H, 6.17; N, 13.71; S, 10.56.

Acknowledgments. The authors express their thanks to the Hungarian Scientific Research Foundation (OTKA) for financial support. They are indebted to Mrs. E. Juhász Dinya for excellent technical assistance.

REFERENCES AND NOTES

(a) Pedras, M. S. C.; Zheng, Q. A.; Sarma-Mamillapalle,
 V. K. Nat Prod Commun 2007, 2, 319; (b) Pedras, M. S. C.; Zheng,
 Q. A.; Sarma-Mamillapalle, V. K. Chem Abstr 2007, 147, 5633.

[2] (a) Dixon, R. A.; Lamb, C. J. Ann Rev Plant Physiol Plant
 Mol Biol 1990, 41, 339; (b) Dixon, R. A.; Lamb, C. J. Chem Abstr
 1990, 113, 55790

[3] Takasugi, M.; Katsui, N.; Shirata, A. J Chem Soc Chem Commun 1986, 1077.

[4] (a) Metha, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhäuser, C.; Pezutto, J. M.; Moon, R. C.; Moriarty, M. R. Carcinogenesis 1995, 16, 399; (b) Metha, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhäuser, C.; Pezutto, J. M.; Moon, R. C.; Moriarty, M. R. Chem Abstr 1995, 122, 230157.

[5] Kutschy, P.; Suchý, M.; Adreani, A.; Dzurilla, M.; Kováčik, V.; Alföldi, J.; Rossi, M.; Gramatová, M. Tetrahedron 2002, 58, 9029.

[6] Csomós P.; Fodor L.; Sohár P.; Bernáth G. Tetrahedron 2005, 61, 9257.

[7] (a) Csomós, P.; Zupkó, I.; Réthy, B.; Fodor, L.; Falkay,
G.; Bernáth, G. Bioorg Med Chem Lett 2006, 16, 6273; (b) Csomós,
P.; Zupkó, I.; Réthy, B.; Fodor, L.; Falkay, G.; Bernáth, G. Chem Abstr 2006, 146, 114234.

[8] Csomós, P.; Fodor, L.; Mándity, I.; Bernáth, G. Tetrahedron 2007, 63, 4983.

[9] Csomós, P.; Fodor, L.; Bernáth, G.; Csámpai, A.; Sohár, P. Tetrahedron 2008, 64, 8646.

[10] Csomós, P.; Fodor, L.; Bernáth, G.; Csámpai, A.; Sohár, P. Tetrahedron 2009, 65, 1475.

[11] (a) Velezheva, V. S.; Yarosl, A. V.; Kozik, T. A.; Suvorov, U. N. Khim Geterosikl Soedin 1978, 1497; (b) Velezheva, V. S.; Yarosl, A. V.; Kozik, T. A.; Suvorov, U. N. Chem Abstr 1979, 90, 87375f.

[12] (a) Romeo, G.; Russo, F.; Guccione, S.; Chabin, R.; Kuo, D.; Knight, W. B. Bioorg Med Chem Lett 1994, 4, 2399; (b) Romeo, G.; Russo, F.; Guccione, S.; Chabin, R.; Kuo, D.; Knight, W. B. Chem Abstr 1995, 122, 81330.

[13] Fodor, L.; Szabó. J.; Szűcs, E.; Bernáth, G.; Sohár, P.; Tamás, J. Tetrahedron 1984, 40, 4089.

[14] Fodor, L.; MacLean, D. B. Can J Chem 1987, 65, 18.

[15] Csomós, P.; Fodor, L.; Sinkonen, J.; Pihlaja, K.; Bernáth, G. Tetrahedron Lett 2006, 47, 5665.

[16] Bergman, J.; Janosik, T. In Comprehensive Heterocyclic Chemistry III, Katritzky, A. R., Ramsden, C. A., Taylor R. J. K., Eds.; Elsevier Ltd: Oxford, 2008; Vol. 3, p 269.

[17] Jagodiński, T. S. Chem Rev 2003, 103, 197.

[18] Ozturk, T.; Ertas, E.; Mert, O. Chem Rev 2007, 107, 5210.

[19] Holly, S.; Sohár, P. In Theoretical and Technical Introduction to the Series Absorption Spectra in the Infrared Region, Láng L.,

Prichard, W. H., Eds.; Akadémiai Kiadó: Budapest, 1975, p 113. [20] Unangst, P. C. J Heterocycl Chem 1983, 20, 495.

[21] Čuček, K.; Verček, B. Synthesis 2008, 1741.

[22] Romeo, G.; Russo, F.; Guccione, S.; Chabin, R.; Kuo, D.;

Knight, W. B. Bioorg Med Chem Lett 1994, 4, 2399.