
Towards JavaScript program repair with Generative Pre-trained
Transformer (GPT-2)

Márk Lajkó
mlajko@inf.u-szeged.hu

Viktor Csuvik
csuvikv@inf.u-szeged.hu

Department of Software Engineering
MTA-SZTE Research Group on

Artificial Intelligence
University of Szeged
Szeged, Hungary

László Vidács
lac@inf.u-szeged.hu

ABSTRACT
The goal of Automated Program Repair (APR) is to find a fix to
software bugs, without human intervention. The so-called Gener-
ate and Validate (G&V) approach deemed to be the most popular
method in the last few years, where the APR tool creates a patch
and it is validated against an oracle. Recent years for Natural Lan-
guage Processing (NLP) were of great interest, with new pre-trained
models shattering records on tasks ranging from sentiment analysis
to question answering. Usually these deep learning models inspire
the APR community as well. These approaches usually require a
large dataset on which the model can be trained (or fine-tuned) and
evaluated. The criterion to accept a patch depends on the underly-
ing dataset, but usually the generated patch should be exactly the
same as the one created by a human developer. As NLP models are
more and more capable to form sentences, and the sentences will
form coherent paragraphs, the APR tools are also better and better
at generating syntactically and semantically correct source code. As
the Generative Pre-trained Transformer (GPT) model is now avail-
able to everyone thanks to the NLP and AI research community,
it can be fine-tuned to specific tasks (not necessarily on natural
language). In this work we use the GPT-2 model to generate source
code, to the best of our knowledge, the GPT-2 model was not used
for Automated Program Repair so far. The model is fine-tuned for a
specific task: it has been taught to fix JavaScript bugs automatically.
To do so, we trained the model on 16863 JS code snippets, where
it could learn the nature of the observed programming language.
In our experiments we observed that the GPT-2 model was able
to learn how to write syntactically correct source code almost on
every attempt, although it failed to learn good bug-fixes in some
cases. Nonetheless it was able to generate the correct fixes in most
of the cases, resulting in an overall accuracy up to 17.25%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APR’22, May 19, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9285-3/22/05. . . $15.00
https://doi.org/10.1145/3524459.3527350

CCS CONCEPTS
• Computing methodologies → Natural language generation;
Neural networks; •Hardware→ Failure recovery,maintenance
and self-repair; • Software and its engineering → Software
testing and debugging.

KEYWORDS
Automated Program Repair, Machine learning, JavaScript, Code
Refinement, GPT
ACM Reference Format:
Márk Lajkó, Viktor Csuvik, and László Vidács. 2022. Towards JavaScript
program repair with Generative Pre-trained Transformer (GPT-2). In Inter-
national Workshop on Automated Program Repair (APR’22), May 19, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3524459.3527350

1 INTRODUCTION
The existence of large datasets and the availability of cheap com-
puting capacities have facilitated the great development of artificial
intelligence and machine learning in recent years [48]. The tech-
nologies underpinning AI have made huge leaps in the past decade,
bringing exciting applications such as language understanding, vi-
sion recognition, and intelligent digital assistants. Recent years
also changed the field of Automated program Repair, where several
data-driven approach has been published thus forming a separate
branch of research [34]. These techniques usually create a large
train-test-validate database and evaluate the APR tool on that, just
like a traditional ML model. The criterion to accept a patch as
a correct one is rather strict in these cases: the produced patch
should be exactly the same as the one which were created by the
developer who fixed the bug. By comparison tools that follow the
Generate and Validate approach, validation is usually done against
an oracle, which is usually the test suite. A program is marked as
a possible fix, if it passes all the available test cases. This latter
condition gives no assurance that the program is correct, since over-
and underfitting [27] often occurs, resulting in inadequate patches.
Although there are some approaches that tried to tackle with this
problem [8, 10, 14], the question of patch correctness is considered
to be still open [15].

As more and more data-driven APR approaches are being pub-
lished, the recorded results are promising [9, 10, 22, 31, 46]. The
architecture of the underlying model and the dataset varies from
paper to paper, thus the comparison is rather challenging. A first

APR’22, May 19, 2022, Pittsburgh, PA, USA Lajkó et al.

attempt was made in 2019 by Tufano et al. in [42] to create a public
dataset on which these models can be trained and evaluated. Their
seminal work has been encased in the CodeXGLUE benchmark [30],
featuring a platform for future publications including diverse pro-
gramming language tasks. The dataset is highly successful among
researchers, new model architectures are proposed rapidly (usually
published on arXiv.org first, thus bypassing the traditionally slow
publication process) and new records are booked in a monthly basis.
At the time of writing this article the top three approaches are Co-
TexT [36], PLBART [1] and DeepDebug [10] with accuracy values
ranging from roughly 18% to 23%. However either the aforemen-
tioned approaches propose a new architecture or use state-of-the
models, to the best of our knowledge, the APR community has not
yet used the GPT-2 [2] model to automatically fix bugs at the time
of writing.

The original Generative Pre-trained Transformer, or in short GPT,
model was published by OpenAI [38], but didn’t gain such an im-
mense popularity since other NLP models seemed to overperform it.
However with the introduction of GPT-2 the table have turned since
the model could do something that other models never could (or at
least was not designed for): write stories about talking unicorns [2].
There were no fundamental algorithmicbreakthroughs concern-
ing GPT-2, the original model was essentially scaled-up, resulting
a model with 10x more parameters than the original. However
GPT was designed to generate coherent sentences and paragraphs
(since it was originally trained on the text from 8 million websites),
fine-tuning it made possibly for us to generate source code.

Most of today’s Automated Program Repair (APR) tools are im-
plemented in such a way to repair programs written in C, Java or
even Python. However for the eighth year in a row, JavaScript (JS)
is the most commonly used programming language [41]. It is the
de-facto web programming language globally and the most adopted
language on GitHub [17]. JavaScript is massively used in the client-
side of web applications to achieve high responsiveness and user
friendliness. In recent years, due to its flexibility and effectiveness,
it has been increasingly adopted also for server-side development,
leading to full-stack web applications [21]. For these very reasons
we designed our experiments to operate on JavaScript, thus we
trained and evaluated the GPT-2 model on JavaScript.

To the best of our knowledge, the GPT-2 model was not used for
Automated Program Repair so far. In addition we wanted to gain
ground for JavaScript in the APR field, since it is mostly dominated
by approaches for Java or C. To be able to train the GPT model, we
mined 18736 bug-fixing commits from GitHub and preprocessed
them before fed to the model. These samples are divided in the
classic train-test-validation sets and the model was evaluated on
these samples. Based on our experiments GPT-2 was able to repair
126 programs on first try, while it generated correct patches in 269
cases if it had multiple chances to do so.

Although GPT-2 is not the latest GPT model to generate source
code, we found it interesting to use it and repair programs with it.
We hypothesize that the results achieved can be further improved
with newer and larger model variants. During the experiments our
resources were limited, thus we couldn’t experiment with models of
more parameters. Although it limits our work to some degree, the
training data we assembled and the experiments are reproducible
with larger models as well, for any future researchers in the field.

The results indicate that indeed, GPT-2 can successfully pre-
dict fixed JavaScript code for most of the cases. We publish the
constructed dataset, the source code of the model and the trained
models on GitHub 1.

The paper is organized as follows. After a high-level overview
of our research, the dataset and the model is described in Section 2.
Thereafter Section 3.1 and Section 3.2 describe the preprocessing
and training steps. After that the process of patch generation is
depicted in Section 3.3 and we present the settings with which the
experiments were carried out. Evaluation and analysis are presented
in Section 4, followed by the discussion of this experiment. Related
work is discussed in Section 5, and we conclude the paper in the
last section.

ENCODER DECODER

× N × M

function(param, element, isFullRender) {

...

var http = eXo.wiki.UITreeExplorer.getHTTPObject();

var restURL = url + param;

http.open("GET", restURL, true);

var childBlock = document.createElement("div");

//comment to remove

if (me.innerDoc) {

childBlock = me.innerDoc.createElement("div");

me.innerDoc = null;

}

childBlock.className = "NodeGroup";

childBlock.innerHTML = me.loading;

node.appendChild(childBlock);

http.onreadystatechange = function() {

if (http.readyState == 4) {

me.renderTreeNodes(childBlock, http.response);

}};

http.send(""); element.className = "CollapseIcon";

}

var http = eXo.wiki.UITreeExplorer.getHTTPObject(); var restURL = url +

param;http.open("GET", restURL, true); var childBlock =

document.createElement("div"); if (me.innerDoc) { childBlock =

me.innerDoc.createElement("div"); me.innerDoc = null; }

childBlock.className = "NodeGroup"; childBlock.innerHTML = me.loading;

node.appendChild(childBlock);

TRAINING SAMPLES

P
R
E
P
R
O
C
E
S
S
I
N
G

18736 JavaScript files

~ 16863 samples

GPT-2

INPUT

OUTPUT

node.appendChild(childBlock);

http.onreadystatechange = function() {

if (http.readyState == 4) {

me.renderTreeNodes(childBlock, http.responseText); } }

List of generated fixes

Figure 1: The high-level approach of patch generation.

1https://github.com/RGAI-USZ/APR22-JS-GPT

Towards JavaScript program repair with Generative Pre-trained Transformer (GPT-2) APR’22, May 19, 2022, Pittsburgh, PA, USA

2 APPROACH
In Figure 1 one can observe the high-level approach of this paper.
First, JavaScript files are being preprocessed so they can be used
as training samples to our GPT-2 model. These samples form a
(pbuддy ,pf ixed) tuple, where pbuддy is the state of the program
before it has been fixed, while pf ixed is the applied patch. Note
that we focused on bugs which affect only one line, thus pf ixed
is always a single line, while pbuддy is the 900 tokens before that.
After training the model is able to predict patches for a given input.
To evaluate the model we compared these outputs to developer
fixes. Note that the GPT-2 model is able to generate more than a
single line, taking advantage of this, we handled the output as an
ordered list and made experiments that investigate not only the
first line (candidate patch) but the the ones that follow as well. In
the next sections we describe the used dataset and briefly introduce
the GPT-2 model.

2.1 Dataset
For the experiments we created our own dataset from BugsJS [19]
which contains reproducible JavaScript bugs from 10 open-source
Github projects. The dataset contains both single- and multi-line
bugs as well. The detailed description of these bugs are beyond the
scope of the current research, the interested reader is encouraged
to take a look at the original paper for further details. We retrieved
commits from it using GitHub REST API [18] and GH Archive [16]
to get detailed information about a commit. Since GHArchive stores
the commit hash and the commit message as well, we could filter
on bug-fixing commits in this step. All commit messages containing
one of the following keywords are identified as a bug-fix: ["fix",
"solve", "bug", "issue", "problem", "error"]. The same
patterns are used in the work of Tufano et al. [42] and a similar
approach in [13]. Next, files are being fetched that are affected
by the commit. Using GitHub API, we were able to filter out non-
JavaScript files (files with not ".js" extension) and download the
before- (i.e. pbuддy) and after (i.e. pf ixed) state of it. At the end of
this phase we identified 18736 files. These files served as the basis
of our preprocessing step descibed in Section 3.1.

Figure 2: Loss curve

2.2 Model
Although not in details, in this section we describe the GPT-2
model [2]. The original Generative Pre-trained Transformer, or
in short GPT, model was published in 2018, a descendant and im-
proved version of this is GPT-2. It’s architecture is based on the
Transformer, which is an attention model - it learns to focus at-
tention on the previous words that are the most relevant to the
task at hand: predicting the next word in the sentence. Since it was
designed to generate sentences, it has fixed input and output dimen-
sions. Since it is a statistical architecture, no linguistic information
is hardcoded into it, by fine-tuning it, the model can learn to write
source code as well.

3 EXPERIMENT SETUP
3.1 Preprocessing
We formed the dataset so it is suitable to be the input of our model.
First every comment is being removed since they do not affect
the execution. Then we split the 18736 mined JS files into 16863
training files and 1873 test (to predict candidates) files. For training
we used code snippets from all 16863 training files (interval of
tokens around the bug location from the fixed file) and from the
1873 test files we generated candidates for 1559 files only because
the bug environment is not always adequate. The training data
source code is preprocessed from the start of the file until we reach
the bug location and additional 10 lines (so the fix is also included).
Note that for training we picked the fixed version of the files, so the
model only learns correct code and not buggy ones. For evaluation
purposes from the evaluation split we created 1 file for generation
which contains all tokens from the start of the file till the bug
location (from the original buggy file but this part of the original
buggy and fixed files are essentially the same) and 1 for evaluation
for each file, the latter described file for evaluation consists 3 lines
after the bug location sowe can use this file for comparing generated
patches to the target. Since the model takes input sequences of fixed
length (see Section 2.2) of text, we had to add a post-processing
step before the input can be fed. For training purposes as described
previously, the code chunks are extracted from the beginning of the
file until the bug location + 10 lines. This data is of course not of
equal length, so the last 2040 tokens are taken from this chunk. The
input is then saved to a file where every line consists of 2040 tokens
and it will be fed to the model line-by-line. Keep in mind that the
preprocessing steps are different for training and prediction and in
later sections we are going to further reduce the number of tokens
fed to GPT-2 and the number of these tokens are going to depend
on whether we are using the model for training or inference.

3.2 Training
The GPT model’s input is a simple text file in natural language
processing (there is no target like in classic machine learning, the
model itself can learn on plain text to generate additional text). In
our paper the model’s input is a simple text file (later train.txt) as
in NLP but instead of text we train on code. In our train.txt in each
line we have a part of a code (interval of tokens around the bug
location from the fixed file) belonging to one of our training sample.
As we described earlier in each line of our train.txt there are 2040

APR’22, May 19, 2022, Pittsburgh, PA, USA Lajkó et al.

tokens (most of them before the bug and the last part of the interval
is the fix itself and the following tokens). We further reduce these
2040 tokens to 768 tokens in a way that we delete the first tokens
only so we still have the tokens after the bug location (developer
fix) and the tokens right before the bug.

For our experimentwe used pretrainedGPT-2 to generate patches.
We trained our model on Nvidia GeForce RTX 3090 and the batch
size was 7 due to the limited GPU memory. The training took 3
hours 13 minutes. As tokenizer we used GPT-2 pretrained tokenizer
with additional tokens: bos_token= ’<|startoftext|>, eos_token=
’<|endoftext|>’, pad_token= ’<|pad|>’. For the training we built a
custom pytorch dataset and used it for our custom data loader.
As optimizer we used AdamW optimizer and used liner learning
rate scheduler with warmup (warmup_steps = 1e2, total_steps =
len(train_dataloader) * epochs). As early stopping parameter we
used patience 3. We set 100 as maximum number of epochs. In
figure 2 we can see how quick our model learned and we can
also see how the early stopping helped us to reduce training time.
Additional parameters of the GPT-2 model: top_k=50, top_p=0.8,
do_sample=True, max_length=1024, num_return_sequences=1.

As we described earlier the dataset was split into 2 categories:
train and evaluation (we use the fine-tuned GPT model to generate
patches). The train dataset was then transformed into the aforemen-
tioned train.txt which contains line-by-line the code chunks around
the bug location of the fixed original file. We further split the lines
of train.txt (each line can be interpreted as a training sample) into
90% train and 10% validation set. The early stopping was based on
the results of the validation set. Note that despite the data leakage
is still possible we made sure to reduce the chances of it. To do so
in train.txt we didn’t train on whole files but just on token intervals
of the original fixed files around the bug location.

3.3 Patch Generation
First we expanded the GPT-2 model’s generate function so that the
function only returns a list of lines of the generated text (patch) itself
without the input given to the model. For every bug we called our
generate function 10 times which means we generated 10 patches
for every bug. Since we focused on one line fixes, we set the gen-
erated token length to 124 (the GPT-2 model’s original generate
function was set to 1024 token length and 900 tokens were used
as input for our model (1024-900=124)). The expanded generate
function returns 124 tokens in a list of lines so the number of gen-
erated lines vary by bug and generation. In every generation we
compared each generated line to our target text (one-liner patch to
be generated), which means for every bug we have 10*x candidate
one-liner patches, where x corresponds to the generated 124 tokens
divided by the number of line separators in our generated text, and
10 comes from the number of generations. For every bug we saved
all of the above mentioned candidate lines with the corresponding
generation number and line number(the line number of the gener-
ated one-liner candidate). In these files we also saved the closest
candidate by edit distance. Finally we created one txt file with all
target_txts with the adequate closest candidate one-liner patch by
edit distance.

//2

r ende r e rSync = r e q u i r e ('./ extend ') . r ende r e rSync . l i s t ()
//113

queryParams= u t i l . parseQueryParams (l o c a t i o n . s e a r ch)
//115

i t ('should invoke the callback 404' , function (done)
//180

expe c t (c on so l e . l og . c a l l e dWi t h (s inon . match ('Name'))) .
be . true ;

//261

f s . r e a dd i r S yn c (__dirname + '/../ controllers ') .
f o rEach (function (name) {

//354

f o r (l e t i = 0 , l en = a rg s . l e ng t h ; i < l en ; i ++) {

Listing 1: Examples of correct fixes.

4 RESULTS
In the previous section we described how we created candidate files
for each bug. The evaluation of the results was based on these can-
didate text files where all candidates can be found for each bug. We
compared each of these candidate patches to the target text by edit
distance. In this section we analyze the results in two subsections:
Quantitative Evaluation & Qualitative Evaluation. As you can see
later the model is able to correctly infer variable names, this is be-
cause we did not train in a cross-project way. The pre-trained GPT-2
model was pre-trained on many natural next and code including
javascript, so the pre-trained model without fine-tuning can also be
used to generate patches but it will not be able to predict variable
names accurately. The model is expected to be retrained on each
project before generating patches to accurately predict variable
names. In addition we also have to mention that although it is not
simple, it is possible to extract pre-training data from language
models, this is a distinct research topic. Some language models
were trained on private datasets and some researchers managed to
extract sensitive personal data from them (names, phone numbers,
email addresses, IRC conversations etc.) [5]. For this reason data
leakage is possible in all research where authors use pre-trained
language models like GPT, BERT etc. (except if they do not use the
pre-training + fine-tuning way of training but retrain the whole
model from scratch which requires extremely efficient hardware
and a lot of time. Or the pre-trained data is publicly available and
checked by the authors). Because of the aforementioned statement
some level of data leakage is possible in most APR research. We
didn’t filter our dataset by time so there is an additional possibility
of data leakage but as we described in Section 3.2 we made sure to
reduce the possibility by training only on a small interval of tokens
around the bug location.

4.1 Quantitative evaluation
During our quantitative evaluation we tried to be as strict as possi-
ble. First we considered exact matches only, which is a lot stricter
case than in real life scenario. For exact matches we did not accept
identical patches where the model generated different white spaces
than the original fix. To address this problem we evaluated the
results with different edit distances which is a fair estimation for
these cases and also show that even when the predicted line were
not exactly perfect, it was not so far from the expected result. To be

Towards JavaScript program repair with Generative Pre-trained Transformer (GPT-2) APR’22, May 19, 2022, Pittsburgh, PA, USA

precise, the edit distance is calculated between pf ixed = the patch
created by a developer and GPT2(pbuддy) = the output of the model
for the buggy program. In our experiment we generated patches
for each bug 10 times and considered each generated line as candi-
date patch. Apart from that we also generated patches in multiple
generations, but these generations are aggregated in a sense that
the same patch cannot be generated twice. The motivation behind
this approach is that we were interested whether it is more likely
to generate the correct patch in separate generation or in a single
generation but considering multiple lines.

In Table 1 we can see that the model managed to generate the
correct patch out of all correct patches in the first generated line
nearly 50 percent of the times(1. gen 1 line: 126, 5. gen 10 line:
269) and in some cases the correct patch could be found later on.
This table indicate how powerful GPT-2 is in automatic code re-
pair. We would like to point out that the more time we generate
patches the less likely it is to find a new correct patch. This is due
to the parameter settings of the original GPT-2 generate function.
Fellow researchers can make experiments to set these parameters
depending on their available time and resources.

In Table 1 we can observe that the first line in the first generation
(upper left corner of the table) was accurate in 126 cases, which
is 8.08%. On the contrary if we consider not just the first line but
the predecessing 5 lines, the accuracy rises up to 12.89%. This of
course is natural since the model has more space of guesses, but it is
nice to see that the GPT is indeed able to learn the fix environment.
Considering the top 5 and top 10 lines of the first generation, the
number of correct patches did not rise the accuracy values that
much(from 12.89% to 13.73%), which confirms the effectiveness of
GPT-2 architecture.

We made additional experiments with more generations (10) but
as we described earlier, the higher the number of the generation
gets the less likely it is to find new correct patches and the number
of total candidates grows rapidly which makes manual evaluation
harder for developers. We think that the parameter settings(top_k,
top_p) of the GPT-2’s original generation function and the number
of generations(5) and line numbers(max: 10) is optimal in a sense
that the generated candidate patches are easily supervisable by
developers.

4.2 Qualitative evaluation
Beside the fully identical patches we found several patches which
were the same except for some white space characters and we found
a lot of nearly identical correct patches. During our manual evalua-
tion of the closest patches by edit distance we also observed that the
model generates the environment variables (bug environment) very
accurately, which is one of the biggest challenges in non language
model based approaches. We created a text file where all expected
patch (target) and generated closest patch can be found for each
bug.

In Listing 2 there is a code snippet of this text file containing
incorrect patches only. We can see that there are a lot of patches
which are nearly identical to the expected result. In the text file
containing these results many NULL value can be seen (as in Listing
2, with the bug id 39). This means we could not generate any patch
for the given target text, there is an example of this case in the

above referenced code snippet. In this code snippet we can also find
patches where there is only difference in white spaces(patch with
id 178), in some cases these white space differences make our patch
not compilable and in some cases they do not cause any issue at all.
In bug number 135 the only difference is that the model generated
== instead of ===, which is more permissive because the latter does
not require the datatype of the two operands to be the same. Note
that this distinction does not exist in many programming languages
(e.g. Java, C), from this point of view, it seems more difficult to fix
JavaScript. In bug example number 58 we can see that GPT-2 can
generate regular expressions more or less accurately.

We showcase another code snippet about correct patches on
Listing 1. Among these examples we can observe that our model
is able to generate for loops and other complex patches requiring
knowledge of the adequate name of variables and objects, the model
is also able to generate human readable error messages.

The text file containing all comparison between the target text
and the generated closest candidate patch is available in our GitHub
repository.

//17

expe c t (c on so l e . l og . c a l l e dWi t h (simon . match ('Date'))) .
be . true ;

e xpe c t (c on so l e . l og . c a l l e dWi t h (s inon . match ('Date'))) .
t o . be . true ;

//18

var _ = r e q u i r e ('lodash ') ;
var _ = r e q u i r e (\ 'lodash\');
//63

var Moment = require(' . / t ype s /moment');
var Moment = require ("./ types/moment ') ;
//135

i f (c o n f i g . a r c h i v e == 2) {
i f (c o n f i g . a r c h i v e === 2) {
//178

d e s c r i b e ('Manager ' , function () {
d e s c r i b e ('Manager ' , function () {
//47

var r e q u e s t = mockRequest ({ method : method .
toUpperCase () , u r i : { pa th : path } })

var r e sponse = mockRequest ({ method : method .
toUpperCase () , u r i : { pa th : path } })

//58

return p a t t e r n . r e p l a c e (/ [\ / \ \] [^ \ / \ \] ∗ \ ∗ . ∗ $ / , '')
return p a t t e r n . r e p l a c e (/ \ \ / [^ \ \ /] ∗ \ \ ∗ . ∗ $ / , '') ;
//187

var VERSION = r e q u i r e ('./ constants ') . VERSION ;
var VERSION = r e q u i r e ('../ constants ') . VERSION ;
//229

var LINK_TAG = '<link type="text/css" href ="%s" rel

=" stylesheet">' ;
var LINK_TAG_CSS = '<link type="text/css" href ="%s"

rel=" stylesheet">' ;
//39

var u t i l = r e q u i r e ('../../ util') ;
NULL

Listing 2: Examples of incorrect fixes.

APR’22, May 19, 2022, Pittsburgh, PA, USA Lajkó et al.

Table 1: Percentages of correctly fixed candidates using GPT-2

Top1 Top5 Top10
Generation # EM # ED5 ED10 # EM # ED5 ED10 # EM # ED5 ED10

#1 126/1559 167/1559 181/1559 201/1559 253/1559 276/1559 214/1559 270/1559 300/1559
#2 140/1559 181/1559 195/1559 222/1559 277/1559 301/1559 237/1559 297/1559 330/1559
#3 151/1559 194/1559 211/1559 236/1559 295/1559 324/1559 255/1559 320/1559 361/1559
#4 153/1559 197/1559 214/1559 243/1559 304/1559 335/1559 263/1559 332/1559 376/1559
#5 155/1559 204/1559 221/1559 248/1559 318/1559 350/1559 269/1559 350/1559 398/1559

Results of the GPT-2 model to generate patches automatically. In each generation the model created a list of patches. We considered the generations in an accumulative fashion: if we
consider the first generation and the Top1 result, only one patch is examined, in contrast in the fifth generation there are five candidate patches (one patch per generation). In this sense,
theTop1 results in the fifth generation includes 5 candidate patches. The abbreviations used are the following: EM - Exact Match, EDN - Edit Distance within the range N (candidates with
character differences less than N).

5 RELATEDWORK
In this work we used our own dataset to create the train-test-
evaluation set of data for our model, although there are others
available. Defects4J [23] is a popular dataset consisting 395 Java
bugs. The ManyBugs [28] dataset contains bugs written in C - it
were used to evaluate many well-known APR tools (Genprog [44],
Prophet [29], etc.). Bugs.jar [40] is another well-known dataset,
which is comprised of 1,158 Java bugs and their patches. From all
of these we could create our training data, the choice is arbitrary.
A few datasets of larger-scale is also available publicly, but the for-
mat of these are not suitable for our experiments. The CodRep [7]
dataset aims at being a common playground on which the machine
learning and the software engineering research communities can
interact. It contains 58,069 one-liner commits. A more recent work
of Karampatsis et al. [24] introduce a dataset of similar size consist-
ing of 153,652 single-statement bugs mined from open-source Java
projects. The seminal work of Tufano et al. [42] includes the creation
of a dataset for Java program repair and evaluation an NMT (Neural
Machine Translation) model on it. This work is also included in
the CodeXGLUE benchmark [30] which includes a collection of
code intelligence tasks and a platform for model evaluation and
comparison. The CodeXGLUE team also operate a leaderboard of
the best-performing tools, where an approach called CoTexT [36]
comes first at the time of writing this paper.

CoTexT [36] is a pre-trained, transformer based encoder-decoder
model that learns the representative context between natural lan-
guage (NL) and programming language (PL). CoTexT follows the
sequence-to-sequence encoder-decoder architecture proposed by [43].
They achieved state-of-the-art results on most of these tasks, in-
cluding in code repair with an astonishing 0.226 accuracy value
and 77.91 BLEU score. Other works (that are not included in the
CodeXGLUE benchmark) also evaluated their approach on the
dataset by Tufano et al. [42]. The most recent among these is Deep-
Debug [10], where the authors used pretrained Transformers to fix
bugs automatically. Other than the described approaches several
others exist Several such tools already exists, such as SequenceR [6],
Hoppity [9], DLFix [46], CoCoNuT [31] or CURE [22]. Due to space
limitations we won’t describe these in detail since they are less
related to our work.

In this paper our aim was to use the GPT-2 [2] architecture to
repair bugs automatically. Although we did not achieve state-of-
the-art results (although hard to compare because of the lack of

publicly available datasets), to the best of our knowledge we used
this model for this task first. GPT-2 was introduced in 2018 by Ope-
nAI. Since then it has received a large amount of citations, using the
model for diverse tasks. In the previously mentioned CodeXGLUE
benchmark [30] the capabilities of GPT was also utilized. They used
their CodeGPT model for several tasks, including code completion.
In fact, CodeGPT achieved an overall score of 71.28 in this task. In
a more recent work [1], CodeGPT was used as a baseline model for
text-to-code and code generation tasks. The model is pretrained on
the n CodeSearchNet [30] corpora. Their newly introduced model
(PLBART) overperformed the GPT model in the code generation
task in every aspect, while in text-to-code generation GPT achieves
the best Exact Match (EM) score. Although these results are state-
of-the-art performances, in the papers the authors did not use the
GPT model for Automated Program Repair and to the best of our
knowledge neither did others.

Since the original article of GPT-2, several works have investi-
gated the capabilities and limits of the model [47]. Thanks to it’s
availability the internet is full of examples of the amazing generative
capabilities of the model, from poetry, news or essay writing [12].
Despite the fact that the latest descendant of the GPT model fam-
ily writes better than many people [39], they were used less for
software engineering tasks. In a recent work the authors intro-
duce Text2App [20], that allows users to create functional Android
applications from natural language specifications.

Other than data-driven approaches, using standard Generate and
Validate (G&V) tools for Automated Program Repair is still widely
used to this day. GenProg [44] was one of the first to perform a fully
automatic fix with relatively good results. It was originally written
for the C programming language, but has since been implemented
for Java [32]. PAR is a synthesis-based tool which leverages the
knowledge of human-written patches [25]. It works in Java and
repairs source code based on 10 predefined templates. In addition to
completely general repair techniques, there are those that special-
ize only in certain error classes. An example is Nopol [45], which
improves conditional control structures (if-then-else structure). An-
other such tool is Kali [37], which uses only deleting or skipping the
source code to synthesize patches. In a 2014 initiative, a framework
was created that can automatically repair Java programs [33]. It also
includes the implementation of several repair strategies, such as
Genprog, Kali or Cardumen. Of course, there are other approaches
that tend to generate the fix from previous manual fixes [25, 26].

Towards JavaScript program repair with Generative Pre-trained Transformer (GPT-2) APR’22, May 19, 2022, Pittsburgh, PA, USA

There are some web-based APR tools already with the aim to fix
JavaScript bugs, but they are specific to special problems. Vejo-
vis [35] suggests fixes for errors related to DOM interactions. A
tool called BikiniProxy [11] is an HTTP proxy that makes fixes on
HTML and JavaScript based on five strategies. A similar approach
is followed in the SAFEWAPI tool [4], which focuses also on API
calls, but primarily on the parametrization of these.

However data-driven repair approach does not create falsely
repaired candidates (since the produced patch should be exactly the
same as the developer fix), patch correctness is an important aspect
of the future of program repair [3, 14]. In a recent study authors has
pointed out, that the use of source code embeddings might solve
this complex problem by suggesting patches, which are the most
similar to the original program [8]. Nevertheless, in [15] authors
highlighted that this issue is still an open question.

6 CONCLUSIONS
In this paper we used the GPT-2 medium model to fix programs
automatically. First a dataset has been created from commits mined
from GitHub. In the process we mined 18736 JavaScript files. From
these files we created 16863 training samples for the GPT-2 model
and we generated candidates for 1559 bugs. It was trained on cor-
rectly fixed code snippets and it’s task is to predict patches for
buggy source code. On this dataset the GPT-2 model was able to
repair 126 programs on first try, while it generated correct patches
in 269 cases if it had multiple chances to do so. Based on these
results, we can conclude that while GPT was designed for Natural
Language processing, it is also able to learn how to code and repair
programs. We also concluded that larger models might achieve
better results, in future work we plan to investigate these as well.

ACKNOWLEDGMENTS
The research presented in this paper was supported in part by the
ÚNKP-21-3-SZTE and ÚNKP-21-5-SZTE New National Excellence
Programs, by Project no. TKP2021-NVA-09 and by the Artificial
Intelligence National Laboratory Programme of the Ministry of
Innovation and the National Research, Development and Innovation
Office, financed under the TKP2021-NVA funding scheme. László
Vidács was also funded by the János Bolyai Scholarship of the
Hungarian Academy of Sciences.

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. (mar 2021),
2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211 arXiv:2103.06333

[2] Ilya Sutskever Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei.
2020. [GPT-2] Language Models are Unsupervised Multitask Learners. OpenAI
Blog 1, May (2020), 1–7.

[3] Fatmah Yousef Assiri and JamesM. Bieman. 2017. Fault localization for automated
program repair: effectiveness, performance, repair correctness. Software Quality
Journal 25, 1 (mar 2017), 171–199. https://doi.org/10.1007/s11219-016-9312-z

[4] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. 2014. SAFEWAPI:
Web API Misuse Detector forWeb Applications. Association for ComputingMachin-
ery, New York, NY, USA. 507–517 pages. https://doi.org/10.1145/2635868.2635916

[5] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong Song, Úlfar
Erlingsson, Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from
Large Language Models. In USENIX Security Symposium.

[6] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis Noel Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. SEQUENCER: Sequence-to-
Sequence Learning for End-to-End Program Repair. IEEE Transactions on Soft-
ware Engineering 01 (sep 2019), 1–1. https://doi.org/10.1109/TSE.2019.2940179
arXiv:1901.01808

[7] Zimin Chen and Martin Monperrus. 2018. The CodRep Machine Learning on
Source Code Competition. (2018). arXiv:1807.03200

[8] Viktor Csuvik, Deniel Horvath, Ferenc Horvath, and Laszlo Vidacs. 2020. Uti-
lizing Source Code Embeddings to Identify Correct Patches. In 2020 IEEE 2nd
International Workshop on Intelligent Bug Fixing (IBF). IEEE, 18–25. https:
//doi.org/10.1109/IBF50092.2020.9034714

[9] Elizabeth Dinella, Hanjun Dai, Google Brain, Ziyang Li, Mayur Naik, Le Song,
Georgia Tech, and Ke Wang. 2020. Hoppity: Learning Graph Transformations To
Detect and Fix Bugs in Programs. Technical Report. 1–17 pages.

[10] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Gen-
erating bug-fixes using pretrained transformers. MAPS 2021 - Proceedings of
the 5th ACM SIGPLAN International Symposium on Machine Programming, co-
located with PLDI 2021 (jun 2021), 1–8. https://doi.org/10.1145/3460945.3464951
arXiv:2104.07896

[11] T. Durieux, Y. Hamadi, and M. Monperrus. 2018. Fully Automated HTML and
Javascript Rewriting for Constructing a Self-Healing Web Proxy. In 2018 IEEE
29th International Symposium on Software Reliability Engineering (ISSRE). 1–12.
https://doi.org/10.1109/ISSRE.2018.00012

[12] Katherine Elkins and Jon Chun. 2020. Can GPT-3 Pass a Writer’s Turing Test?
Journal of Cultural Analytics (sep 2020). https://doi.org/10.22148/001c.17212

[13] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a Release
History Database from Version Control and Bug Tracking Systems. IEEE In-
ternational Conference on Software Maintenance, ICSM (2003), 23–32. https:
//doi.org/10.1109/ICSM.2003.1235403

[14] L. Gazzola, D. Micucci, and L. Mariani. 2019. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67. https:
//doi.org/10.1109/TSE.2017.2755013

[15] Mariani Leonardo Gazzola Luca, Micucci Daniela. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (jan 2019),
34–67. https://doi.org/10.1109/TSE.2017.2755013

[16] GHArchive 2021. GH Archive Official Website. https://www.gharchive.org.
[17] GitHub 2021. The 2020 State of the Octoverse. https://octoverse.github.com.
[18] GitHub REST API 2021. GitHub REST API Official Website. https://docs.github.

com/en/rest.
[19] Peter Gyimesi, Bela Vancsics, Andrea Stocco, Davood Mazinanian, Arpad

Beszedes, Rudolf Ferenc, and Ali Mesbah. 2019. BugsJS: A benchmark of javascript
bugs. In Proceedings - 2019 IEEE 12th International Conference on Software Testing,
Verification and Validation, ICST 2019. 90–101. https://doi.org/10.1109/ICST.2019.
00019

[20] Masum Hasan, Kazi Sajeed Mehrab, Wasi Uddin Ahmad, and Rifat Shahriyar.
2021. Text2App: A Framework for Creating Android Apps from Text Descriptions.
(2021). arXiv:2104.08301

[21] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. 2012. Remedying
the Eval That Men Do. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012). Association
for Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/
2338965.2336758

[22] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. (may 2021), 1161–1173.
arXiv:2103.00073

[23] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In 2014 In-
ternational Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings.
Association for Computing Machinery, Inc, 437–440.

[24] Rafael Michael Karampatsis and Charles Sutton. 2020. How Often Do Single-
Statement Bugs Occur?: The ManySStuBs4J Dataset. Proceedings - 2020 IEEE/ACM
17th International Conference on Mining Software Repositories, MSR 2020 (may
2020), 573–577. https://doi.org/10.1145/3379597.3387491 arXiv:1905.13334

[25] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Au-
tomatic patch generation learned from human-written patches. In Proceed-
ings - International Conference on Software Engineering. IEEE, 802–811. https:
//doi.org/10.1109/ICSE.2013.6606626 arXiv:arXiv:1408.2103v1

[26] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 213–224. https://doi.org/10.1109/SANER.2016.
76

[27] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23, 5 (oct 2018), 3007–3033. https://doi.org/10.1007/s10664-017-9577-2

[28] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering 41, 12 (dec 2015), 1236–1256. https://doi.org/10.1109/

APR’22, May 19, 2022, Pittsburgh, PA, USA Lajkó et al.

TSE.2015.2454513
[29] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages - POPL 2016 (2016), 298–312. https:
//doi.org/10.1145/2837614.2837617

[30] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
undefined (2021). arXiv:2102.04664

[31] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining context-aware neural translation models
using ensemble for program repair. ISSTA 2020 - Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis 20 (2020),
101–114.

[32] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (aug 2017), 1936–
1964. https://doi.org/10.1007/s10664-016-9470-4

[33] Matias Martinez and Martin Monperrus. 2016. ASTOR: A program repair library
for Java (Demo). In ISSTA 2016 - Proceedings of the 25th International Symposium
on Software Testing and Analysis. Association for Computing Machinery, Inc,
New York, New York, USA, 441–444. https://doi.org/10.1145/2931037.2948705

[34] Martin Monperrus. 2020. The Living Review on Automated Program Repair. Tech-
nical Report.

[35] Frolin S. Ocariza, Jr., Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis:
suggesting fixes for JavaScript faults. In Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014. ACM Press, New York, New York,
USA, 837–847. https://doi.org/10.1145/2568225.2568257

[36] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Annibal, Alec Peltekian,
and Yanfang Ye. 2021. CoTexT: Multi-task Learning with Code-Text Trans-
former. (may 2021), 40–47. https://doi.org/10.18653/v1/2021.nlp4prog-1.5
arXiv:2105.08645

[37] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for Computing
Machinery, New York, NY, USA, 24–36. https://doi.org/10.1145/2771783.2771791

[38] Alec Radford, Tim Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. [GPT-1]
Improving Language Understanding by Generative Pre-Training. Preprint (2018),
1–12.

[39] Alec Radford, Jeffrey Wu, Dario Amodei, Jack Clark, Miles Brundage, Ilya
Sutskever, Amanda Askell, David Lansky, Danny Hernandez, and David Luan.
2019. Better Language Models and Their Implications. , 12 pages.

[40] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad.
2018. Bugs.jar: A large-scale, diverse dataset of real-world Java bugs. Proceedings
- International Conference on Software Engineering (2018), 10–13. https://doi.org/
10.1145/3196398.3196473

[41] Stack Overflow 2021. Stack Overflow Developer Survey Results 2021. https:
//insights.stackoverflow.com/survey/2021.

[42] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM Transactions on Software
Engineering and Methodology 28, 4 (2019). https://doi.org/10.1145/3340544

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 2017-December
(2017), 5999–6009. arXiv:1706.03762

[44] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the
31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, USA, 364–374. https://doi.org/10.1109/ICSE.2009.5070536

[45] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34–55. https://doi.org/10.1109/
TSE.2016.2560811 arXiv:1807.00515

[46] Li Yi, Shaohua Wang, and Tien N. Nguyen. 2020. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings - Inter-
national Conference on Software Engineering. IEEE Computer Society, 602–614.
https://doi.org/10.1145/3377811.3380345

[47] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Cali-
brate Before Use: Improving Few-Shot Performance of Language Models. (2021).
arXiv:2102.09690

[48] Yueting Zhuang, Ming Cai, Xuelong Li, Xiangang Luo, Qiang Yang, and Fei Wu.
2020. The Next Breakthroughs of Artificial Intelligence: The Interdisciplinary
Nature of AI. Engineering 6, 3 (mar 2020), 245–247.

