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Abstract
Tool support for automated fault localization in program debugging is limited because state-
of-the-art algorithms often fail to provide efficient help to the user. They usually offer a
ranked list of suspicious code elements, but the fault is not guaranteed to be found among
the highest ranks. In Spectrum-Based Fault Localization (SBFL) – which uses code cov-
erage information of test cases and their execution outcomes to calculate the ranks –, the
developer has to investigate several locations before finding the faulty code element. Yet,
all the knowledge she a priori has or acquires during this process is not reused by the SBFL
tool. There are existing approaches in which the developer interacts with the SBFL algo-
rithm by giving feedback on the elements of the prioritized list. We propose a new approach
called iFL which extends interactive approaches by exploiting contextual knowledge of the
user about the next item in the ranked list (e. g., a statement), with which larger code enti-
ties (e. g., a whole function) can be repositioned in their suspiciousness. We implemented
a closely related algorithm proposed by Gong et al., called TALK. First, we evaluated iFL
using simulated users, and compared the results to SBFL and TALK. Next, we introduced
two types of imperfections in the simulation: user’s knowledge and confidence levels. On
SIR and Defects4J, results showed notable improvements in fault localization efficiency,
even with strong user imperfections. We then empirically evaluated the effectiveness of the
approach with real users in two sets of experiments: a quantitative evaluation of the suc-
cessfulness of using iFL, and a qualitative evaluation of practical uses of the approach with
experienced developers in think-aloud sessions.
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1 Introduction

Debugging and related activities are among the most difficult and time consuming tasks in
software engineering (Vessey 1986). This activity involves human participation to a large
degree, and many subtasks are difficult to automate. In this work, we address fault local-
ization, a necessary subactivity in which the root causes of an observed failure are sought.
Fault localization is notoriously difficult, and any (semi)automated method, which can help
the developers and testers in this task, is welcome. There is a class of approaches to aid fault
localization which are popular among researchers, but have not yet been widely adopted
by the industry: Spectrum-Based Fault Localization (SBFL) (Wong et al. 2016; Parmar and
Patel 2016; Pearson et al. 2017).

Recent studies highlighted some barriers to the wide adoption of the SBFL methods,
including a high number of suggested elements to investigate (Xia et al. 2016; Parnin and
Orso 2011), applicability of theoretical results in practice (Le et al. 2013), little experimental
results with real faults (Pearson et al. 2017), validity issues of empirical research (Steimann
et al. 2013), and so on. (Kochhar et al. 2016) performed a systematic analysis of practi-
tioner’s expectations in the field. With this paper, we aim at bringing closer the applicability
of SBFL methods to practice by involving user’s knowledge to the process.

The basic intuition behind SBFL is that code elements (statements, blocks, functions,
etc.) that are exercised by comparably more failing test cases than passing ones are more
suspicious to contain a fault. Additionally, non-suspicious code elements are traversed pri-
marily by passing tests. Suspiciousness is usually expressed by assigning one value to each
code element (the suspiciousness score), which can then be used to rank the code elements.
When this ranked list is given to the developer for investigation, it is hoped that the fault will
be found near the beginning of the list. A possible approach to measure the effectiveness
of an SBFL method is to investigate the average rank position of the actual faulty element
(absolute or relative to the total number of code elements), i. e., the number of elements that
have to be investigated before finding the fault (called the Expense measure). Later stud-
ies revealed that absolute Expense is crucial to the adoption of the method in practice. In
particular, research showed that if the faulty element is beyond the 5th element (or 10th
according to other studies), the method will not be used by practitioners because they need
to investigate too many elements (Pearson et al. 2017; Xia et al. 2016; Parnin and Orso
2011; Kochhar et al. 2016). A further problem is that there are no guarantees that any scor-
ing mechanism will show sufficiently good correlation between the score and the actual
faults (Wong et al. 2016; Pearson et al. 2017; Xie et al. 2013; Yoo et al. 2017). Researchers
proposed many different scoring mechanisms, but these are essentially all based on four
fundamental statistics: counts of passing/failing and traversing/non-traversing test cases in
different combinations (Wong et al. 2016; Pearson et al. 2017). (Xie et al. 2013) exam-
ined the equivalence and hierarchy between a number of formulae, while (Yoo et al. 2017)
showed that there does not exist a perfect scoring formula which outperforms known tech-
niques found by humans or even by automatic search-based methods. One additional reason
an SBFL based method may fail is that these approaches provide only the ranked list of
code elements, however this gives little or no information about the context of bugs which
makes their comprehension a cumbersome task for developers.

It seems that automatic SBFL methods require external information – not just the pro-
gram spectra and test case outcomes – to improve on state-of-the-art performance and be
more suitable in practical settings. In this work, we propose a form of an Interactive Fault
Localization approach, called iFL. In traditional SBFL, the developer has to investigate sev-
eral locations before finding the faulty code elements, and all the knowledge she a priori
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has or acquires during this process is not fed back into the SBFL tool. In our approach, the
developer interacts with the fault localization algorithm by giving feedback on the elements
of the prioritized list.

We build on our and other researchers’ observations, intuitions and experiences presented
in details in Section 2.2, and we hypothesize that a programmer, when presented with a par-
ticular code element, in general has a strong intuition whether any other elements belonging
to the same containing higher level code entity should be considered in fault localization.
With this intuition, developers can also make a decision (“judge”) about the code snippets
associated with the item they are currently examining. This allows them to narrow down the
search space (i. e., set of the suspicious code elements) more efficiently, which could speed
up finding the bug. For example, when users go through the ranked list of suspicious meth-
ods, in addition to the examined code element, they could have knowledge about its class,
which information can be “fed back” into iFL to modify the suspiciousness value of other
methods in that class or even exclude items to be examined. This way, larger code parts
can be repositioned in their suspiciousness in the hope to reach the faulty element earlier.
Other interactive approaches have been proposed by researchers as well (Gong et al. 2012;
Hao et al. 2009; Bandyopadhyay and Ghosh 2012; Lei et al. 2012; Li et al. 2016; Li et al.
2018; Lin et al. 2017; Lehmann and Pradel 2018), but to our knowledge, similar contextual
information about higher level entities has not yet been leveraged.

We evaluated the approach in three experiments. First, we used simulation to predict the
effect of interactivity. We simulated user actions during hypothetical fault finding in well-
known bug benchmarks, and measured the Expense metric improvements with respect to the
following traditional SBFL formulae: Tarantula (Jones and Harrold 2005), Ochiai (Abreu
et al. 2009), and DStar (Wong et al. 2014). We relied on two benchmarks: artificial defects
from the SIR repository (Do et al. 2005) and real defects from Defects4J (Just et al. 2014).
Results show that the method can significantly improve the fault localization efficiency: in
both benchmarks, for 32-57% of the faults their ranking position is reduced from beyond
the 10th position to between the 1-10th position. Taking into account all the defects, the
localization efficiency in terms of Expense improved on average by 71-79%. For reference,
we implemented a closely related interactive FL algorithm proposed by (Gong et al. 2012),
called TALK, in our simulation framework. We compared the performance of iFL to TALK

on the real faults from Defects4J, and found that iFL has a significant advantage over TALK.
We also modelled user imperfection, which was rarely studied in related interactive SBFL
research. We addressed this aspect from two viewpoints: the user’s knowledge and confi-
dence. Experiments simulating these two factors show that iFL can outperform a traditional
non-interactive SBFL method notably even at low user confidence and knowledge levels.

In the second stage, we performed a quantitative evaluation of the successfulness of iFL
usage by real users. We invited students and professional programmers to solve a set of fault
localization tasks using the implementation of the iFL approach in a controlled experiment.
The goal was to find out whether using the tool shows actual benefits in terms of finding
more bugs or finding them more quickly, and this also showed promising results.

In the third set of experiments, we relied on think-aloud sessions to better understand
the possible use cases of the approach including benefits and risks. We relied on a group of
professional programmers who were experienced in program debugging, and during the ses-
sions we collected all the details about their debugging activities while trying to find bugs
in our benchmark programs. Findings show that such an automated approach for fault local-
ization might not be suitable for all programmers but it could be beneficial when the details
of the approach and the benefits are carefully introduced. Note that, due the low number of
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participants in this set of experiments we cannot support our findings with appropriate sta-
tistical data. However, this experiment helped us better understand the developers’ thought
processes and the weaknesses of the approach, and gave us possible directions for future
enhancements.

In summary, our contributions are the following (a preliminary version of this paper was
presented in (Horváth et al. 2020a)).

Extensions for (Horváth et al. 2020a)’s Contributions

1. We expanded the set of evaluated SBFL formulae with Ochiai and DStar. These two
additional formulae were utilized during the experiments with simulated users.

2. We expanded the set of evaluated bugs and programs by upgrading our measurement
framework to the latest version (v2.0.0) of Defects4J.

3. We compared the results of our iFL experiments to a previously defined algorithm
specified in (Gong et al. 2012).

4. The user experience and the speed of the Eclipse plug-in were enhanced. For example,
we introduced a customizable filtering and sorting feature, which helps the developers
to focus their attention on code elements with specific properties.

5. We investigated the usage scenarios of the approach by experienced programmers in
great depth using think-aloud sessions, which is a novelty in this field.

Contributions Presented in (Horváth et al. 2020a)

1. We introduced iFL, a novel context-aware interactive fault localization method, embed-
ded in a flexible interactive fault localization framework.

2. We implemented a simulated user and performed experiments on both artificial and real
faults. The latter has not yet been studied in interactive fault localization research.

3. We provide an analysis of two dimensions of user imperfection: knowledge and
confidence, which was marginally addressed in previous literature.

4. We implemented iFL as an Eclipse plug-in that enables interactive fault localization on
Java systems at method level granularity.

5. We performed an empirical study involving real users to compare the fault localization
efficiency with and without using the iFL approach.

The paper is organized as follows. Section 2 contains an example to illustrate our
approach, which is then discussed in detail in Section 3. In Section 4, we summarize the
goals of our empirical assessment, while Sections 5, 6 and 7 present the experimental results
for the simulated and the real users, and the think-aloud sessions, respectively. A discussion
of our findings is presented in Section 8 with possible threats to validity in Section 9. An
overview of related work in Section 10, before concluding with Section 11.

2 Motivation and Background

2.1 Motivating Example

For illustration, consider the example in Table 1. This is part of program replace from the
SIR benchmark repository, which includes manually seeded faults (this benchmark is often
used in SBFL research, although being somewhat outdated). Line 116 is a predicate inside
function dodash, where an artificial fault is seeded: the relation is changed and the +1 part is
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Fig. 1 Call-graph part for the example program

deleted (the original version of the code line is shown in a comment). There are three other
functions in this program that closely participate in exposing this particular fault, getccl,
omatch and locate. The relevant code lines are shown in Table 1, while the call-graph in
Fig. 1 shows the high level relationship of the four functions. Function getpat is first called
from the main program which indirectly calls getccl and eventually dodash to calculate and
return a value. This value is subsequently passed to change and eventually to omatch and
locate where the fault will be manifested in form of failing test cases.

Table 1 also shows the coverage relationship between some typical test cases and the
code elements in question, which expose different behavior with respect to the suspicious
elements. We can see that there are passing and failing test cases, and that they are exercising
different parts of the program. The faulty statement is traversed both by passing and failing
test cases. The fourth column (0. iteration) of Table 1 corresponds to the suspiciousness
scores computed by the Tarantula method1 along with the ranking position of the elements
(the ranking position is arbitrary in the case of ties in the scores). There are several lines in
functions getccl, omatch and locate that have higher scores than the faulty one from dodash,
which will push it farther in the rank, in particular to the 11th-13th place (in the actual
implementation, ties are handled so that the average position among the elements with the
same value will be used, in this case 12th).

We can explain failing of SBFL in this case as follows. Recall the Tarantula for-
mula (Jones and Harrold 2005) for a code element s:

T (s) =
ef (s)

ef (s)+nf (s)

ef (s)
ef (s)+nf (s)

+ ep(s)
ep(s)+np(s)

,

where the functions ef (s), nf (s), ep(s) and np(s) count the number of test cases that exe-
cute s and fail, do not execute s and fail, execute s and pass, and do not execute s and
pass, respectively. Table 2 shows the four basic statistics for lines 116 (the actual fault),
366 (one of the most suspicious statements in the initial ranking) as well as 145 and 321
(the two most suspicious statements in intermediate iterations of our algorithm, which will
be presented shortly). We can observe that all failing test cases are exercising statement
116 (30/30), while only (25/30) statement 366. This, in itself, would make the first state-
ment more suspicious, however, the counts for the passing test cases will change the result.

1We used Tarantula in this example because it is easy to use in the explanation, but other SBFL techniques
provide similar relative ranks.
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Table 2 Basic SBFL Statistics for the Example Program

Line ef ep nf np Tarantula score

116 30 2 280 0 3 231 0.707

145 25 1 882 5 3 629 0.709

321 30 1 662 0 3 849 0.768

366 25 1 066 5 4 445 0.811

In particular, a lot more passing test cases exercise statement 116 (2280/5511) than state-
ment 366 (1066/5511). In other words, there are comparably more coincidentally correct
tests (Masri and Assi 2014) for the actual faulty statement than for the other, and despite the
correct ordering in terms of failing test cases, the final score will flip their relationship.

2.2 Developers’ Knowledge

In this research, we rely on the knowledge of developers and its application in debugging
and fault localization processes. Our intuitions and experiences as professional software
developers are the basic building blocks of the idea behind our iFL approach. In the follow-
ing sections, we discuss the foundations of our intuitions and ideas based on examples and
related works.

2.2.1 The Required Amount of Knowledge

One of these insights about developers’ knowledge is that they tend to write whole bodies
of source code which encapsulate certain functions under development. (Fritz et al. 2014)
found that developers’ knowledge models are consistently small: 4.6 ± 0.8 classes. (Corri-
tore and Wiedenbeck 1999) observed that the level of comprehension (knowledge) increased
during code inspection tasks. This means that the developers will understand an increasing
amount of the code base, hence they presumably will be able to give better feedback. (Fritz
et al. 2014) found that developers frequently revisit parts of the source code and take less
time if their navigation is more structured. They also show that six of the ten code nav-
igation models centered around one large connected group of classes. In some cases, the
models also contained a few additional items with no connections. (Sillito et al. 2006; Sillito
et al. 2005) observed that developers first search for an initial focus point and then explore
relationships from these points, also revisiting elements.

These findings enforce our intuition that the users of iFL could access the required
amount of information to provide feedbacks with sufficiently good quality. In other words,
developers usually have solid knowledge about a group of classes, but this model constantly
changes and it is extended with new information as they investigate more code. We hypoth-
esize that if a context (a collection of classes and functions) is not too large, then it is easily
comprehensible and developers could give an opinion about such context. For example,
the version of replace presented in Table 1 is only about 560 lines long consisting of 21
functions. Among these functions, there are a lot of short ones, like locate, and some even
simpler utility functions containing only a few statements. These contexts are easy to under-
stand, and developers can judge the suspiciousness with little effort, as in the 1st iteration
of the example presented in Section 3. A feedback-based tool could help developers diver-
sify their knowledge of a context by suggesting new unfamiliar code elements and hence
modifying their usual search space.
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2.2.2 Knowledge Acquiring Strategies

Besides the amount of information needed, it is important to inspect the strategies used
by developers to acquire the necessary knowledge. Programmers use various multi-level
approaches to understand software systems. They switch between program, situation, and
domain (top-down) models (von Mayrhauser et al. 1996) frequently. Code navigation mod-
els can vary substantially across developers, even for tasks that require only small changes,
furthermore, models can differ substantially on class and method level as well (Fritz et al.
2014).

The timing of these information gathering actions could be analyzed by inspecting the
order in which the developers enumerate the code elements during a debugging task. (Robil-
lard et al. 2004) found that successful developers re-investigate methods less frequently and
most of the time they perform structurally guided searches. In addition, experienced devel-
opers visit less methods, thus wasting less time on understanding irrelevant methods (Latoza
et al. 2007) e. g. the simpler functions (i. e. getpat, change and locate) from the replace
program in the example in Section 2.

The wide range of knowledge acquiring strategies may imply that no tool could aid in all
of the above cases. However, the presence of structure-based and class-level investigation
strategies shows that there are at least some segments of the debugging process where iFL
could be utilized.

2.2.3 The Nature of Knowledge Context

Other than being layered, knowledge models have various types of contexts which differ
mostly in the source and the aspects of organizing the information. (Fritz et al. 2014) suggest
that by learning from a developer’s past a tool might be able to provide better recommen-
dations and also a more accurate representation of a developer’s code context model of the
past. They also show that developers often, but in particular at the beginning of the inves-
tigation, visited those code elements subsequently that share terms within their identifiers.
Likewise, it is obvious to organize code chunks according to their functions (Davies et al.
1995). For example, functions in Fig. 1 could be organized into such functionally similar
groups (e. g., getpat, makepat and amatch, omatch) to help developers understand these
parts of the replace program more quickly. Our iFL methodology does not utilize these
aspects of the context yet. We are currently seeking ways to extend our algorithms and their
implementations to incorporate these types of additional information.

2.2.4 Developers Are Not Omniscient, but They Are Experts

iFL requires additional knowledge from the developers about the system. There are two
major ways of how this information could be present during the debugging sessions. It
is either a priori or posterior, i. e., it is already part of the users’ experience or can be
synthesized on-demand when the developer inspects the relevant code. It is important to note
that based on (Fritz et al. 2010; Fritz et al. 2007) findings we could argue that if developers
have a priori knowledge about a class, they have a higher probability to give more accurate
feedback for the given context; if they know a method, they have a higher probability to
give more accurate feedback for the actual code element. We shall not disregard the fact that
developers are not assigned to certain bugs at random. Most of the time, the task of fixing
a particular bug is assigned to a developer who is familiar with the context of the specific
issue. These two insights are key concepts behind the usability of the iFL methodology.
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In conclusion, we can see that there is a certain level of experience that is required
to decide when and how to apply a tool to increase the effectiveness and efficiency of
debugging. The works presented above show that one could acquire the required amount of
experience, but not in all cases though. However, in those cases where sufficient knowledge
is available iFL could help improve the user’s process.

3 Interactive Fault Localization Utilizing Contextual Knowledge

Our approach to improve SBFL is to leverage the background and acquired knowledge of
the developer about the system being debugged outside her current focus – the currently
investigated code element. We build on our and other researchers’ observations, intuitions
and experiences presented in Section 2.2, and we hypothesize that a programmer, when
presented with a statement from a particular function, in general has an intuition whether any
other statements in that function should be considered in fault localization. Or, in a different
setting, the programmer is assumed to be able to decide (in certain cases) about the whole
class being faulty or not, if presented with one of its methods. Example situations when
such decisions could be made include when the element is known to have been reviewed or
otherwise tested recently, it was examined in a previous debugging session, class members
follow the same pattern such as getters-setters, etc.

In our approach, we call this information the contextual knowledge, which can be fed
back to the iFL engine. More precisely, we define the context of an investigated code ele-
ment as the other elements of its enclosing higher level syntactic entity. For example, in the
case of a statement, its context are all other statements belonging to its function. A context
of a function is its enclosing class, and so on.

Suppose that a developer is performing SBFL and starts with the highest ranked element,
statement 366 (see columns 4-7 in Table 1). She looks at the function this statement belongs
to and concludes that it is not likely to contain the fault (because it was not changed recently,
or she examined it in a previous debugging session, etc.). This knowledge is then fed back to
the iFL engine, which in turn reduces the suspiciousness scores for all contained elements to
0, sending other highly ranked elements to the end of the list. Then, the next most suspicious
element is given to the user, statement 321 of function locate. Again, the developer decides
based on contextual knowledge that this function is not suspicious, so the engine reduces
scores of all contained statements to 0. This is repeated for line 145 as well in the next
iteration. Consequently, several elements are pushed to the end of the list, moving the faulty
one, statement 116, to the next rank position. This terminates the fault localization process
with success. The effort required to locate the fault was reduced from 12 steps to only 5
(3 steps for removing the three functions and two steps in the final iteration to select the
middle one from the three elements with the same suspiciousness score).

Figure 2 shows a conceptual overview of our approach. The process starts by calculating
an initial rank based on some traditional SBFL approach like Tarantula. The elements are
then shown to the user starting from the beginning of the list, and the iFL engine is waiting
for user feedback. The user investigates the recommended element and gives one of the
following answers: 1. fault is found, 2. element is not faulty, neither its context, 3. element
is not faulty, but the fault is somewhere within the context, or 4. don’t know.

Based on the feedback from the user, the iFL engine performs the following actions. In
the case of (1), the process terminates, while at (4) it is continued as usual with the next
suspicious element (this means that in the worst case when the developer has no background
knowledge, the method falls back to the pure SBFL approach). In the remaining two cases,
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Fig. 2 Basic process of Interactive Fault Localization

the iFL engine makes adjustments to the suspiciousness scores, recalculates the ranking and
shows the next element from the new list to the user in the next iteration. Note that answer
(4) and its corresponding action could mean different things in different settings, and they
could be implemented in various ways depending on the actual setting. For example, in an
IDE where the suspicious elements are displayed in a list or a table (4) symbolizes that the
developer looks at an element and chooses not to interact with it.

There may be different strategies to make the mentioned adjustments, such as applying
proportional reductions or increases to the scores, which are different for the context and
other parts of the system, etc. Presently, we follow this approach: in the case of (2), the whole
context (i. e., function) gets 0 score, while for (3) everything but the context is reduced to 0.

Since there are no increases in the suspiciousness scores, a mistake in the answer made by
the developer can move the faulty element towards the end of the ranking which could make
the fault finding efficiency even worse than not using the approach. It is safe to assume that
developers will not be free of mistakes and completely knowledgeable about the system; in
some cases, they may not be able to provide additional information on the context of a code
element, or they can make wrong decisions. Therefore, part of our research goals in this
paper is to verify what is the performance of the method when the user does exhibit some
imperfection properties (this is our RQ1.4 discussed below).

4 Evaluation Goals

We verified the effectiveness of the Interactive Fault Localization approach in four stages.
First, we performed an empirical study using simulated users (Section 5). Next, we com-
pared iFL to a closely related interactive approach, called TALK, proposed by (Gong et al.
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2012). For this, we re-implemented the TALK algorithm in our framework, and we evalu-
ated its performance on real faults with simulated users (Section 5.5). These studies were
followed by another empirical study involving real users (Section 6). Then, we applied a
think-aloud method with the help of senior programmers to find out the possible use cases
of the approach in actual debugging scenarios (Section 7).

The study with simulated users enables large scale and automated experimentation with
different faults from existing benchmarks, and predicting the expected effectiveness in real
life scenarios. This approach has been followed by most of the related research, e. g., (Gong
et al. 2012; Hao et al. 2009), but we also perform measurements by simulating various
degrees of user imperfection, which is a novelty compared to previous studies. On the other
hand, evaluation with real users provides direct results about the usefulness of the approach,
although only for a limited number of fault finding scenarios.

The evaluations up to this point provide quantitative data about the usefulness of the
approach, but we also wanted to qualitatively understand the possible use cases of the
method in actual debugging scenarios, its limitations and possible future enhancements. For
this purpose, a field experiment would have been an alternative, but at this stage the iFL
method and tool are not ready to be deployed in real projects. Instead, in the third stage we
performed a very thorough observational study of senior programmers solving a debugging
task when the iFL was available to them. We decided to use the think-aloud method, which
is a well-known approach in cognitive psychology (Ericsson and Simon 1980; van Someren
et al. 1994), but is relatively rarely used in software engineering research. During the think-
aloud sessions, the participants have been asked to orally explain all the details about the
current activities, which was complemented by recording the developer’s interactions with
the development environment on the screen.

More precisely, the goal of the first part of the evaluation was the following. With sim-
ulated users, how much improvement in localization effectiveness, in terms of elements to
be inspected, can we achieve with iFL over a traditional non-interactive SBFL method and
an interactive approach? We have the following Research Questions for this part of the
evaluation:

RQ1.1 What improvement can we observe with iFL on artificial faults from the SIR
repository?

RQ1.2 What improvement can we observe with iFL on real faults from the Defects4J
repository?

RQ1.3 How iFL compares to another interactive approaches on real faults from the
Defects4J repository?

RQ1.4 How sensitive iFL is to user imperfections?

The goal of the second part of the evaluation was the following. Given actual fault finding
tasks with real users, is it true that users with access to an implementation of iFL in their
development environment are able to find more bugs or find them more quickly compared
to a control group who did not have access to iFL? We formulate the following Research
Questions for the second part of the evaluation with real users:

RQ2.1 Is it true that users could find more bugs with iFL than users without access to the
method?

RQ2.2 Is it true that users could find bugs more quickly with iFL than users without
access to the method?

RQ2.3 How do real users subjectively evaluate the iFL method and its implementation in
the development environment?
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In the third stage, our goal was the following. How could the iFL approach be made part
of a typical debugging routine of experienced programmers? In other words, what could
be the most useful use cases of the (present and future state of the) method? Our Research
Questions for this part are presented below. The purpose of the first two was to better under-
stand the actual ways of thinking of the developers for problem solving regardless of the
iFL approach. This way, we could better answer the actual question dealing with iFL.

RQ3.1 What are the typical debugging workflows and associated problem solving strate-
gies of experienced developers when no additional help is available beyond the
usual debugging features in their IDEs?

RQ3.2 What kind of additional information (inside the IDEs or external) experienced
developers use during the debugging sessions that help them locate the bugs
more quickly, and how do they integrate this information into their debugging
workflow?

RQ3.3 How did the same developers integrate the proposed iFL implementation into their
debugging workflow and, apart from these use cases, what could be other potential
ones provided iFL is enhanced accordingly?

The data from the think-aloud sessions can also help us verify the initial assumptions
about the programmer’s ability to decide on larger code entities (required for the context-
based feedback) and to determine the actual levels of user imperfections (which is simulated
in the first stage).

Eventually, the answers to the questions above could help us design new elements into
the iFL approach and new features for the tool implementation.

5 Results with Simulated Users

5.1 Experiment Setup

To answer research questions RQ1.1–RQ1.4, we relied on two sets of benchmarks: the SIR
repository which contains mostly artificial faults and Defects4J, a benchmark consisting
of real faults. These two benchmarks are different also in terms of their size and com-
plexity so we will perform fault localization at different granularity levels. For SBFL, we
selected three algorithms: Tarantula (Jones and Harrold 2005), Ochiai (Abreu et al. 2009),
and DStar (Wong et al. 2014), which have been reported to be the most successful in differ-
ent settings (Pearson et al. 2017), and are often referred in literature. With this choice we
wanted to verify if the actual algorithm has any impact on the effectiveness of the approach.

Regarding the user responses and iFL engine actions, for RQ1.1 and RQ1.2 we fol-
low a relatively simple but strict approach (there are no intermediate, partial or uncertain
responses and actions, in other words, we simulate a hypothetical perfect user). The perfect
user is perfectly sure about her decisions, which means out of the four possible responses
explained in Section 3, we will not use the fourth one, “don’t know”. The perfect user always
recognizes the faulty method. She also has a perfect knowledge about whether the fault is in
the context of the inspected element.2 Furthermore, the mentioned strategy for the actions
will be employed, that is, reducing either the whole context or everything but the context

2The exact implementation can be found at https://github.com/sed-szeged/ifl/blob/09e1d2a0fc32089218b1db
bb9508bc2991e673dd/framework/experiment/experiment one.py#L42
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to 0. We could reduce the perfection of the simulated user in order to simulate imperfect
knowledge about the system under testing. Experiments of user imperfection that answer
RQ1.4, including the “don’t know” answer, are presented separately in Section 5.6.

We implemented the required components of the iFL system according to these settings
on different granularities for the two benchmarks, and executed it using all available bugs.
The simulated user component works so that it takes the elements from the ranked list
starting from the first one, compares their context to the context of the known fault and
generates the corresponding answers until the faulty element is reached.

5.1.1 Implementation Details of TALK

To answer RQ1.3 We have implemented the TALK algorithm in our simulation framework
based on the pseudo codes and descriptions available in (Gong et al. 2012).3 The core of
this algorithm is a loop which waits for user feedback. In the loop two rules are utilized to
apply adjustments to the scores of code elements. The first rule is triggered when a code
element is labelled as clean by the user (the authors call these elements symptoms). This
rule aims to find the root cause of such symptoms. When a root cause is found, a portion
of the symptom’s original score is transferred to the root cause. The second rule is applied
when a code element is labelled as faulty. In these cases, the score of the code elements
which are covered by the smallest (in terms of the number of covered code elements) test
case tmin is increased by a factor Ks . Ks is set to a value which ensures that in the next few
iterations of the algorithm the code elements covered by tmin are displayed at the beginning
of the list that is shown to the user.

Note that our evaluation considers only the first faulty code element that is found. Con-
sequently, our simulation stops when the first faulty code element is found, therefore the
second rule is never applied in our experiments.

5.2 EvaluationMethod

Several strategies have been proposed in literature for measuring the effectiveness of SBFL
methods, but they are practically all based on looking at the rank position of the actual faulty
element within the list of all possible program elements. One strategy is to express this as
the number of elements that need to be investigated by the programmer before finding the
fault (Wong et al. 2016), and another is the opposite: elements that need not to be investi-
gated (Renieris and Reiss 2003). This is usually expressed in relative terms compared to the
length of the rank list (program size). However, (Parnin and Orso 2011) argued that absolute
rankings are more helpful in practical situations.

Another issue with these mechanisms is the handling of ties (Xu et al. 2011), because in
many cases it can happen that different program elements get assigned the same suspicious-
ness scores (as is the case with our example from Table 1 as well). Some approaches select
the first (best case), last (worst case) or middle (expected case) element for expressing this
value, while others simply treat the elements with the same values as all belonging to one
position.

For measuring the effectiveness of fault localization, in this study we follow the strategy
to look at “elements that need to be investigated” using the “expected case” in the case of
ties. We express this in a set of measures called Expense, with two variants: an absolute one

3The source code of our implementation is available at: https://github.com/sed-szeged/ifl/tree/feature/
geryxyz/gong-experiment

150   Page 14 of 69 Empir Software Eng (2022) 27: 150

https://github.com/sed-szeged/ifl/tree/feature/geryxyz/gong-experiment
https://github.com/sed-szeged/ifl/tree/feature/geryxyz/gong-experiment


expressed in the number of code elements (E) and a relative version compared to the length
of the rank list (E′). The following formulae express precisely how to calculate this value
(following (Abreu et al. 2007)):

E = |{i|si > sf }| + |{i|si ≥ sf }| + 1

2
, E′ = E

N
· 100% ,

where N is the number of code elements, for i ∈ {1, . . . , N} si is the suspiciousness score
of the ith code element and f is the index of the faulty code element.

To compare the iFL method to a traditional SBFL approach, we will compute Expense
metrics for both approaches and compare them in terms of improvement relative to tradi-
tional SBFL. Since in each iteration of the approach one block of code is decided upon in
one step, we will count each iteration as an equivalent of one rank position for calculating
Expense. The amount of improvement will then be calculated for each defect and suitable
averages will be produced.

Recent user studies report that developers tend to investigate only the top 5 or at most
the top 10 elements in the recommendation list provided by localization methods before
giving up (Xia et al. 2016; Kochhar et al. 2016). Hence, any improved rank position
which is beyond these thresholds will probably be less useful, no matter how much relative
improvement they can achieve. Therefore, we define the notion of enabling improvement,
an improvement in which the traditional FL algorithm ranks the faulty method at a position
larger than 10 (or 5), but the iFL method reaches the faulty method in less than 10 (or 5)
steps. This way from a practically “hopeless” localization scenario our method enables the
user to localize the fault by inspecting the top elements in the list (the accuracy measure
by (Sohn and Yoo 2017) is similar). We will use three concrete cases to express enabling
improvement:

– (10, ∞] → (5, 10] The base FL score is larger than 10 and iFL reaches the fault in 5 to
10 steps.

– (10, ∞] → [1, 5] The base FL score is larger than 10 and iFL reaches the fault within
5 steps.

– (5, 10] → [1, 5] The base FL score is between 5 and 10 and iFL reaches the fault fault
within 5 steps.

5.3 Results for Seeded Faults

To answer RQ1.1, seven small C/C++ programs from the Software-artifact Infrastructure
Repository (SIR) (Do et al. 2005) were included in the experiments, which are the so-called

Table 3 Details of Subject Programs from SIR

Program LOC (CE) Functions Tests Faults

printtokens 726 (277) 18 4 130 7

printtokens2 570 (262) 19 4 115 10

replace 564 (400) 21 5 542 32

schedule 412 (225) 18 2 650 9

schedule2 374 (198) 16 2 710 10

tcas 173 (95) 9 1 608 41

totinfo 565 (187) 7 1 052 23

Total 3 384 (1 644) 108 21 807 132
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“Siemens” suite. This benchmark contains seeded faults, and both the original and faulty
versions are available. The subject programs are listed in Table 3. Column 2 shows the size
of the programs in lines of code (LOC) including the comment and empty lines, along with
the number of executable code elements (CE) for which coverage information could be
obtained. In column 3, the number of functions in the program is given (this corresponds to
the context in iFL). The number of test cases in the test suite is presented in column 4, while
the 5th one contains the number of available faulty versions (each version has exactly one
fault in it).

Note that, the third column of Table 4 shows the number of defects we were able to
use in the experiments: 1) we filtered out versions where there were multiple faulty code
elements; 2) we omitted faults where the coverage tool was unable to record coverage in,
e. g., headers and macros; 3) we omitted cases where the suspiciousness score of the faulty
code element assigned by the actual SBFL technique was zero. The latter issue was present
in only a few cases and slightly differently in the three SBFL methods we investigated,
which resulted in different number of cases we used for subject printtokens2. However, since
there were no ways to improve fault localization efficiency in these cases, this did not impact
the measurement results. For preparing the raw data for the iFL experiments including the
code coverage information and test case results, the tools (GCOV 2021) and (SoDA 2021)
were used.

Table 4 shows the improvements iFL was able to achieve on SIR. The performance of
the original SBFL algorithms can be seen in column 4, which we used as the reference
to evaluate iFL. Both absolute and relative versions of the Expense measure are provided.
For each of the SBFL techniques, a summarization line is provided with the corresponding
average values. The three techniques achieved similar results, Ochiai being slightly better
than the other two. On average, it prioritized the faulty code elements roughly to the 20th
place, which means that on average 13% of the executable code elements must be examined
to find the faulty one. Ochiai was followed by DStar (19.90 – 13.24%) and then by Tarantula
(24.85 – 15.43%).

Column 5 contains the same data for iFL. The average Expense measures are notably
better than for the original algorithm. Ochiai performs slightly better in this case as well
with an Expense of 5.78 (3.75%) on average. This means, that in this case a programmer
would need only about six steps (5.78) to find the fault on average. DStar was the second
best in this comparison with 5.83 (3.80%), but Tarantula was similar as well 6.86 (4.25%).
In terms of relative improvement (Column 6), Tarantula achieved the best results: 17.99
steps (11.19%). It was followed by DStar with 14.11 (9.47%) and Ochiai was last with
14.01 (9.34%). Column 7 of the table contains a summary of improvements in terms of
relative changes in the Expense values, expressed in percentage (that is, the difference over
the SBFL base value). For all techniques, the improvement is notable, 71-72%.

The last four columns of Table 4 summarize the enabling improvements iFL achieved
on the SIR benchmark. Here, the number of faults (and their relative ratio) are presented
falling in the three categories of enabling improvements. According to the last column, the
total ratio of improvements that turned out to be enabling is quite large, around 49-57%.
More importantly, most of these improvements are those that bring the faulty code element
from outside of top 10 into top 10 (Column 8) or, even better, into top 5 (Column 9). The
two programs on which iFL produces the highest rate of enabling improvements are tcas
and replace. Interestingly, tcas is the smallest and replace is the largest program in our set,
which may indicate that there is no connection between improvement rate and program size.
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5.4 Results for Real Faults

In the field of Interactive Fault Localization, there is an emerging need for studies that go
beyond the size and complexity of the SIR repository. A recent study by (Pearson et al.
2017) investigates existing techniques both on SIR and Defects4J, showing that the latter
repository has quite different properties when it comes to the performance of various SBFL
techniques. Here, we present our measurement results with iFL on defects from the Defect4J
repository (Just et al. 2014), to answer RQ1.2.

Defects4J is a database and extensible framework which provides a high-level interface
to real defects, and has been widely used in software testing research (B Le et al. 2016;
Zhang et al. 2017; Just et al. 2014; Shamshiri et al. 2015). The version (v2.0.0) of the dataset
that we used contains 17 open source Java programs and 835 bugs in total. For iFL exper-
iments, we extended the Defects4J framework with our Java agent-based code-coverage
measurement tool4. This tool attaches to the JVM and utilizes on-the-fly bytecode instru-
mentation to collect different levels of coverage information. Defects4J provides the fix for
each bug as a patch set. We created a static analyzer tool which uses JavaParser (JavaParser
2021) to analyze the patch sets and provides information about the changed code elements.
Then, using the patch sets and the information provided by the static analyzer we were able
to create change sets that contain data about which methods were affected by which bug
fixes. There are some bugs in this benchmark where the change set becomes empty. The
reason for this is that the patch set contains only additions of code elements i. e. the changed
elements did not exist in the faulty version of the program. Obviously, non existent methods
are not considered by any FL approach, therefore we excluded these cases from our exper-
iments. In addition, there are some bugs where the suspiciousness score of the faulty code
elements assigned by the actual SBFL technique was zero or undefined – we excluded these
cases too. Note that, different algorithms could produce zero or undefined scores in different
settings, therefore the number of excluded bugs could change from algorithm to algorithm.
In our experiment we encountered 37 cases where only failing tests exercised the faulty
code elements. In these cases, the denominator of the DStar formula (ep + (ef + nf ) − ef )
evaluates to zero (0+(n+0)−n = 0) and due to the division by zero the score is undefined.
The main properties of programs from the Defects4J dataset can be seen in Table 5, and the
number of bugs we could use in the experiments is shown in Table 6 (Faults column).

In this experiment, the granularity of fault localization was elevated to the method level
because of two reasons. First, we could use statement level granularity as well, but the
benchmark contains larger and real programs, and even on method level it includes a large
number of code elements. Second, we wanted to check how does the algorithm behave on
this level and if there is a significant difference in terms of effectiveness to the other bench-
mark. Our feedback-based algorithm needed adjustment as well: the basic elements are
changed from source code lines to methods, and the context is changed from functions to
classes. Otherwise, the main steps of the iFL process (from Fig. 2) including the responses

4The extended framework is available at: https://github.com/Frenkymd/defects4j/tree/chain
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Table 5 Main Properties of Programs Used from Defects4J

Program Bugs Size (LOC) Tests Methods Classes

Chart 26 96 382 2 193 5 227 472

Cli 39 1 936 94 149 19

Closure 174 90 694 7 911 8 392 1151

Codec 18 2 584 206 234 19

Collections 4 26 409 15 393 3 532 422

Compress 47 6 740 73 437 53

Csv 16 0 806 54 83 11

Gson 18 5 378 720 620 106

JacksonCore 26 15 871 206 795 73

JacksonDatabind 112 42 964 1 098 3 546 447

JacksonXml 6 4 679 138 293 35

Jsoup 93 2 546 139 327 41

JxPath 22 19 372 308 1 287 131

Lang 64 21 778 2 291 2 353 158

Math 106 84 317 4 378 6 350 818

Mockito 38 10 517 1 378 1 454 291

Time 26 27 795 4 041 3 612 204

Total 835 460 768 40 621 38 691 4 451

and actions were the same as with the statement-level granularity. The measurements them-
selves followed the same steps as we used for SIR in Section 5.3, and the results will be
presented in the same way in this section as well. Therefore, detailed explanation of the
structure of tables will be omitted.

With iFL we achieved high improvements compared to all the three fault localization
metrics. The first part of Table 6 shows average ranking improvements (Diff. column) and
its ratio compared to the number of all possible code elements (i. e. Java methods). The
Expense measures for the original SBFL methods are quite different than for the SIR pro-
grams, they range from 1-98 steps, which is much more than the average on small programs,
however, the relative measures are smaller, 1.68-1.74% on average. This is due to the signif-
icantly larger number of program elements in this benchmark (despite the higher granularity
level). iFL achieved a notable improvement with this benchmark as well, as can be seen
from columns 5 and 6 of the table. The difference is between 30 and 32 positions on aver-
age, but given the large total number of elements, the change in percentages is modest. In
this case, Ochiai produced the best initial ranking and the best final Expense measures with
iFL as well. The relative improvement (column 7) is higher than for the SIR benchmark,
it is about 79% for each SBFL technique. Practically, this means that on average the iFL
approach could potentially save 79% of the human effort.

More importantly, in the case of large programs and real defects there are many cases
when iFL achieved enabling improvements. Detailed data is shown in the second part of
Table 6. Overall, iFL had 251-255 (32-33%) enabling improvements, which is slightly
worse than for the SIR programs. In most cases, iFL brings the faulty elements into the
top-10 or top-5 range from outside of top-10. These are the cases where the original SBFL
produced very bad Expense results initially. Compared to SIR, the lower number of test
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cases may be one reason for this phenomenon, but finding the actual causes needs more
investigation. Note that, this benchmark contains much larger programs and that the original
Expense measures were typically much higher as well.

5.5 Results for Real Faults with the TALK Algorithm

In this section, we present the results of the replication study in which we re-implemented
the TALK algorithm proposed by (Gong et al. 2012).

Note that we could not replicate the original experiment to its full extent. We did our best
to acquire the data and the most detailed description of the experiments from the original
paper. However, we could only work with what was published. In order to accommodate
the highest number of bugs we used the latest version of Defects4J. Since the approach
for coverage data collection was not mentioned in the original paper, we could not reuse
the exact same measurement methods. We also used method level granularity, which could
have affected the results. In addition, we ran into some issues while executing TALK on
the two largest subject programs from Defects4J. Unfortunately, because of the complex-
ity of the algorithm we were not able to execute TALK on Closure and on some bugs of
JacksonDatabind.

We followed the same approach to evaluate TALK that we presented at the beginning
of Section 5, and we used the same benchmark on which we evaluated iFL in Section 5.4.
However, as knowledge and confidence cannot be interpreted for the TALK algorithms, we
did not check the effect of these factors in the replication experiments.

As published, the baseline performance of TALK in terms of improvement is between
-14% and 60% (12.29% on average) with Ochiai, -25% and 46% (11.71%) with Jaccard
and -35% and 72% (13.37%) with Tarantula. Table 7 shows the performance of the re-
implemented TALK algorithm on the Defects4J benchmark in the same fashion as Table 6 in
Section 5.4. As it can be seen, we obtained varying results. The best performance is achieved
using DStar. In this setting, improvements range from about -6% up to 10% and 1.56%
overall. In the case of Ochiai and Tarantula, TALK is behind its traditional SBFL counter-
parts by a slight margin, -0.58% and -7.20% respectively. The maximal improvement (16%)
is achieved on Chart with Tarantula. However, in the case of some projects TALK performs
significantly worse than Ochiai and Tarantula. Also, the number of enabling improvements
is very limited compared to iFL.
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5.6 Effect of User Imperfections

To answer RQ1.4, in this section we investigate to what extent user imperfection affects the
results of our method. This phenomenon is only marginally addressed in interactive fault
localization literature. (Hao et al. 2009) tackled the problem of user imperfection by incor-
porating two factors into their approach and analysis. They introduce a parameter which
approximates the confidence of developers by acting as a scaling factor on suspiciousness
modifications. Also, they define the concept of accuracy rate to represent the probability
that the developer makes correct estimations. (Li et al. 2016; Li et al. 2018) used a similar
approach to simulate the reliability of the users by modifying the automated oracle in their
experiment such that it gives erroneous answers on a configurable rate. Both studies con-
sider a limited range (5-30%, 50%) of the various factors that impact the effectiveness, and
they conclude that various factors modelling user imperfections indeed had impact on the
effectiveness results, but not that significant which would invalidate their findings. We pro-
vide a similar, but more detailed analysis of user imperfection by experimenting with two
factors that may influence the validity of simulated users:

Confidence Level This factor indicates how much confidence we have in the user for pro-
viding reliable answers. We model confidence by applying a proportional decrease of the
scores instead of nullation as with the base algorithm. The iFL engine was modified to
scale down the suspiciousness of appropriate code elements proportionally to the confi-
dence level: the new score s′ is calculated from the original s using confidence level c as:
s′ = (1 − c)s. Here, c = 0 means no confidence in which case the original scores remain,
and with perfect confidence, c = 1, nullation will be performed.

Knowledge Level In our model, the knowledge of the user means the rate at which she can
make informed decisions about the context. Thus, knowledge is modelled by the user’s abil-
ity to give meaningful answers about the context as a whole. This factor was implemented
by letting the user choose the “don’t know” response randomly with a frequency that is
inversely proportional to the knowledge level. This means that a perfect knowledge, k = 1,
allows no “don’t know” responses, while with no knowledge at all, k = 0, every answer
will be of this type, falling back to the base FL algorithm.

These two factors were designed and implemented solely for the experiments for answer-
ing RQ1.4. If both factors are set to 1, we will obtain the base approach we used for research
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Fig. 3 iFL improvement with different knowledge and confidence levels on SIR
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Fig. 4 iFL improvement with different knowledge and confidence levels on Defects4J

questions RQ1.1-RQ1.3. Any combination of values are interesting to observe to what
extent they are influencing the effectiveness of the iFL method. We re-executed our exper-
iments on both datasets with confidence and knowledge levels set between 20% and 100%
in 10% steps. We decided to ignore values below 20% because they simulate an unlikely sit-
uation in which the user is very incompetent. Due to the random factor that was introduced
by the implementation of the knowledge level, we repeated each measurement 100 times
and used the average data that was collected during the iterations.

Improvement levels, in terms of absolute Expense difference, can be seen in Figs. 3
and 4. Each point on the 3D surface represents a different configuration of knowledge and
confidence. The near and far edges of the 3D cube mean the perfect and almost completely
incompetent users, respectively. Results show that both knowledge and confidence affect
the performance of iFL, though to various extent. The algorithm is sensitive to both fac-
tors when DStar is used as the base suspiciousness score, however it is relatively stable
with Ochiai and Tarantula. We can observe that confidence and knowledge have differ-
ent effects. While the algorithm scales almost linearly with knowledge, lack of confidence
causes performance loss on a near exponential rate. This seems to be aligned with the every-
day observation that high confidence combined with low knowledge is a worse situation
than a low confidence with high knowledge scenario.

Table 8 shows the approximate lowest knowledge and confidence levels allowable to
limit the performance loss of iFL to at most 10 or 20% (reduction to 80 or 90% of the gain
of the base iFL algorithm). These requirements were calculated by setting one of the factors

Table 8 Requirements for keeping 80-90% of improvement

90% 80%

Know. Conf. Know. Conf.

SIR DStar 60% 60% 40% 40%

Ochiai 60% 40% 40% 30%

Tarantula 60% 30% 40% 20%

D4J DStar 70% 90% 50% 80%

Ochiai 60% 70% 50% 50%

Tarantula 60% 20% 40% 20%
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to 100%, e. g., the last column in the last row means that confidence can be as low as 20%
(while knowledge is set to 100%), but iFL still provides 80% of its benefits compared to the
best case scenario on Defects4J using Tarantula (except DStar on Defects4J).

User imperfection is more realistic when both factors are changed at the same time. For
the minimum gain levels 80-90%, consider the areas of the surfaces in Figs. 3 and 4 marked
with different shades of yellow and green. Points satisfying the 80 or 90% gain level are
positioned in the lower part of the surface. To keep the desired gain level, a tradeoff between
confidence and knowledge may be made but when both aspects of user imperfection exceed
the roughly 30-40% levels, the overall gain will be above the 80% of the gain of the perfect
user.

6 Quantitative Results with Real Users

6.1 Experiment Setup

To answer research questions RQ2.1-RQ2.3, we performed a user study involving real pro-
grammers and asking them to solve real fault localization tasks within an IDE. For the
experiment setup, we reused parts of the methodology followed by (Parnin and Orso 2011)
and (Le et al. 2019).

Participants 36 software engineering students were invited for participation on a voluntary
basis, of which 22 were BSc (undergraduate) and 14 were MSc (graduate) students. Only
the top-performing students were invited from the class of about 230 based on their previous
scholastic performance in the relevant subjects. Only students with sufficient knowledge of
Java, Eclipse, and its debugging features were included. The programming experience of
the participants was between 0.5–6 years, on average 2.5 years. 23 participants had at least
1 year programming experience working in industry. Three groups (G1 − G3) have been
formed randomly, each having approximately the same ratio of BSc and MSc students.

To diversify the experiment we also invited professional programmers from the soft-
ware development teams of our university. We excluded everyone who had some relation
to the topic of this paper and from the 4 volunteers we created group G4. The average
programming experience in this group was 12.75 years (between 5–18 years).

Tool Support We implemented a prototype tool (Balogh et al. 2019; Balogh et al. 2019)
as an Eclipse plug-in that implements the basic functionality of iFL. Currently, it supports
Java projects and fault localization on method granularity. It provides in a window a ranked
list of methods with the associated suspiciousness scores, the context (enclosing class), and
other information. The user can interact with this list, provide the feedback, make filtering
on the scores, navigate to the source, etc.
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Task Assignment We designed altogether 8 different fault localization tasks (A−H ), keep-
ing in mind that participants should be able to solve each task in about 30 minutes including
understanding the problem and documenting the solution (it was treated successful if the
participant can briefly explain the required fix but no actual implementation was needed).
We also wanted to ensure some diversity, so we selected A and E to be small, the rest large
programs, B, E, F be simple bugs and the rest more complex, some to have low Tarantula
ranks (A, C, D), and the rest high ranks. This information was not told to the participants.

We selected 6 concrete bugs from the Defects4J database (3 from Commons Math and
3 from Joda-Time) and 2 bugs from a student project. One important consideration in the
selection was to have bugs where the rank of the faulty code element is small (math-53) and
slightly larger (ship-3), however, other aspects were also considered. Such characteristics
were the following:

(i) the number of faulty methods, i. e. there should be a bug where one method is faulty
(math-5) and also one where there are multiple faulty methods (time-9)

(ii) the complexity of the bugfix, i. e. the fix should not be too complicated/complex
(since students participated in the experiment) and

(iii) the similarity of ranks, i. e. the FL algorithms should produce the same result in terms
of the ranks of the faulty methods.

These properties ensured that we control the most variables during the experiment. In
particular, the eight bugs with their ID-s, names and Tarantula ranks were the following: [A]
ship-3 (rank 11), [B] math-5 (rank 2), [C] time-9 (rank 7), [D] time-8 (rank 7), [E] ship-1
(rank 2), [F] math-53 (rank 1), [G] time-4 (rank 5), [H] math-4 (rank 2).

Groups G1 − G3 have each been assigned 4 different tasks from the 8 available, half of
which had to be executed using the iFL functionality and the rest without it (feedback was
disabled). In order to increase the diversity, we assigned the tasks and tool modes in various
combinations to the groups. We reserved two more complex tasks for group G4, and tool
modes were randomly selected when the participants started their tasks. Table 9 shows the
task assignments (I: iFL used, N: iFL not used).

Experiment Execution The experiment was executed in two sessions with three 1/2 hour
blocks in each session and a break between the sessions. The first block was dedicated to
introduce participants to the experiment, explain the goals, the basic functionality of the
tool and other instructions. Then, the four tasks have been performed in the next blocks,
where 25 minutes were available to actually perform the task and 5 minutes were reserved
for documenting the results and switching to the next task. After each task and for each
participant, we recorded the following information: number of minutes for completion if
it was successful, the solution, how much was the tool used (none, little, fully), how much
did it help (none, little, a lot), if the tool was not used what method was used instead to

Table 9 Task Assignment

Group / Task A B C D E F G H

G1 N I - N I - - -

G2 - N I - N I - -

G3 I - N I - N - -

G4 - - - - - - I/N I/N
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Table 10 Number of All and Completed Tasks

Bug Overall with iFL no iFL

All Compl. All Compl. All Compl.

A - ship-3 24 3 ( 12%) 12 2 ( 17%) 12 1 ( 8%)

B - math-5 24 19 ( 79%) 12 9 ( 75%) 12 10 ( 83%)

C - joda-9 24 14 ( 58%) 12 5 ( 42%) 12 9 ( 75%)

D - joda-8 24 18 ( 75%) 12 8 ( 67%) 12 10 ( 83%)

E - ship-1 25 15 ( 60%) 13 8 ( 62%) 12 7 ( 58%)

F - math-53 23 23 (100%) 12 12 (100%) 11 11 (100%)

Total 144 92 ( 64%) 73 44 ( 60%) 71 48 ( 68%)

find the bug. During the final 30 minutes, the participants were asked to fill a questionnaire
about their general impressions and comments: how useful was the approach (on a scale 1-
5), actual benefits and drawbacks encountered, further information that could be used as the
context and other ideas to improve the tool.

6.2 Results for Bug Finding Efficiency

Results regarding the number of completed tasks are presented in Table 10. 5 For each
task, we include the total number of participants who performed it, using iFL support and
without it (columns 2, 4 and 6, respectively). 6 Columns Compl. show the number of par-
ticipants who successfully completed the task belonging to the group using the tool and
not using it, respectively (also, percentages are given wrt. the number of participants in the
corresponding groups).

The overall success was 64% but it was highly varying across the different tasks. We
could not observe any dependence on the program size (A vs. D), but more simpler bugs
could be localized by more participants (B vs. E), overall. Initially, it was not our intent,
but task A turned out to be the most difficult to solve by the participants. Besides the rel-
ative complexity of the bug, this might also be influenced by the fact that it was the first
assignment for the participants, who perhaps did not have enough understanding of the tool
at that time.

We could not observe any difference in the success rate of participants who used iFL
compared to those who did not. In particular, the number of participants who successfully
solved the tasks is approximately the same, there is even a slight increase in the overall
number of cases without tool support. A very slight improvement within the group using the
tool can be observed for tasks A (small but difficult bug), E (complex bug) and F (simple
bug and high Tarantula rank).

5In group G4 success rate was 100% for both tasks, and the completion time varied between 10-29 minutes
independently from tool usage, but due to space limitations and the very low number of participants we
excluded this group from the evaluation of effectiveness and efficiency.
6For E and F , number of group members with and without iFL was not equally 12+12 because two work-
stations had to be exchanged due to technical reasons, which resulted in a slight change to the planned task
assignment.
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Table 11 Task Completion Time in Hours, Minutes and Seconds

Bug with iFL no iFL Diff.

A - ship-3 0:16:00 0:25:00 -0:09:00 (-36%)

B - math-5 0:10:33 0:05:48 0:04:45 ( 82%)

C - joda-9 0:08:00 0:14:53 -0:06:53 (-46%)

D - joda-8 0:15:15 0:21:06 -0:05:51 (-28%)

E - ship-1 0:16:07 0:19:17 -0:03:09 (-16%)

F - math-53 0:12:40 0:09:16 0:03:23 ( 37%)

Total 9:30:00 11:05:00 -1:35:00 (-14%)

Table 11 shows the results we collected about the time required to localize the fault,
which was needed for RQ2.2.

For each bug, we present the average times required for completion over all group mem-
bers who managed to complete the task. The last column shows the difference of the times
(absolute and relative) with respect to the cases without tool support. We could observe a
noticeable overall improvement, of 14%. But, results also show that there is a big variance
of the difference across the different tasks: in the case of the Commons Math bugs, B and F ,
the tool even resulted in longer completion times, but in the other cases there was 16-46%
improvement on average. Both Commons Math bugs were quite easy to understand and to
locate the faulty element in them, so it might be the case that the use of iFL resulted in such
a big overhead that not using the tool was actually more simpler. The overall improvement
excluding these two tasks was about 36% (5:23:00 vs. 8:25:00 total times). We could not
observe any relationship between the program size or Tarantula rank and the completion
times.

6.3 Subjective Evaluation by the Participants

For answering RQ2.3, participants were asked to fill out a questionnaire that consisted of
two parts: short questions about each bug and questions about the approach and tool in
general. Table 12 includes the data for the first part, the responses per bug (this relates only
to tasks where iFL was enabled). In more than two-thirds of all cases, participants expressed
their opinion regarding the usage and usefulness of iFL.

Users responded that they did not use the tool in 7 cases (10%); they used it a little in 29
cases (40%); and relied fully on iFL in 15 cases (20%). Overall, participants used the inter-
active approach at least a little in 44 cases (60%). Considering the usefulness of iFL, the
results were similar. Participants did not find the approach helpful at all in 9 (12%) cases, but
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Fig. 5 Overall usefulness of the iFL approach

in the remaining 25 (34%) and 15 (21%) cases they found that iFL aided fault localization
at least a little or a lot, respectively (this is 82% of the cases when participants responded).
Experts also agreed on the usefulness of the tool, but they argued that the complexity of the
bugs may have an impact on it. However, we did not identify any pattern in the distribution
of opinions wrt. differences in bug types.

In the next part of the survey, participants were asked to rate the usefulness of the inter-
activity for SBFL in general on a scale 1–5 (1-not useful, 5-extremely useful). The results
are presented in Fig. 5. Two thirds of the participants (24) said that iFL was useful at least
moderately and only 8.3% (3) answered that they did not find it helpful at all.

Participants could also write a textual evaluation of the approach and the tool, in which
they could list the advantages and disadvantages they experienced. Some typical benefits
mentioned:

“The tool gives good hints and it can confirm if my idea is good or not”,
“It is straightforward to navigate between suspicious functions”.

Some disadvantages of the tool mentioned by participants:

“The tool can mislead and so gives an unnecessary overhead”,
“We can exclude the actually faulty functions with feedback, which cannot be undone”.

In addition, participants could articulate suggestions for using or further developing the
tool. Several commented that it would be helpful if the selected method could be automati-
cally opened in a separate window or a view. Also, undo-redo and the dynamic score-update
were among the most frequently mentioned missing features. Some commented that for a
large set of methods, the traditional search function made it easier to find the appropriate
methods.

Professional developers said that the tool provides good starting points for debugging and
it also helps focusing their efforts on the most suspicious parts of the source code. However,
they also added that more information would be beneficial to make full use of the potential
of interactivity and to make decisions about contexts easier. They mentioned the visualiza-
tion of factors that contribute to the suspiciousness scores (e. g., related tests, especially
the failing ones) and provide more detailed information about the bug (e. g., stack traces,
call-chains, etc.) in an organized, easily understandable way as the most advantageous
improvement.
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7 Think-Aloud Sessions

This section deals with the third stage of our experiments, the think-aloud sessions. The goal
of this stage was to gain a better understanding of possible use cases of the iFL approach,
and not to quantify the success rate of using the tools (which was the goal of previous
stages). Hence, in this set of experiments we concentrated on the actual activities of real
programmers who have been given access to the iFL tool, but we did not explicitly ask them
to use it. Participation was completely voluntary and all the data was anonymized.

7.1 Why Think-Aloud Sessions?

In this set of experiments, we aimed at involving real, experienced developers who have
solid knowledge of basic debugging techniques but who are not biased in any ways by know-
ing the purpose of the research. This way, we could investigate their spontaneous interaction
with iFL. However, to be able to achieve this, a very detailed information was required
about their activities during problem solving. We aimed at relatively few participants in the
experiments but with very deep understanding of their workflows.

There are several potential ways to probe the underlying processes leading to concrete
actions of people, but they all have to be indirect. Developers are used to do their job,
not to explain it. If they do try to explain (orally or in written form) how they go about
their debugging or fault localization workflows, it is quite possible that their account of
it will be incomplete or even incorrect. This is because they construct this account from
memory. They may be inclined to describe the work process neatly in terms of some formal
descriptions that they acquired during their professional training, but the actual work process
deviates from these. Psychologists, like (van Someren et al. 1994), have demonstrated that
such accounts are not very reliable. Another possibility is to look at the results of their work:
the fixes they made and the tools they used. But, in this case, we are looking at the products
of the thought processes of these developers, and not at the thought processes themselves.

To overcome these issues we conducted a so-called think-aloud experiment, which was
explored in detail by (Ericsson and Simon 1980). Informally, the think-aloud process is a
methodology which allows to access more reliable information about the thought processing
by instructing the participants to verbalize their thoughts during solving the given tasks. We
also utilized the practical results of (van Someren et al. 1994) during the implementation of
our experimental setup. In this section we will use the terminology found in this article to
describe our variation of the think-aloud process.

Note that this approach is a well-known technique in psychology, but comparably more
rarely applied in software engineering research (Gopstein et al. 2020; Yamashita et al. 2018;
Rojas et al. 2015; Prabhakararao et al. 2003; Wallace et al. 2002).

7.2 Experiment Setup

Overall, we recorded the verbalization of solving debugging problems of six participants in
an empirical assessment consisting of three phases. The whole experiment took five days but
the work of the participants was not continuous; the task solving sessions were interrupted
with retrospections and preprocessing steps conducted by three authors of this paper without
the presence of the participants.

The general overview of the experiment is shown in Fig. 6. There were three phases
consisting of one day each (Monday, Wednesday and Friday) when the participants had to
solve debugging tasks. The tasks were simply to locate and fix a known bug in a given Java
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Fig. 6 Overview of the think-aloud sessions

program using the Eclipse IDE, where the bugs were demonstrated by failing test cases. The
first phase was the routine phase, which consisted of two debugging sessions. The purpose
of this phase was to collect data about the unmodified workflow of the participants (not
influenced by any factor that related to the experimentation, for example, only a bare IDE
was available).

During the second phase, the feature phase, we added three tools to the IDE (Eclipse
plug-ins) that could potentially help during the debugging and fault localization process,
among them iFL. The other two tools were a code coverage analyzer and a graph-based
static code visualizer. We did not tell the participants any details about the experiment, such
as the goal, the purpose of the tools, and naturally, about iFL either. Our goal with this was
to minimize the bias of the developers and to be able to detect their more reliable responses.
In this phase, we brielfy explained the main features of the three tools but we did not give
them any hints about their potential use cases or actual benefits for fault finding.

Finally, in the use-case phase we gave the participants more details about the possible use
cases of each tool, while reflecting on their intuitive usage from feature phase. This enabled
us to observe an evolution of debugging practices of the developers during the course of the
three phases, and also to understand their overall workflow routines. Eventually, this data
helped us assess how intuitive is to use iFL, and in what ways can it help the debugging
process.

The routine phase included two debugging sessions. We considered the first one as an
introductory session with a simple bug only, in which the participants could get used to the
target project and the development environment. The second session included a regular bug
and served as the comparison basis for the other two phases, which included one debugging
session each.
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7.2.1 Participants

The selection of the participants was conducted in two phases. First one was a volun-
tary sing-up phase in which we asked the candidates to supply the necessary professional
information required for the selection. The selection itself was purely based on experience
in software development, in particular Java and Eclipse IDE knowledge. The minimum
requirement was a currently professional affiliation as a developer with at least three years
of practical experience in the mentioned fields.

During the first phase, we advertised the experiment on various social media platforms,
and collected the surveys filled by candidates. We did not disclose any information about the
concrete goals of the experiment, we just mentioned that it is about professional developer’s
daily workflows and gave an overview of the schedule. We selected the six participants after
evaluating the survey data, and contacted the participants to discuss the technical details.
We also provided a single complementary payment to the participants as compensation for
the time spent with the experiment. The amount of payment received was the same for all
participants disregarding their performance.

In the following, we will refer to the participants as Participant 1–6 or P1–P6, as
appropriate.

7.2.2 Tool Support

We prepared two versions of the Java Eclipse IDE development environment for the partic-
ipants. During the routine phase they used the most recent stable version of Eclipse without
any modification. In the case of the feature phase and use-case phase, we equipped the IDE
with 3 additional tools, which were (iFL4Eclipse 2021), (Atlas 2021) and (EclEmma 2021).
We used the current stable versions of all of these tools.

iFL4Eclipse is the implementation of iFL as an Eclipse plug-in. Atlas is a tool that lets
Java and C users deeply explore their code bases by using visualization of the relationships
in the code, files, classes, etc. EclEmma is a free Java code coverage tool for Eclipse which
shows code coverage analysis results directly in the Eclipse workbench on the source code.
The screenshot in Fig. 7 shows the Eclipse IDE with all three tools activated.

As mentioned, it was not mandatory for the participants to use any of these tools, and in
fact, we did not tell them why we included exactly these tools in the IDE at all. Of course,
our main focus was to collect information about the iFL methodology and its implementa-
tion but we did not want this to be evident for the participants, so we included the other two
tools “as a distraction” to avoid that the participants give a biased opinion.

7.2.3 Task Assignment

As mentioned, each participant had to solve four different tasks during the debugging ses-
sions. The maximum time-frame for each session was 90 minutes, but the participants were
allowed to leave earlier if they finished the task. In the debugging tasks themselves we relied
on the Defects4J bug database (Just et al. 2014), but we used different bugs than in the previ-
ous stages of the experimentation in this paper. In particular, we prepared specific versions
of the commons-lang project by injecting the failing test cases and set everything up in the
Eclipse IDE before the experiments. Table 13 shows the bug identifiers used during various
phases.

We relied on our experiences to asses the difficulty of the bugs and select those which
could be solved in the specified time frame. The difficulty of the bugs was similar, except
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Fig. 7 Eclipse IDE equipped with additional tools

the first (introductory) task which was very simple (Lang-7b). Since all debugging sessions
took place in parallel in the first phase, we used the same bugs for each participant. However,
in the second and third phases, the participants were divided in two groups of three and
worked in two different parts of the day, but they worked isolated in separate rooms. So,
we used two sets of bugs in these two days to prevent that the participants discuss any yet
unsolved bugs.

7.2.4 Think-Aloud Sessions

We provided the participants with the basic information of the debugging task and asked
them to verbalize as much of their thoughts as possible in a continuous flow while solving
the problem. During the think-aloud sessions the developer was left alone in an empty room
and we checked them periodically (ca. in 10 minutes intervals) to ensure the constant flow of
verbalisation. The participants’ activities and their immediate surroundings were recorded
using screen capture software and a camera with microphone.

We used a two monitor setup (Fig. 8): one for the tasks and another for checking the
recoding. During the experiment we tried to minimize the interactions with the participants
and did not disturb them while solving their tasks. The only time when we interacted with

Table 13 Bugs Used during Debugging Sessions

Phase Task(s)

Routine Lang-7b (Task-A) and Lang-3b (Task-B)

Feature Lang-55b (Task-C) or Lang-61b (Task-D)

Use-case Lang-22b (Task-E) or Lang-50b (Task-F)
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Fig. 8 Dual monitor setup during the experiment

them was in the case of silent work in which case we briefly reminded them to continue
speaking.

All of the debugging sessions were preceded with a warm-up session whose goal was to
allow the participants to prepare their mindset for thinking aloud. In this step, the partici-
pants had to calculate a set of elementary expressions containing basic arithmetic operators
and whole numbers using pen and paper. The data collected during the warm-up sessions
was not evaluated anyhow.

At the beginning of each debugging session we gave printed handouts to the participants
which contained the following information:

– ID of the task (A, B, etc.)
– Failing test case(s)
– Short description (one sentence) of the failure
– Execution instruction about the test suite

Before warm-up and debugging session of the feature phase we provided further infor-
mation about the main features of the three IDE plug-ins, which were introduced during this
phase. The participants were asked to watch a 15 minutes long pre-recorded tutorial about
the three tools. In this video, we did not give any preferred or discouraged use-cases of the
tools, just a brief overview of their features. At the beginning of the debugging sessions in
the feature phase and use-case phase, the subjects got an additional printed handout that
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contained a one page brief summary about the features seen in the video as a reminder.
These handouts are available at the webpage of the research (iFL 2021)7.

We defined a task to be “successfully completed” when the developers found the cause
of the failing test cases and managed to fix them. In other words, the participants had to
use the Eclipse IDE to debug and fix the programs until all presented unit tests passed. We
did not allow them to change the tests, so all fixes had to be made in the system under
test. Windows 10 operating systems were used with unrestricted internet connection, but
we applied a single restriction that they were not supposed to search the exact bug in the
official issue or bug tracking database of the project (these are open source projects). Apart
from that any other information source was allowed to be used.

7.2.5 Retrospective sessions

With the two retrospective sessions our goal was to gradually “inject” additional information
about the iFL methodology and the implementation into the participants’ awareness. This
means that we did not want to explicitly train them with our views about the approach.
Instead, we tried to lead the developers to discover pieces of the approach by themselves.
During these sessions we presented various hypothetical cases to the participants and gave
them the opportunity to elaborate their thoughts and opinions about these. Six cases were
presented to each participant during each of the sessions.

The cases were selected from several predefined templates and then adapted based on the
previous responses of the participants. The templates included various references to code
elements with some relationships to other parts of the IDE and we also took into account
the actions made by the participants during preceding sessions. The researcher tried to be
as natural as possible during the dialogue, which meant in practice that we gave lexical
knowledge only if the participant explicitly asked for it. We always gave evasive answers to
questions about our sentiment or opinion. We also frequently used the interrogative mode
to avoid unwanted suggestions (“What do you think?”).

More information on retrospection can be found in Appendix A.

7.2.6 Data Preparation and Processing

We processed the collected data in three phases: anonymization, preprocess-
ing/categorization and summarization. The information we obtained was then used to
answer our Research Questions, which we present in the subsequent sections.

Anonymization From all sessions together, we obtained video material of total length of
33 hours and 57 minutes. Each video frame was composed of two parts: the participants
screen area and video footage (Fig. 9).

We created a transcription of each recorded video in form of subtitles (SRT format) with
additional information about gestures and other activities of the participants, such as relevant
changes of facial expression, gesticulation, and other environment factors (this is similar to
subtitles for the deaf and hard of hearing for movies). After this step, all the videos could
be edited to remove identifying information, that is video and voice of the participant, and
leave only the screen capture part with the transcript. This format allowed us also to gain

7The direct URL is the following: https://interactivefaultlocalization.github.io/pages/raw-data.html#
handouts
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Fig. 9 Sample screen capture during debugging session

access to the information in a searchable way for further evaluation. The transcript files are
available at the homepage of our think-aloud research project (iFL 2021).89

Preprocessing/Categorization Once the transcripts were available, we performed a pre-
processing step to obtain the relevant parts of the data for this research.10 The preprocessing
phase started with the manual inspection of the collected data: we watched the videos and
determined the aspects and categories based on the witnessed behavior. In the next step we
systematically watched all the recordings again, and assigned the appropriate categories to
each parts of the experiment. The aspects and categories will be described in the respective
sections below.

Summarization The categorization results were then summarized with a semi-automatic
Python script, which converted the data into easily manageable formats (CSV and
GRAPHML files) and to produce the diagrams and tables used in this paper. Both the script
and its intermediate results are available at the webpage of the research (iFL 2021)1112.

Finally, we combined the results of the previous preprocessing steps and our notes we
made while watching the videos to reach the findings and answers to our Reseach Questions.

7.3 DebuggingWorkflows and Problem-solving Strategies

In this section, we discuss our findings related to general debugging workflows we observed
with the participants (RQ3.1). We emphasize that, in this phase, we were not interested in
any particular usage of tools, just the generic debugging routines.

8The direct URL is the following: https://interactivefaultlocalization.github.io/pages/raw-data.html#
transcription-of-the-videos
9The reserchers’ and the participants’ mother tongue is Hungarian, so all the raw data is available in this
language, while some parts are translated to English.
10We plan to use this data in other research projects as well, and not all data are relevant for the present one.
11Categorization of the Behaviors: https://interactivefaultlocalization.github.io/pages/raw-data.html#
categorization-of-the-behaviors
12Graphs of Categorization: https://interactivefaultlocalization.github.io/pages/raw-data.html#
graphs-of-categorization
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7.3.1 Analysis Aspects

To be able to describe our findings uniformly, we used several different aspects with fixed
possible categories for each. We relied on some well-known debugging literature such as
the books (Zeller 2009) and (Spinellis 2016), as well as our own experience. Based on
the videos from the experiment, the authors discussed what behaviors were visible and
which categories these fell into and then made consensual community decisions about
categorization, thereby reducing potential subjectivity.

Debugging strategies This refers to the basic debugging strategies when trying to locate
the causes of a bug. We identified the following categories in this aspect:

– DRILLUP � Drill Up from the Problem to the Bug: investigating from the failing
assertion and roll up the action from there

– DRILLDN � Down from the Program’s Start to the Bug: investigating from the
beginning of the test case

– DIFFGOOD � Find the Difference between a Known Good System and a Failing One:
trying out the method under test with other known-to-be-good inputs

– ADDDBG � Add Debugging Functionality: diverging the data or control flow to force
the execution of a certain code chunk to check it

– ADDLOG � Add Logging Statements: temporarily modifying the code by writing out
important data

– MINDIFF � Minimize the Differences between a Working Example and the Failing
Code: finding the most similar pair of input or control flow, which pass and fail and
comparing them

– REFACT � Refactoring during debugging: actually, improving the code during the
debugging task

Debugging styles This aspect describes the basic approach of the developers to debugging,
whether they use only some manual techniques or if they rely on debugging tools and even
external help. The following are the main categories for Debugging styles:

– MANDEB �Manual Debugging: debugging without debugger, reading the code, using
println to retrieve information

– INTDEB � Interactive Debugging: debugging with debugger, using breakpoints and
traces

– TOOLDEB � Tool-Aided Debugging: using various tools, which are integrated into the
IDE to retrieve additional information

– SOCDEB � Socially-Aided Debugging: using web-searches and other external sources
of information during debugging

Diverging from routine During the course of the three phases of our think-aloud ses-
sions, the developers were gradually introduced to the possible usage of various debugging
tools, including iFL. With this aspect, we were interested to see how open the participants
are in trying out new methods and tools, and how much they rather stick to their routine
workflows. Thus, this aspect mostly relates to our research methodology rather than the
debugging workflow itself. We identified the following main categories:
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– READY � Ready to Assimilate New Tools and Information: eager to learn and experi-
ence new methods and technologies, read the handouts as soon as possible, critically
evaluate and integrate the new information into the problem-solving

– CONS � Conservative: general mistrust towards new information, read the handouts at
the beginning, but cannot (or will not) use the information

– CONF � Conformist: read the handout as soon as possible, try to follow the instruction
precisely using exactly the same steps as instructed

Fig. 10 Analysis of think-aloud sessions - Category manifestation
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Apart from Diverging from routine, there is another aspect which affected the think-aloud
methodology, Ease of verbalization, which refers to the way the participants were able to
express their thoughts during the experiment. This is important for interpreting the informa-
tion we extract from the think-aloud sessions, and because it may limit the successfulness
of this process, we list and detail this aspect as a possible threat to the validity in Section 9.

7.3.2 Analysis Results

We will use the diagram in Fig. 10 to give on overview of the analyis results of the session
recordings. It contains the information for all aspects and their categories, not only the ones
from this section, and the structure of the figure is the following. The y-axes represent vari-
ous aspects and their categories, delimited with a slash, e.g. By IDE / Cover. The x-axis lists
the participant IDs. Each cell represents the frequency of one of the possible categories of a
particular aspect of analysis for one of the participants. Note that a particular participant can
have more categories assigned from a given aspect if all of them are applicable. The gray-
scale level of a dot represents the relative frequency of a given category: black is the most
dominant, while light-gray is almost absent during the workflow of that particular partici-
pant. The numbers in the cells denote the same thing as the shades: 6 is the darkest, hence
most common, while 1 is the lightest, hence rarest. The diagram has three panels arranged
vertically, which correspond to the three phases of the experiment: routine workflow with
no tools demonstrated, second assignment after tools have been demonstrated, and the final
assignment after the use cases have been discussed.

We can observe that there is only a slight change in the overall categorization across the
three phases, which indicates that the participants typically did not change their debugging
habits throughout the experiment. Table 14 reflects this as well in which we can see the
counts of Diverging from routine aspect for each of the phases. Conservative is the most fre-
quent category, especially in the second and third phases, and only slight increase in Ready
to Assimilate New Tools and Information can be observed by the end of the experiments.

It is also visible that some of the debugging strategies and styles were very common
among the participants, such as Drill Up from the Problem to the Bug and Manual Debug-
ging. Table 14 presents these occurrences in detail. As expected, in the second and third
phases Tool-Aided Debugging cases increased notably, but at the same time Socially-Aided
Debugging was typical only in the first phase.

The most typical debugging strategies and styles applied by the participants are summa-
rized in the first and second columns of Table 15. The third column shows the categories
of Diverging from routine. We analyzed each participant’s responses in detail, and we were
able to form a rough image of each of them, which is summarized in Appendix B.
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7.4 Information Sources Utilized during Debugging

In this section, we investigate the information sources developers used during problem solv-
ing (RQ3.2). We emphasize that in this part we also noted the usage of iFL tools, but in this
section we do not present the related results. Rather, we will summarize iFL related aspects
in the next section.

7.4.1 Analysis Aspects

Similarly to the previous section, we identified several aspects with possible categories
for each. We composed these based on our previous experience and on the outcomes of
the debugging sessions as well as the categorization based on behaviors (experienced in
videos) similarly to the Section 7.3. We basically divide the information sources by the IDE
or external sources. If the developer successfully performed a task without any of these
categories we assume that this knowledge was a priori.

By IDE. This aspect covers basically all information that is accessible within the Eclipse
IDE including the built-in tools and our three additional tools:

– SRC � Static Source Code: everything that could be retrieved from the source code
editor parts without executing the code

– STRUC � Static Structure: structural data about the static source code such as package
and folder hierarchies, e.g., Eclipse’s project explorer and Atlas’s diagrams without
executing

– STD � stdout, stderr and Log Files: data which is sent to the standard output or error
(e.g., println) or any log files

– TRC � Stack Traces: sequences of methods or classes, which were executed one after
another, and stack trace during debugging

– COVER � Code Coverage: source code parts that are covered by executing test cases
– TEST � Test Results: information from executing test cases, such as assertions exe-

cuted, messages and types of exceptions (except trace related information which is
covered by previous categories)

– ORDER � Ordered Lists: any ordering over the code elements, e.g., alphabetical list of
methods, list of classes by LOC or any other metrics except iFL score

– IFL � iFL Rank Order: ordering (rank list) according to iFL score
– CONF � Settings and Configuration of the IDE or Tools: for example, classpath, version

of the JVM

External sources. Information the developers gathered from external sources:

– PERS � Personal Connection: colleague, friend, etc.
– COMM � Community: forums, chats, articles, etc.
– OFFIC � Official Sources: official project web-pages, dedicated user guides, etc.
– EXP � This Experiment: information that the participant obtained during the scope of

the experiment and this was explicitly referenced, e.g., developer referring to the video
demo or hypothetical cases, reading the handout or the instructions

Information topic. Apart from the sources, sometimes it was useful to know the topic itself
of the information, which was categorized according to the following:
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– COMMKNOW � Common Knowledge about Software Engineering: for example, what
is code coverage, how much bits does an integer holds, etc.

– UG � User’s Guide: usage details about tools or the IDE
– SPECKNOW � Special Knowledge Required for the Task: this relates to the specific

domain of the debugging task, e.g. how regex works or what does “E” means in
scientific notation, etc.

– RELCODE � Information about Related Source Code: this category refers to the case
when the developer investigated an information that was closely related to the code item
in question such as its class, call information, control flow, etc.

An important aspect we observed was that the developers not always utilized the infor-
mation retrieved despite it could have been useful. This might be related to insufficient
knowledge or uncertainty, and could affect the validity of the results. This aspect, called
Utilization, is discussed in more detail in Section 9.

7.4.2 Analysis Results

The results of this analysis can be observed in Fig. 10. The first thing to notice is that there
were many occurrences of Static Source Code and Community. Regarding the information
topic, Information about Related Source Code was frequent. The said categories did not
notably change over the three phases, but an interesting observation is that Special Knowl-
edge Required for the Task was present in the first phase, and then the developers did not
use this information. Table 16 provides more details about the actual number of occurrences
of By IDE, External sources and the counts of categories under Information topic aspects,
respectively.

The last three columns of Table 15 offer the most important categories of information
usage for these developers. The findings for the individual participants are summarized in
Appendix B.

7.5 Detected Changes of Routine DebuggingWorkflow due to iFL

In this section, we discuss our findings related to how the introduction of iFL influenced
the debugging routines of the participants. In other words, how much did they manage to
use the tool and in which way. This information will help us design further enhancements
to the approach and to the tool. As introduced earlier, we added two additional tools to
the Eclipse IDE, and we did not tell the participants the purpose of the experiments, which
helped reduce the bias of influenced tool usage. As the purpose of this experiment was not
to investigate the other two tools, in this section we will concentrate only on iFL.
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Table 17 Think-aloud sessions’ task successfulness and completion time in minutes (– denotes that the bug
was not found)

P1 P2 P3 P4 P5 P6

1st task A A A A A A

time (min) 70 18 34 46 13 21

2nd task B B B B B B

time (min) 81 – 38 84 66 80

3rd task D D C D C C

time (min) – – 18 – 27 17

4th task E F F F E E

time (min) 86 41 37 59 24 24

Changes in the workflow First, we investigate how much the debugging workflow of par-
ticipants changed in general. Figure 10 shows this information in the form of changes
between the different phases of the experiments. Here, we can examine the transition from
one category to the other (or the change of frequency) by comparing the columns related
to the same participant in each of the panels. We can observe that in most of the cases, the
aspect categories did not change notably (as we mentioned for RQ3.1 above related to the
anchoring cognitive bias). In Appendix B, we list the notable transitions observed with the
participants.

Usage of iFL About the participants’ usage of iFL, we can say that three out of the six
participants used it successfully in various phases (P1, P3 and P6), two tried it but did not
rely on its outputs (P2, P4), and one participant did not use it at all (P5). Only one participant
used the interactive features of the tool. However, we do not see this as a very strong critique
for the approach given that SBFL in general and the current tool support are mostly unkown
to the general public. Column four of Table 15 shows this information (marginal usage is
indicated by parentheses). Details for each participant are listed in Appendix B.

Task solving successfulness In Section 7.2, we explained that the participants had to solve
four debugging tasks, two in the first phase and one in the second and third phases each.
Below is a summary of the successfulness of the actual fault finding process of each partici-
pant and task. Note that this information is not strictly part of the related Research Question,
but might be interesting when comparing the qualitative analysis of the iFL method usage.

Table 17 shows the overview of task successfulness for each of the four assignments and
each participant. If the task has not been completed, we marked this case with a dash (–),
otherwise the completion time is provided in minutes. Unfortunately, task D turned out to be
more difficult than anticipated because none of the participants managed to find the bug in
time. Apart from this, there was only one case when a developer did not complete the task.

We are aware that this is too few data to generalize, but we can observe a promising trend
that the participants who used iFL managed to solve the tasks more quickly compared to
their colleagues who did not use it. Compare, for example, for the 4th task Participant 3 to
Participants 2 and 4 who all had been assigned bug F.

Summary of findings related to iFL. Based on the above information and on additional
discussions with the experiment participants, we can summarize the findings related to iFL
in the think-aloud sessions as follows.
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1. The concept of iFL could easily be learned, but in order to be productively used, addi-
tional education is required with concrete use cases and explanation of the FL ranking,
scores and the interactive features. The experiment participants often expressed verbally
that the tool would be useful and they understand it, yet they did not use it properly.
Currently, we do not fully understand the reasons for this.

2. iFL is most often useful as a “preliminary study” to pre-filter the relevant code parts for
investigation.

3. A consequence of the previous point is that since the tool does not integrate very deeply
into the usual workflow where the source code editor is the center, often it will be later
on neglected by the developer. A possible solution would be to mark the tool outputs
directly within the source code.

4. Without proper understanding of the underlying mechanisms (such as the score
calculation) the developers will not trust the results of the tool.

5. The developers are reluctant to exclude code parts in the interactive part of iFL, even
more bigger context parts, if they do not fully understand and believe in the underlying
mechanisms of the iFL process. For example, it was not clear why would changing the
order help in finding the bug more quickly (this could be mitigated using more and
better use cases).

6. Often a quite large context could be excluded with iFL (not just a class but a com-
plete package), however these kinds of feedbacks require extensive knowledge about
the system. This kind of wider knowledge is typically available to system architects
and programmers who have a greater overview of the system (which was typical of
Participant 6 in our experiment).

7. We learned in all phases of the experiment (even when iFL was not available) that the
developers excluded some methods during debugging but these were smaller ones, and
for bigger ones they looked at them in multiple turns before excluding them.

8. We observed multiple times that the rank order in iFL was not really important among
the first 3-5 methods. The developers made no distinction between these, and it was
only important that they belong to this range. Perhaps another way of presenting the
results and not strictly using the order would be more beneficial (while concentrating
only on one element at a time).

Overall, the basic concept of iFL seems to be acceptable by the developers. But, due
to the fact that automated fault localization in general is not known and accepted in an
everyday programmer’s work, it requires much more education and training based on real
use cases and easily usable tools. This can be contrasted to using a tool like code coverage
measurement during debugging, which is much more known to an average programmer, as
we learned from this experiment. Note, that this is not a particular problem of iFL but of
automated fault localization in general. In a similar context, for algorithmic debugging, the
authors of the survey (Caballero et al. 2017) say: “Moreover, they are often offered as a
separate tool, and the user must switch from their traditional debugger to start algorithmic
debuggers. We think that, on the contrary, algorithmic debuggers should aim to integrate
with existing debuggers, for instance, allowing the user to switch from a trace debugger to
the algorithmic debugger easily, while maintaining the same environment and appearance.”
We believe that more research is required about how to facilitate a more open reception of
these tools by practitioners, which much better integrate into their usual workflow.
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8 Discussion

This section contains our general views on the interpretation of the empirical data from
previous sections.

8.1 Conceptual Evaluation Based on Simulations

As discussed, iFL achieved notable improvements on both benchmarks; Table 18 summa-
rizes the most important results. For reference, the TALK algorithm proposed by (Gong et al.
2012) achieves about 10-16% improvement at best on some projects from Defects4J, and it
produces 20-21 enabling improvements. DStar and Ochiai behaves very similarly and they
produce slightly different results compared to Tarantula. However, DStar is very sensitive to
user imperfections. Results are comparable for the two benchmarks, despite significant dif-
ferences in their properties including size and the number of tests compared to the number
of program elements.

We confirmed the effectiveness of iFL with paired t-test and signed Wilcoxon test
to check if the differences in the Expense measures between iFL and the basic SBFL
over the entire dataset are statistically significant. These tests showed that iFL results
are significantly better than SBFL at 99% confidence level for each SBFL technique and
benchmark.

8.2 Possible Improvement Based on Experiments with Real Users

The previously mentioned results concerned the validity and usefulness of the iFL method-
ology from a conceptual point of view. However, there are at least two main practical issues
which could hinder its application in real life situations. Namely, do developers have enough
information about the context (i. e. the surrounding code base) to be able to give adequate
feedback for the iFL algorithm? Furthermore, developers have to integrate the proposed
methodology and its implementation into their daily workflows. The latter could affect
several other factors, not only the raw efficiency as we used during the simulation.

Based on the findings in Sections 6 and 7, we were able to articulate several con-
crete improvements to the iFL methodology and current implementation in the Eclipse

Table 18 Main results of the iFL algorithm

Study Best FL Fault All Improve- Enabling

method type faults ment improvement

SIR Ochiai seeded 85 71% 47 (55%)

Defects4J Ochiai real 801 79% 255 (32%)
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IDE to address the above issues. We categorize these into three groups: improvements to
the methodology, functional enhancements to the implementation and design and other
technical improvements to the tool.

In addition to these issues, several participants explicitly expressed their opinion that
without accurate background knowledge of the underlying method (such as score calcula-
tion) they would be less trustful in the outcomes of the tool. These kinds of issues are related
to multiple aspects of the iFL methodology and its implementation. Technical details should
be explained in the documentation and calculation details need to be accessible from the
tool on demand. We could solve these issues in several different ways. For example, we
could use various Help features in the IDE, or clarify the concept and principle of score
calculation in a detailed training session.

8.2.1 Methodology

The main improvements regarding the iFL methodology include lowering the granularity
level and experimenting with different kinds of contextual data. Currently, in the case of
large programs the iFL engine works on method level. However, we have seen that users
often demand more detailed information during debugging. Since iFL is designed to cope
with different granularity levels, changing the granularity to line/statement level is fairly
straightforward after we eliminate the technical limitations implied by the current coverage
measurement approach. As our experiments have shown, users usually incorporate multi-
ple information sources into their debugging process. Along this idea iFL itself could be
extended to utilize additional data, e. g., function call contexts, as contextual information to
improve the effectiveness.

8.2.2 Functional enhancements

We could aid the integration of iFL into the developers’ workflow by implementing features
which enhance the user experience of the methodology. For example, a possible improve-
ment is automatic score calculation after test execution. So, by running the tests during or
after the (bug)repair, we can modify (upgrade) the score values and get a real-time picture
of the change in suspiciosness values. These changes can provide useful information for
locating the bug or identifying other faulty (i.e., not yet inspected and corrected) methods.

The degree of trust in the tools or the users’ own decisions could impact the willingness
of the tools’ usage. There may be cases when users approve an interaction and then they
regret it afterwards. This could be due to, for example, a “false-click” or because the users
have changed their previous judgment or opinion and therefore they want to revoke it. This
would be supported by the Undo and Redo functions, which allow the developers to rollback
any iFL score changes.

Currently, we do not support other IDEs besides Eclipse, so another important goal is to
create a plugin for other environments such as IntelliJ.

8.2.3 Tool design and technicalities

Experience has shown that the participants’ main source of information is the code itself;
hence it would be more useful to “bring the information closer” to the source code. One
possible way to do this is to visualize it in the code-editor window, for example by code
highlight (cf. code coverage). This would greatly help in understanding the iFL’s results and
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increase usability. This feature may also help us to reduce the overcrowding of method rank
lists and the information in them.

9 Threats to Validity

9.1 Simulation

The main threat to the validity of the results related to RQ1 is the set of projects and
bugs that we used during our experiments. We selected the SIR and Defects4J benchmarks
because they are popular in the scene of fault localization research, hence we maximize the
comparability of our results to the related works. However, some researchers argue that the
projects and bugs in these benchmarks are not representative of real life projects and bugs.
We restricted the experiments in this paper to single-fault cases, however this is a current
technical restriction, the proposed method itself is not limited in this regard. In addition,
multi-fault cases would not have an effect on the results considering the Expense metrics,
since (as usual in these experiments) only the faulty code element with the highest rank is
considered during the calculation of the evaluation metrics. Considering the experiments
related to user imperfections, multi-fault cases may yield different results, because the algo-
rithm may have more ways to modify the scores of faulty and non-faulty code elements as
well.

The next threat is that the feedback model of our method is relatively simple, which
might not be suitable in a real life scenario. For example, the user might give some more
complex feedback, like combining code elements from other contexts or pointing to code
elements not suggested in the rank list. Also, as new knowledge is obtained, changes to
earlier decisions could be possible. We plan to address this topic in future work.

9.2 Quantitative User Study

The first threat that we identified which could impact the validity of the results of our user
studies in RQ2 is the time to perform the tasks. We set the time limit to 25 minutes for each
task, which may have an effect on the participants’ performance, especially if they have
less experience. Also, a longer period of time would have affected the performance as well,
since the developers could loose concentration as they get tired.

It is also a possibility that the rank of the faulty code element may have influenced
our results. Although, differently ranked faults may yield different results, investigating
the correlation between the position of faulty code elements and the success rate or time
needed to fix the bugs was not an explicit goal of our experiments. In addition, we tried to
select bugs with as different ranks as possible while keeping in mind the distribution of the
complexity of the tasks. Also, during the design of the tasks we investigated various projects
and we selected bugs for which the developers do not need specific domain knowledge. In
other words, we simulated the scenario in which the developer has to debug an unknown
program. However, some of the participants may had knowledge about the projects or bugs,
which could have influenced their performance.

An other threat is the so called Hawthorne effect (Franke and Kaul 1978), i. e., the par-
ticipants might have changed their behavior in response to the awareness of being observed.
They may try to figure out the goals of the experiment in which they participate. To mitigate
this threat we minimized the amount of information that might have helped the participants
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determine the goal of the experiment. However, there is still a chance that they were able to
deduce the purpose of the experiment.

A further threat is related to the participants of the studies. They were undergraduate and
graduate students, and professional developers. We tried to diversify the list of participants
by inviting people with different levels of experience, yet they may not be a representative
sample of the population of developers. In addition, we tried to design the experimental
groups and assign the tasks to them in such a way that the distribution of participants through
the groups is balanced.

9.3 Think-Aloud Sessions

We identified several threats which could impact the validity of the think-aloud sessions
(RQ3). It is a well known fact that any experimental scenario could have an impact on the
behavior of the participants. In our case this means that the unfamiliar working environ-
ment and the mandatory development environment could change the preferred actions of
the developers during the debugging sessions. We tried to minimize the number of interrup-
tions while the participants were solving their tasks, but they might have noticed that we
occasionally checked their verbalization. Many people feel awkward or tense while they are
being recorded. We did not find any documented cases when these interruptions occurred,
but they still could have affected the participants and our conclusions about their workflows,
especially during the routine phase.

There are two kinds of biases which we cannot eliminate. The participants may dis-
cussed their experiences while they were not inspected. One of the participants showed
signs of pressure to perform, even though we explicitly stated that we will not evaluate their
performance.

Psychologists have shown that retrospections are not very reliable (van Someren et al.
1994). For this reason, we only used retrospection to inject further information into the
subjects’ workflow. The main source of information during the evaluation was the recorded
think-aloud debugging sessions. Our goal was to use only those types of verbal reports that
required the least amount of mental effort from the participants, but also allowed to access
their development workflows. These were described as Level 2 verbalization by (Ericsson
and Simon 1980), or Intermediate recording into verbal code. This occurs when the internal
representation in which the information is originally encoded is not in verbal code, so it
has to be translated into that form. The most prominent effect of this kind of verbalization
is the slowing down of the task execution. Hence, this could affect the validity of the data
presented in Table 17.

Ease of verbalization There were a small number of cases when the participants failed to
use the required type of verbalization. They either generalized (which could be as much
unreliable as retrospections) or they were not able to verbalize certain thoughts. We used
the following categories to assess this aspect.

– BRAINDUMP � Unprompted “Braindump”: braindump without instructing to do so,
no summation/aggregation/abstraction, continuous flow of information

– INACPROC � Inaccessible Processes: developer speaks continuously but concentrates
precisely on the currently available information (reading the code, UI items, etc.) and
routine tasks are difficult to verbalize; if the participant stops to think about something,
the verbalization is suspended
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– GENERAL �Generalization and Second-Hand Information: participant provides larger
chunks of information but this is not continuous and not precise; the information pro-
vided is often that what is generally expected with little to no concrete data, and a higher
level of generalization is typical

As seen in Fig. 10, the amount of Generalization and Second-Hand Information is negli-
gible, but almost all participants had some issues with Inaccessible Processes. These cases
occurred when the tasks reached a certain level of complexity, which vary from participant
to participant. We managed to clarify these cases using the screen captures, but it is possible
that we misinterpreted their actions.

Utilization We classified the availability and the quality of collected data from a differ-
ent aspect too. This aspect represents how well the participants are able to utilize the
information provided by various sources, such as iFL. We defined the following categories.

– IGN � Ignoring: the developer ignored the information, e. g., the list of suspicious code
elements provided by iFL

– USELS � Consider Useless: the developer checked the new information, but did not
use it based on his own decision, e. g., because did not trust the score value, or all
recommended methods seemed equally suspicious

– FURTH � Need Further Information or Feature: the developer checked the new infor-
mation, but did not use it, developers acknowledge the usefulness, but miss some key
features or information to utilize

– INTEG � Integrated Usage: the developer used the new information during the
debugging and changed his routine workflow to accommodate the new possibilities

– APRIO � A Priori Usage: the developer has previous experience with the information
or tool

Figure 10 shows that most of the participants act according to the category of A Priori
Usage, even in the feature phase and use-case phase after they already had access to the new
tools. This means that they rarely integrated new information into their routine workflow. It
is beyond doubt, that the integrated usage of iFL, was far from dominant, but we could still
identify several relevant cases. Almost all of the participants understood the basic concepts
of iFL, and some of them were able to partially integrate it into their workflow. We cannot
asses the distribution of these cases in general from the collected data, but our data clearly
shows that there are developers who are able and willing to utilize the iFL approach.

Finally, a threat to the generalization of our findings is that, due the low number of par-
ticipants in the think-aloud experiment we cannot support our findings with appropriate
statistical data. However, we aimed at better understanding the developers’ thought pro-
cesses and this experiment also helped us identifying the weaknesses of the approach, and
gave us possible directions for future enhancements.

10 RelatedWork

SBFL methods are still finding their way to be employed in practice (Le et al. 2013;
Steimann et al. 2013; Kochhar et al. 2016; Abreu et al. 2009). For instance, most studies are
carried on using artificial faults (Pearson et al. 2017), and still the faulty element is usually
placed far from the top of the rankings (Xia et al. 2016; Parnin and Orso 2011). (Le et al.
2013) showed in their study that there is a gap between theoretical and practical results.
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Since SBFL heavily relies on the coverage and the pass/fail information, test suite proper-
ties directly affect fault localization (Baudry et al. 2006; Yu et al. 2008). The Zoltar (Janssen
et al. 2009) and GZoltar (Riboira and Abreu 2010; Campos et al. 2012) tools provide
the ranked list of diagnosis candidates to help the user in practice. The FLINT method
by (Yoo et al. 2013) improves the effectiveness of fault localization using an entropy-based
approach. This approach resembles our idea of trying to involve the “statistical dispersal” of
the test cases in terms of code coverage to find the most appropriate tests. Both approaches
improve the fault localization process by carefully selecting the next test cases to execute
after each step.

We concentrated on statistical analysis of dynamic test case executions, but there have
been other approaches proposed for fault localization as well. For details and comparison
of these approaches we refer to the surveys of (Wong et al. 2016; Wong and Debroy 2009)
and (Parmar and Patel 2016).

Some debugging approaches are loosely related to the topic of this article, where user
feedback may be incorporated, for example the works of (Zeller 2009) and (Kiss et al. 2017)
on Delta Debugging, as well as algorithmic debugging and testing (Silva 2011).

The closest related works from the other Interactive Fault Localization methods (Gong
et al. 2012; Hao et al. 2009; Bandyopadhyay and Ghosh 2012; Lei et al. 2012; Li et al. 2016;
Li et al. 2018) to our approach are the ones that change the ranking of program elements
based on the user feedback iteratively (Gong et al. 2012; Hao et al. 2009; Lei et al. 2012).
Other than utilizing user feedback, these papers also incorporate the Siemens suite from
SIR into their set of subject programs. However, the setup of experiments and metrics used
for the evaluation are different in every case. Differences include the set of defects, the total
number of code elements, different interpretation of the localization effectiveness metrics,
etc. This makes it difficult to compare our results directly to the reported ones in these
works, however, we managed to re-implement the work of (Gong et al. 2012).

For reference, (Lei et al. 2012) utilize test data generation techniques to automatically
produce feedback for interacting with fault localization techniques. They used a very similar
metric to ours (E′) to measure the relative effectiveness improvement and concluded that
the improvement is around 21% on average compared to the 71-72% range achieved by
iFL. (Hao et al. 2009) propose a trace-based method which is reported to achieve about 8%
in a similar measure; they also showed that about 90% accuracy from the user is needed to
improve the base SBFL algorithm.

In the work of (Gong et al. 2012), the user simply decides whether the statements are
faulty or not. Ranking is updated to find the root cause of the fault using the program spectra.
Their approach yields about 12-13% absolute improvement in Expense on average over
Tarantula and Ochiai on small programs from the SIR repository (Abreu et al. 2009). For a
more precise comparison which includes real bugs, we reimplemented the TALK algorithm
proposed by Gong et al. in our simulation framework and re-executed our experiments. We
found that TALK improves the rank of the faulty elements by 1-3 positions which translates
to 2-6% improvement on Defects4J.

(Li et al. 2016; Li et al. 2018) uses a concept of contextual knowledge that is similar to
ours. They build on the assumption that the semantics of a method wrt. inputs and output is
well known by developers. They generate queries and use the feedback to guide the SBFL
based recommendation process in a debugging scenario. Also, they considered the correla-
tion between the success rate of their approach and the percentage of erroneous answers to
these queries. (Bandyopadhyay and Ghosh 2012) proposed a method to iteratively predict
and remove coincidentally correct test cases based on user feedback .
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(Fry and Weimer 2010) used software- and defect-related features to study human accu-
racy at locating faults. They found that certain types of bugs are much harder for humans
to locate accurately. Also, they identified source code features that can foretell human FL
accuracy and proposed formal models of debugging accuracy based on these features.

In the last phase of our experimentation, we used think-aloud protocols. These tech-
niques have a notable background in psychology and other areas. (Ericsson and Simon
1980) showed that verbalizing information is shown to affect cognitive processes only if the
instructions require verbalization of information that would not otherwise be attended to.
The inaccurate reports found by other research are shown to result from requesting infor-
mation that was never directly heeded, thus forcing the participants to infer rather than
remember their mental processes. In our case this means that we can safely rely on the data
collected during the previously described think-aloud protocols. (van Someren et al. 1994)
gives a detailed description about these processes and also a guide for practical implemen-
tation for social scientists who want to use the think aloud method for research on cognitive
processes and knowledge engineers who want to use the method for knowledge acquisition.
Our research can be viewed as a specialized case for the latter: we wish to capture various
details about the developers’ workflow to partially integrate their expert knowledge into our
iFL methodology.

Think-aloud techniques are often used to study other mental processes. For example,
learning processes in the context of problem-solving are studied by (Anzai and Simon
1979). In this study the think aloud method is used to identify changes in the knowledge
during repeated problem-solving on a single task. Since debugging involve new knowledge
acquisition during frequently occurring tasks, this work is a good example, which supports
the usage of think-aloud protocols in these areas.

Nonetheless, in software engineering, think-aloud sessions are comparably rarely used.
The most important field where this approach is successfully applied is user interface design
and usability testing (Lewis 1982; Fan et al. 2020; Nørgaard and Hornbaek 2006; McDonald
et al. 2012; Olmsted-Hawala et al. 2010). For debugging, practitioners have developed the
so-called “rubber duck debugging” techniques that can ease the verbalization of the debug-
ging process, which can result in hitting upon the solution in the process of explaining the
problem (rubberduck 2021). Examples where think-aloud sessions in empirical software
engineering research have been used include program comprehension (Gopstein et al. 2020;
Yamashita et al. 2018), and test generation (Rojas et al. 2015).

The most related approaches to our think-aloud method we found are (Prabhakararao
et al. 2003; Wallace et al. 2002), but this relates to a different domain and fault localiza-
tion methods. Understanding debugging processes is usually achieved by monitoring IDE
usage (Shynkarenko and Zhevaho 2020; Yamashita et al. 2018; Schröer and Koschke 2021).
For understanding the mental processes during debugging and specifically fault localization
with think-aloud sessions, we think that our approach is the first.

11 Conclusions

In this work, we presented iFL – a new form of an Interactive Fault Localization approach.
This approach extends traditional Spectrum-Based Fault Localization by providing the abil-
ity for the developer to interact with the fault localization algorithm. Interaction means
giving feedback on the elements of the prioritized list, based on which the suspiciousness
scores are adjusted. We exploit the knowledge of the user about the next item in the ranked
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list (e. g., a statement or a function) and its context (the containing function or class), with
which larger amounts of code elements can be repositioned in their suspiciousness.

With the three-staged approach to empirical evaluation of the proposed approach, we
tried to investigate the potential in the iFL techniques from many different angles, but this
might still not represent real life scenarios fully. However, in all three stages we obtained
promising results. Results with simulated users showed quite big improvements with respect
to non-interactive SBFL even in the case when the users exhibit low levels of reliability. In
addition to non-interactive approaches, iFL also outperformed TALK, a closely related inter-
active FL algorithm by a huge margin. Although iFL does not seem to help in localizing
more bugs when it comes to real users, the fault localization times were reduced signifi-
cantly (except for the very simple cases), and subjective feedback was also mostly positive
about our experimental implementation. Finally, in our think-aloud sessions we found that
experienced developers understood the benefits of the approach and some of them were
able to successfully integrate the approach into their workflows. However, further research
is required to find out how the methodology involving the interactivity should be made
more intuitive, and the supporting tools more directly related to the source code, the center-
piece of the developer’s attention during debugging. This would enable better acceptance
by practitioners without extensive training and explanation through use cases.

The interested reader can find more information about the data and software used in this
paper on GitHub (iFL4Eclipse 2021; iFL 2021) and in the following archives: (Horváth
et al. ; 2020b).

Appendix : A Details about Retrospective Sessions

Psychology has shown that the data obtained by retrospection is not always valid. People
may not report thoughts that they have clearly had before and they will also report false
memories: thoughts that they cannot have had at the time (van Someren et al. 1994). For
this reason we only used retrospection to inject further information into the participant’s
workflow. The main source of information during the evaluation was the recorded think-
aloud debugging sessions.

A.1 Discussion of iFL Methodology Related Hypothetical Cases

During the retrospection of the feature phase we presented various general and software
engineering related hypothetical cases. On average, the participants had 10 minutes to reflect
on each of these. The cases were composed along the following informal properties.

Assumable sentiment about the changed situation

– Positive
– Natural
– Negative

Assumable usefulness for debugging

– Harmful
– Irrelevant
– Helpful
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The cases were assigned randomly to each participant but the algorithm we used tried to
cover as much of the above properties as possible.

The goal of this session, hence the main focus of these cases, was to inject information
about the methodology of the iFL without revealing any details about its implementa-
tions. Consider, for example, this case (translated version): “Let us suppose that before
debugging on Monday (incorrect parsing of double from string), you heard that the Num-
berUtils.createNumber() method was written by a junior college, who has very little
experience.”. This is very similar to the situation when the iFL algorithm suggests (with a
high score) that the inspected method is suspicious.

A.2 Discussion of Use-case Related Hypothetical Cases

During the second retrospection (in the use-case phase) we presented six hypothetical use-
cases about the plug-ins. Note that at this point the participants already had some knowledge
of the features of these tools, but they did not got any information about the recommended
or discouraged usage of them.

Similarly to the previous hypothetical cases in the feature phase, we could categorize the
use-cases according the following properties.

Assumable sentiment about the changed situation

– Positive
– Natural
– Negative

Related tool

– ECL Emma
– Atlas
– iFL

Similarly to the above, the cases were assigned randomly to each participant but the
algorithm we used tried to cover as much of the above properties as possible.

We wanted to avoid that the participants just automatically recite the use-cases we
present. To achieve this we refrained of declaring any use-cases as good or bad, and the
participants did not have to choose either. In practice, this means that most of the use-cases
were open-ended. For example, “Let us suppose that the methods were sorted according to
their scores in descending order. You found the NumberUtils.createNumber methods at the
first place. After inspecting it, it seems to be correct but you are not sure about this decision.
So you decrease its score by 66% but later you discover it to be the faulty method.” As this
example illustrates, our goal was to “force” the participants to think about the possible use-
cases, which could have helped them to integrate the new information into their workflow,
without explicitly telling them our versions.

Appendix : B Participant Details in Think-Aloud Sessions

In this section, we provide the analysis of participant responses according to the criteria set
in the corresponding parts in Section 7. In addition, to make it easier to relate our findings
to the workflows exhibited by the participants, we assigned short but descriptive names to
workflows we observed. With these names our goal was not to try to generalize debugging
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styles, but we merely wanted to summarize the connection between our findings and actions
of the participants. This will help us explain the usage of iFL given the observed workflows.

Participant 1

Debugging Workflows and Problem-solving Strategies This participant mostly per-
formed manual debugging with some internet search and very light tool usage. His favorite
strategy was Down from the Program’s Start to the Bug. The developer is mostly conser-
vative and believes that debugging functionalities offered by the IDE and additional tools
provide little additional benefits over a println-based approach. The participant tried to use
the tools only when no other ideas worked.

Information Sources Utilized during Debugging This developer investigated the source
code a lot, and took usage of code coverage information frequently as well. As an external
information, he used programmers’ forums a couple of times. The topic was mostly about
the related code.

Changes in the workflow Regarding debugging styles, this participant soon started using
Tool-Aided Debugging, however did not rely on the tools much. In terms of information
sources, he started using iFL Rank Order in the second phase, and moved from stdout,
stderr and Log Files to Static Structure and from Information about Related Source Code to
Special Knowledge Required for the Task.

Usage of iFL This participant already tried to use iFL in the second phase, but at first he
did not find it useful compared to his own intuition. In the third phase, the first step of the
debugging process was to look at the results iFL provided (but without the interactivity).
In essence, this developer uses iFL as a pre-selection before investigating the methods in
more detail. He expressed his excitement when a new candidate method appeared on the
iFL list, which was not known to him. In another case, he used the tool as a confirmation of
a method, which he found suspicious intuitively.

Summary of Workflows We named this workflow the “un-industrialized comfort zone”,
which is shared with Participant 4. These developers used a debugging technique heavily
based on static and manual code analysis. These represent the most challenging scenarios
for the iFL tool and methodology, and we assume that for these participants this would
be the same for any new tools or information sources. The fact that Participant 4 used the
iFL tool only marginally supports this assumption. Any new tools would need to have very
well pronounced advantages in order for these developers to abandon their well established
practices.

Participant 2

Debugging Workflows and Problem-solving Strategies The participant started with
mostly manual approach (using println, commenting code, etc.), but quickly switched to
using the IDE-provided interactive debugging aids and the tools provided in the experiment.
Debugging strategy was mosly Drill Up from the Problem to the Bug. He was eager to use
the tools provided but always fell back to the manual approach.
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Information Sources Utilized during Debugging Most of the information this developer
gained was from the source code and the related JavaDoc documentation. Apart from this,
he used a little internet search as well. The topics of information were code call information
and coverage.

Changes in the workflow This participant used various debugging styles in the first two
phases but mostly Socially-Aided Debugging, from which he gradually changed to Tool-
Aided Debugging. The developer started using iFL Rank Order in the third phase.

Usage of iFL This developer tried to use iFL right at the beginning of the session but failed
at first because he could not interpret the error message he received (the project was not
selected before applying the tool). He tried to make use of the rank list but did not try
the interactive features. Overall, the tool did not help him, and he expressed his distrust
towards the whole approach because he did not understand how the scores and the ranks are
calculated.

Summary of Workflows Most of the actions of this participant could be interpreted as
a consequence of using “dynamic analyses”, like interactive debugging, breakpoints and
watch-windows. These tools usually involve the integrated usage of several tools (including
default ones in the IDE). We anticipate that the presence of these tools could be one of the
reasons that this participant was more ready to use a complex methodology and tool like
iFL (regardless of the successfulness).

Participant 3

Debugging Workflows and Problem-solving Strategies This developer applied various
debugging styles, but he used mostly interactive approach with some internet search and
other manual techniques, with Drill Up from the Problem to the Bug style. In terms of
diverging from routine, he was mostly conformist but was open to try new tools, especially
iFL.

Information Sources Utilized during Debugging This participant heavily relied on the
source code and information from the test runs (assertions and traces). He also used
the experiment handouts in much detail. This developer investigated an extensive context
related to the code element, and tried to understand it.

Changes in the workflow The programmer gradually changed his debugging style from
Manual Debugging to Interactive Debugging then to Tool-Aided Debugging. His Diverging
from routine gradually changed from Conservative to Conformist and from Conformist to
Ready to Assimilate New Tools and Information, but he also showed signs of the first two
categories in the later phases as well. This participant started using iFL Rank Order already
in the second phase and continued it in the third one as well. The usage of iFL was very
pronounced as well.

Usage of iFL This participant managed to make use of iFL to a large extent. The workflow
he applied was exactly the intended one: he looked at the methods in the ranking order one
by one and investigated those methods in this order. Alas, the interactive features did not
help this developer. Also, the usage of some features was not clear for him such as the way
of reordering the elements.
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Summary of Workflows During the course of solving the tasks, this developer made slight
turns to use of various tools and new information sources, but he almost always returned to
the static inspection of the source code. We named this behavior the “explorations around
the source code”. During these turns the developer briefly looked at tools like the interac-
tive debugger and visualizations, but these did not play a major role in his workflow. Our
expectation (supported by actual usage) is that the integration of the iFL approach could be
aided by placing well selected features either close to “home” (source code) or along the
main workflow paths (e. g. automatically start the iFL inspection after test executions).

Participant 4

DebuggingWorkflows and Problem-solving Strategies This participant also used a com-
bination of manual and interactive debugging with Drill Up from the Problem to the Bug
style. He tried to use all the tools provided, even searched for some additional information
on the internet, but did not rely on the results provided.

Information Sources Utilized during Debugging This developer tried to use the outputs
provided by the tools but then did not use them. However, the use of community information
and internet searches was very frequent with this participant.

Changes in the workflow This participant changed his Debugging styles from Socially-
Aided Debugging to Tool-Aided Debugging. In terms of information sources, he changed
from Stack Traces to Code Coverage and from Code Coverage to Ordered Lists in the third
phase. The developer tried to use iFL Rank Order in the second phase, which was a bit more
enhanced in the third one.

Usage of iFL This participant looked at iFL and spent some time on the ranking list but did
not use it effectively (nor the interactive features). However, this was true for all of the three
additional tools in Eclipse. It seemed that he investigated the tools only from curiosity and
did not bother to change his usual workflow.

Summary of Workflows This workflow is shared with Participant 1, “un-industrialized
comfort zone”, whose description can be found there.

Participant 5

Debugging Workflows and Problem-solving Strategies The participant mostly relied on
manual techniques (commenting out code, manual results calculation) with some internet
search and very light tool usage. This developer was very conservative, and mostly relied
on the same approach over all three phases.

Information Sources Utilized during Debugging This participant relied on the source
code and information from the test runs (assertions and traces), but also used information
written to output and log files with a little internet searches.

Changes in the workflow This participant changed his Debugging styles from Socially-
Aided Debugging to Tool-Aided Debugging then back to Socially-Aided Debugging.
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Usage of iFL This participant did not use iFL at all (he looked at one of the other tools
but only briefly). Interestingly, the developer mentioned in one of the interviews that he
understood the purpose of the tool and that he would use it.

Summary of Workflows The presumed key concept during task resolution of this partici-
pant was his loyalty to known tools and practices: “industrialized comfort zone”. Despite
that this developer did not used iFL, this workflow already utilizes several tools and method-
ologies, which could serve as a basis to introduce and finally integrate more complex
techniques like iFL.

Participant 6

Debugging Workflows and Problem-solving Strategies This participant used many dif-
ferent approaches for problem solving, he even made some refactoring on the code before
trying to find the bug. The developer tried to understand the system at great depth. He first
used manual approach and switched to more advanced interactive features or tools only
when needed. His favorite strategy was Down from the Program’s Start to the Bug, but used
others as well. In terms of diverging from routine, this participant was mostly conformist
but in his case the routine means to try out as much tool as possible and to see if they can
bring some benefit.

Information Sources Utilized during Debugging The developer first tried to understand a
large extent of the code, including its overall structure, before debugging the code part in
question. He also used community forums and the provided handouts as external sources.
The most important type of information this participant relied on was the structure of the
related packages and their contents.

Changes in the workflow This participant transitioned to Tool-Aided Debugging from
Manual Debugging in the third phase, and was the only one who changed his debugging
strategy (from Refactoring during debugging to Down from the Program’s Start to the Bug
and then to Drill Up from the Problem to the Bug). His Diverging from routine changed in
the third phase from Conservative to Ready to Assimilate New Tools and Information and
his information sources changed from Test Results to Code Coverage. The developer started
using iFL Rank Order very actively in the third phase.

Usage of iFL This participant was the most active user of iFL. In fact, he was the only one
who followed the intended usage including the interactive features. In particular, he used
this part to exclude the non-suspicious methods. This developer focused on a relatively large
context, including almost the whole package, and he first tried to understand the context
as much as possible before proceeding to the actual debugging task. He also listed several
improvement suggestions for the tool and the process. An important observation is that the
developer started using the tool more actively after he understood the details of how the
scores and ranks are calculated.

Summary of Workflows We found that the workflow of this developer was similar to the
previous one but employed more advanced features, so we refer to it as “high-tech archi-
tect”. During debugging, he already utilized several concepts and tools usually related to the
system or project level view on software engineering. The developer actively sought new
tools to aid his tasks, which could provide a fertile ground for new tools like iFL (which
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he integrated during the use-case phase), even if these tools employ lesser known concepts.
However, these high level techniques sometimes stir this workflow away from the solution,
which could be possibly solved by more careful tool design. One of our long-term goals
with the iFL project is to try to integrate different other contextual information so that they
could bridge this gap.
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