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ABSTRACT
Metabotropic glutamate receptor 5 (mGluR5) is a class C G protein-coupled receptor (GPCR) with both
an extracellular ligand binding site and an allosteric intrahelical chamber located similarly to the
orthosteric ligand binding site of Class A GPCRs. Ligands binding to this ancestral site of mGluR5 can
act as positive (PAM), negative (NAM) or silent (SAM) allosteric modulators, and their medicinal chemis-
try optimization is notoriously difficult, as subtle structural changes may cause significant variation in
activity and switch in the functional response. Here we present all atom molecular dynamics simula-
tions of NAM, SAM and PAM complexes formed by closely related ligands and analyse the structural
differences of the complexes. Several residues involved in the activation are identified and the forma-
tion of a continuous water channel in the active complex but not in the inactive ones is recognized.
Our results suggest that the mechanism of mGluR5 activation is similar to that of class A GPCRs.

Abbreviations: MD: molecular dynamics; mGluR5: metabotropic glutamate receptor 5; GPCR: G-pro-
tein-coupled receptor; NAM: negative allosteric modulator; PAM: positive allosteric modulator; RMSD:
root mean square deviation; SAM: silent allosteric modulator; SAR: structure–activity relationship; SASA:
solvent-accessible surface area; TM: transmembrane
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Introduction

G protein-coupled receptors (GPCR) are a diverse set of
seven transmembrane (TM) proteins that mediate various
extracellular stimuli to the interior of the cell. They are
involved in numerous disorders and their structure and acti-
vation mechanism are subject to intensive research. Recent
advances in GPCR structural biology together with other
experimental and computational tools improved our under-
standing of the complex mechanism of GPCR activation
(Hilger, Masureel, & Kobilka, 2018; Wang, Qiao, & Li, 2018;
Weis & Kobilka, 2018). Despite the large variations in GPCR
functions, there are common features in their overall struc-
ture and activation. Agonist binding induces significant
change in the protein conformation, including the positions
of the helices, their interactions with each other, with the
membrane and with water, and results in the binding to G-
protein, and promotes downstream signalling via changes
affecting G-protein structure and interactions. In addition, lig-
and binding to GPCRs may activate b-arrestin-mediated sig-
nalling pathways. Metabotropic glutamate (mGlu) receptors
(Niswender & Conn, 2010) belong to the class C family of
GPCRs. They contain an extracellular domain of glutamate

binding site and are able to bind allosteric ligands within the
transmembrane domain corresponding to the orthosteric site
of class A GPCRs. The mGlu family include eight receptors
divided into three groups that act through different intracel-
lular pathways. mGluR5 (Sengmany & Gregory, 2016) belongs
to group I whose members are coupled to Gq proteins and
activate phospholipase C. The optimization of allosteric
mGluR ligands is highly challenging owing to frequently
observed steep structure–activity relationships (SAR) and the
variation of functional response upon subtle structural
changes of the allosteric ligands (molecular switch) (Lindsley
et al., 2016). It has been demonstrated recently that steep
SAR can be attributed to the flexibility of the allosteric
pocket leading to induced binding and to the interaction of
the allosteric ligand with the water network in the intraheli-
cal chamber (Christopher et al., 2019).

Computational studies are increasingly applied to explore
the structural and dynamical properties of biological macro-
molecules including GPCRs (Bartuzi, Kaczor, & Matosiuk,
2018; Latorraca, Venkatakrishnan, & Dror, 2017) and among
them mGluR receptors (Llinas del Torrent, P�erez-Benito, &
Tresadern, 2019). Molecular dynamics (MD) simulations are
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particularly valuable in investigating ligand binding (Bernetti,
Masetti, Rocchia, & Cavalli, 2019; De Vivo, Masetti, Bottegoni,
& Cavalli, 2016; Guo & IJzerman, 2018) and activation mech-
anism of GPCRs (Miao & McCammon, 2018; Yuan, Chan,
et al., 2016; Yuan, Peng, Palczewski, Vogel, & Filipek, 2016).
Here we used all-atom MD simulations to examine the effect
of closely related allosteric ligands on the structure and acti-
vation of the mGluR5 receptor.

Mavoglurant is the prototype of mGluR5 negative allo-
steric modulators (NAMs), and the replacement of a single
Me substituent to Cl and F yields a silent allosteric modulator
(SAM) and a positive allosteric modulator (PAM), respectively
(Figure 1). Our all atom MD simulations of the transmem-
brane domains of active and inactive mGluR5 complexes pro-
vide information complement to recent experimental
structures (Koehl et al., 2019) of the mGluR5 receptor dimer
containing extracellular domains. In contrast to the cryo-elec-
tron microscopy provided big picture of signal propagation
from ligand binding to domain reorganization, our MD simu-
lations focus on changes in the intradomain atomic interac-
tions upon activation and explicitly include the G-protein
bound to the active form of the receptor. Previous computa-
tional studies on the activation of mGluR receptors include
MD simulations for mGluR2 that confirmed the role of the
trigger switch amino acids (F6433.40c, N7355.47c and
W7736.50c) in allosteric modulation (Doornbos et al., 2016;
P�erez-Benito et al., 2017). MD simulations with mGluR5 NAM
and PAM complexes revealed the critical role of the transmis-
sion switch residues (S6583.343c, Y6593.44c and T7816.46c) in
allosteric activation (Llinas del Torrent, Casajuana-Martin,
Pardo, Tresadern, & P�erez-Benito, 2019). In a recent MD
study, dual binding mode of the investigated PAM was
found and although elements of the activation mechanism
in comparison with class A GPCRS were analysed, limited dif-
ferences between the hydration of the allosteric sites of
active and inactive receptors were observed (Cong, Ch�eron,
Golebiowski, Antonczak, & Fiorucci, 2019). Our MD simula-
tions for the inactive receptor are based on the mavoglurant
(NAM) complex for which X-ray structure is available, while
the active receptor complex is modelled together with the
Gq protein and with a PAM having close structural similarity
to mavoglurant. In analysing the results, we pay particular
attention to analogy with class A GPCR activation and to the
role of water within the allosteric pocket, as water was found
to affect both activation in class A GPCRs (Angel, Chance, &
Palczewski, 2009; Yuan, Filipek, Palczewski, & Vogel, 2014)
and ligand binding in mGluR5 (Christopher et al., 2019).

Simulation of the mavoglurant (NAM)–mGluR5 complex
started from the X-ray structure (PDB: 4OO9) (Dor�e et al.,
2014). The complex of the SAM was constructed by replacing
the Me group by Cl. The PAM complex was built using the
same protein structure with a procedure established for acti-
vated class C GPCRs (Doornbos et al., 2016). The TM6 helix
was replaced by a model based on the active state l-opioid
receptor in complex with Gi protein (PDB: 6DDE). The Gq pro-
tein was modelled using the Gi coordinates of the same
complex. The initial position of the PAM ligand was obtained
by replacing the Me group by F. 3� 500 ns MD simulations

were performed for each complex. An additional simulation
with mavoglurant (NAM) placed into the active mGluR5
model not containing the Gi protein was also performed to
investigate if simulations restore the inactive state.

Methods

Model building

NAM (ID:4OO9) and SAM (ID:4OO9-Cl) complex structures:
The 3D structure of the inactive metabotropic glutamate
receptor 5 (mGlu5, PDB code: 4OO9) (Dor�e et al., 2014) was
acquired from Protein Data Bank (Berman et al., 2000) data-
base. The T4-lysozyme which was used to facilitate the crys-
tallization was removed from the structure. The proteins
were prepared using default settings of Protein Preparation
Wizard (Maestro version: 11.5.011) (Madhavi Sastry,
Adzhigirey, Day, Annabhimoju, & Sherman, 2013), the miss-
ing loops (ICL 2 (721-728 AA) and ECL 2 (679-688 AA)) were
built using Prime (“Schr€odinger Release 2018-4, Schr€odinger,
LLC, New York, NY, 2018,” n.d.).

PAM (ID:4OO9-F) structure: The 3D structure of the
inactive metabotropic glutamate receptor 5 (mGlu5, PDB
code: 4OO9) (Dor�e et al., 2014) and the l-opioid receptor–Gi
protein complex (PDB code: 6DDE) (Koehl et al., 2018) were
acquired from the Orientations of Proteins in Membranes
(OPM) (Lomize, Pogozheva, Joo, Mosberg, & Lomize, 2012)
and Protein Data Bank (Berman et al., 2000) databases,
respectively. The mGlu5 template contains the Lysozyme
coordinates, which were deleted from the file manually
(deleted residues: 1–567 and 833–1212).

The sequence of Gq-protein was obtained from the
Universal Protein Resource (UniProt ID: P50148) (The UniProt
Consortium, 2007).

When combining the mGlu5 and l-opioid structures, a
local structure-based sequence alignment was made for TM6
using GPCRdb generic numbers (Isberg et al., 2015; P�andy-
Szekeres et al., 2018). Based on this, three pairs of residues
were selected for superimposing the l-opioid TM6 region
(TRP785-TRP293, ILE783-VAL291, THR780-VAL288; 4OO9-
6DDE respectively) together with the Gi protein from the
l-opioid–Gi complex structure.

The overall sequence alignment was done by Advanced
Homology Modelling package of Schr€odinger Suites. The know-
ledge-based procedure was applied to build 100 multi-template
models. The 4OO9 coordinates served as template for the whole
receptor except the starting sequence of TM6
(FNEALYIAFTMYTTCI) where the corresponding sequence of
6DDE TM6 (RRITRMVLVVVAVFIV) was the template. The Gq a
subunit structure was generated using Gi a subunit coordinates
of the 6DDE complex. The Mavoglurant – co-crystallized ligand
of 4OO9 – was also included in the model building. The best
model was chosen on the basis of normalized Discrete
Optimized Protein Energy score (Shen & Sali, 2006). The chosen
model was refined by Protein Preparation Wizard Wizard
(Maestro version: 11.5.011) (Madhavi Sastry et al., 2013).

The ligand in the X-ray structure was used for 4OO9, and
the 2-methyl group of the phenyl ring was changed to
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chloride for creating the SAM, and fluorine for creating the
PAM ligands.

Water molecules were generated for each protein cavities
using iterative water hot spot identification with molecular
interaction field analysis (GRID) (Goodford, 1985; Sciabola
et al., 2010) and short molecular dynamics simulations
(WaterFLAP version 2.2.1). The energies of the water mole-
cules were calculated using OH2 and CRY (combining C1 and
DRY) probes (Mason et al., 2013) and an entropy analysis of
the degrees of freedom and the shape of the energy wells of
the water molecules.

MD simulation

Molecular dynamics simulations were conducted for three
different protein–ligand complexes of the metabotropic glu-
tamate receptor 5. The first one (4OO9) was the crystal struc-
ture of the receptor complexed with the negative allosteric
modulator, mavoglurant(Dor�e et al., 2014).The second one
was the same structure with a modified ligand (resulted in
silent allosteric modulator) where the methyl group was
replaced by Cl (4OO9-Cl). The third one was the active state
receptor structure with positive allosteric modulator, where
the methyl group was replaced by F (ID: 4OO9-F).

The previously prepared structures were placed into fully
hydrated POPC membrane by means of the Desmond/System
Setup module using the orientation parameters obtained from
“Orientations of Proteins in Membranes” website (Lomize et al.,
2012). During the preparation the minimum distance between
the wall of the periodic box and any protein atoms was set at
least 16Å in the xy plane and an additional waterslab was also
added in the z dimension (15Å). Appropriate number of ions
(Naþ and Cl�) were added, as well, to ensure a 0.15mol/dm3

salt concentration and electroneutrality of the whole system.
The number of atoms and the composition of the systems are
presented in Table 1.

After preparation, the membrane protein equilibration
protocol was used with GPU code of the DESMOND program
package (Bowers et al., 2006), OPLSAA2005 (Banks et al.,
2005; Jensen & Jorgensen, 2006; Kaminski, Friesner, Tirado-
Rives, & Jorgensen, 2001) parameter set and TIP3P potential
for water molecules (Jorgensen et al., 1983). For water mole-
cules present in the initial structure, the Gaussian Barrier
Potential was not applied to keep them inside the receptor.

After the equilibration the structure was converted to
AMBER format, and the following force field parameters were
assigned: protein–ff14SB (Maier et al., 2015), lipid–lipid14
(Dickson et al., 2014), ligand–gaff1.4 (Wang, Wolf, Caldwell,
Kollman, & Case, 2004), waters–TIP3P potential, ion–para-
meters developed by Joung and Cheatham (2008, 2009).

Assignment of gaff1.4 parameters for the ligands was per-
formed with the antechamber (Wang, Wang, Kollman, &
Case, 2006) module of AmberTools18 (Case et al., 2018).
RESP charges (Dupradeau et al., 2010) were calculated for
ligands according to the resp protocol using R.E.D. version
III.52 for geometry optimizations and Gaussian 09, Revision
A.01 (Frisch et al., 2016) for molecular electrostatic map
calculations.

3� 625-ns-long molecular dynamics simulations were per-
formed for each structure. In the first step, each structure
was minimized and two consecutive NVT simulations were
conducted at 10 and at 310 K, each step taking 20 ps long.

Figure 1. mGlur5 ligands used in the MD simulations.

Table 1. Characteristic parameters of the complex structures investigated by
molecular dynamics simulations.

ID Ligand Natoms
[a] NPOPC

[b] NW
[c] NNaþ

[d] NCl�
[e]

4OO9 NAM 70,846 163 14,866 41 56
4OO9 Cl SAM 70,855 163 14,880 41 56
4OO9 F PAM 168,852 314 39,514 110 118
aNumber of atoms in the whole system.
bNumber of POPC molecules.
cNumber of water molecules.
dNumber of sodium cations.
eNumber of chloride anions.
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After the NVT calculation, we turned to NPT calculations. The
temperature was kept constant using Langevin dynamics (cln
¼ 5.0 ps-1 in NVT and cln ¼ 1.0 ps-1 in NPT) (Bussi &
Parrinello, 2007; Melchionna, 2007) and in the NPT step,
Berendsen barostat was used (T¼ 310.0 K, semiisotropic pres-
sure scaling, p¼ 1.0 bar, sp¼ 1.0 ps-1, cten ¼ 0.0 dyne/cm,
number of interfaces ¼ 2) (Berendsen, Postma, van
Gunsteren, DiNola, & Haak, 1984), the cut-off value was set
to 10 Å. We applied the hydrogen mass repartition scheme
(Hopkins, Le Grand, Walker, & Roitberg, 2015) as well, allow-
ing the use of 4 fs time step.

The GPU version (G€otz et al., 2012; Le Grand, G€otz, &
Walker, 2013; Salomon-Ferrer, G€otz, Poole, Le Grand, &
Walker, 2013) of pmemd module of AMBER16 (Case et al.,
2016) was used in the simulations, achieving 80–90 ns/day
and 37 ns/day performance for 4OO9, 4OO9-Cl and 4OO9-F,
respectively, with a GeForce GTX 1080 graphics card.

Results and discussion

Complex structures (Figure 2) and binding modes were
found to be stable during the simulations (Supplementary
Material, Figure S1). The NAM and SAM complexes are very
close to the antagonist bound experimental structure (Dor�e

et al., 2014) with a 0.90 Å TM region RMSD. The 2.12 Å TM
region RMSD between the PAM complex and the cryo-elec-
tron microscopy structure of the active receptor (Koehl et al.,
2019) represents a reasonable agreement taking into account
that the latter has a 4 Å resolutions and does not include the
G-protein (Supplementary Material, Table S1).

A comparative analysis of the MD trajectories of the NAM,
SAM and PAM complexes reveals several intriguing differen-
ces in the positions, conformations and interactions of the
residues (see Figure 2 for an overall view of the TM domain
of the PAM complex). Considering the binding site, its solv-
ent-accessible surface area (SASA) in the presence of PAM is
larger, and the �40% increase can be attributed primarily to
polar uncharged residues and to a lesser extent to nonpolar
residues (Supplementary Material, Figure S2).

W7856.50c was observed to turn transiently towards the
ligand in the PAM complex. This is not possible in the com-
plexes of 1 (NAM) and 2 (SAM), as the octahydro-1H-indole
group of mavoglurant and its Cl derivative occupies a space
would be needed for the indole ring of W7856.50c in the
inward position. In the complex of 3 (PAM), however, the
outward movement of the TM6 intracellular end makes this
rotamer state available, although in our simulation of the
active state, it is less populated then the other rotamer
pointing away from the allosteric ligand. This highly con-
served Trp residue was found to be part of the activation in
several class A GPCRs (Trzaskowski et al., 2012), including
rhodopsin (Ahuja & Smith, 2009). Nevertheless, its conform-
ational change is not a universal toggle of GPCR activation
(Rasmussen et al., 2011), and the conformation is ligand
dependent in NAM complexes (Christopher et al., 2015, 2019;
Dor�e et al., 2014) and both conformations are accessible in
activated mGluR5 in complex with 3 (PAM).

Y6593.44c is close to the varying aromatic substituent (Me/
Cl/F; Scheme 1) of the complexes studied and its analogous
3.40 residue in class A GPCRs is part of the transmission
switch (Trzaskowski et al., 2012). Y6593.44c forms either a dir-
ect or a water mediated H-bond with T7816.46c in the NAM
and SAM complexes. The side chain of Y6593.44c donates an
H-bond to the side chain of T7816.46c with an occupancy of
13% (10%) in NAM (SAM) and a water-mediated H-bond is
observed with an occupancy of 33% (43%) (Figure 3a). The
structural and functional importance of these interactions is
underlined by several findings. The water molecule media-
ting the H-bond between Y6593.44c and T7816.46c is identified
in all available X-ray structures of mGluR5-NAM complexes
(Christopher et al., 2015, 2019; Dor�e et al., 2014) and the H-
bond was also observed in MD simulations of the mGluR2
(P�erez-Benito et al., 2017) and mGluR5 receptors in complex
with NAMs (Llinas del Torrent, Casajuana-Martin, et al., 2019).
Moreover, it was shown that mutations of Y6593.44c and
T7816.46c in mGluR5 significantly impact the activity of allo-
steric ligands by either reducing (Gregory et al., 2014;
Malherbe et al., 2006) or inverting (Turlington et al., 2013)
their functional effect. Our simulations show that this H-
bond stabilizes the structure by interconnecting TM3 and
TM6. These residues are near to the bottom of the ligand in
the intracellular side. Although T7816.46c is located above the

Figure 2. Global view of the TM domain of the PAM complex. Residues found
to be involved in activation and discussed in the text are shown. Switch resi-
dues Y6593.44c, I7515.51c T7816.46c and S6543.39c are shown with grey surfaces.
Ionic/polar lock of K6653.50c, E7706.35c, S613ICL1 and K8217.51c is shown with red
surfaces and are partially obscured by water. W7856.50c is shown with violet sur-
face. Water is in blue. The water channel under the ligand is characteristic to
the PAM complex.
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kink of TM6, below which TM6 points outward from the hel-
ical bundle in the active structure, nevertheless, a �2Å shift
in the backbone atoms of the active structure prevents the
formation of a direct H-bond between residues Y6593.44c and
T7816.46c. A water-mediated H-bond between the side chains
is observed only with 7% occupancy, and Y6593.44c donates
an H-bond to the backbone of T7816.46c with an occupancy
of 13% in the simulations of the PAM complex (Figure 3).
Therefore, while the direct and water mediated side chain
interactions between these residues tend to fix TM3 and
TM6 in the inactive state, the propensity of these structure
stabilizing interactions is significantly lower in the active
complex resulting in a larger separation of the helices. The
increased intrahelical space allows the formation of a con-
tinuous water channel from the ligand and Y6593.44c toward
the intracellular side of the TM helices (see later). The above
mentioned shift of TM6 in the PAM complex leads to the
loss of contacts between the ligand and T7816.46c as it is
shown by ligand-protein contact probability analysis (Deriu
et al., 2014, 2016) (Supplemental Material, Figure S3).
Another ligand–protein contact probability significantly dif-
fering in NAM and PAM complexes is the one with I6212.46c.
The contact probability with the methyl group of NAM sub-
stantially reduces for the PAM where the methyl group is
replaced with an F-atom having smaller van der Waals radius
(Supplemental Material, Figure S3).

S6543.39c encloses the intracellular end of the ligand from
the opposite side than does Y6593.44c and adopts different
conformations in PAM than in NAM and SAM complexes.
This residue is adjacent in sequence to P6553.40c, the latter is
identified as part of the transmission switch in several class
A receptors, including histamine H1 and cannabinoid CB1
receptors (Jongejan et al., 2005; McAllister et al., 2004), and
found to play a role in mGluR2 activation (P�erez-Benito et al.,
2017). In mGluR5, 3.40c is a proline with limited conform-
ational flexibility. However, the adjacent S6543.39c, a residue
with �4 Å separation from the intracellular end of the bound
ligand is found to adopt dominantly gþ conformation in
NAM and SAM complexes, while the t position that has an
OH group closer to the ligand and is stabilized by an H-bond

to G6242.45c backbone carbonyl is important only in the PAM
complex (Supplemental Material, Figure S4).

Ile7515.51c is in contact with Y6593.44c and its analogous
5.51a residue in class A GPCRs is part of the transmission
switch. This residue shows distinct conformational preference
in PAM versus NAM and SAM complexes (Supplemental
Material, Figure S5). While the side chain of Ile7515.51c takes
a well-defined conformation with a narrow range of dihedral
angles in the NAM complex, it has a larger flexibility in the
more opened conformation of the PAM complex. Similar dif-
ference for the analogous Ile7395.51c residue was observed
for the NAM versus PAM complexes in mGluR2 (P�erez-Benito
et al., 2017).

Ionic and polar interactions were observed among resi-
dues K6653.50c, E7706.35c, S613ICL1 and K8217.51c in the NAM
and SAM complex structures, while they are not representa-
tive in the PAM complex (Supplemental Material, Figure S6).
These residues correspond to three different helices, TM3,
TM6 and TM7, while S613ICL1 is the first residue of ICL1 con-
necting to TM2. The interactions assure close separations for
the residues and for the corresponding helices. Analogous
locking interactions were observed in the mGluR1 X-ray
structure (Wu et al., 2014) and found to be persistent in MD
simulations of an inactive mGluR4 model (Dalton, Pin, &
Giraldo, 2017). They appear also in GABAB, the other sub-
group of class C receptors, and in class A receptors (Binet
et al., 2007). However, the distances between the relevant
atoms in the PAM complex are significantly higher for each
TM pairs, and span a wide range for TM3-TM7, both indicat-
ing the loosening of interactions and the critical role of these
residues in the activation of both class A and class C GPCRs.
Helices TM3, TM6 and TM7 directly interact with Gq, and
their interhelical distances at the intracellular side are able to
distinguish active from inactive states as it was proposed
also for the P2Y1 (class A) receptor(Yuan, Chan, et al., 2016)
(Figure 4).

A continuous water channel is observed under the ligand
in the PAM complex (Figure 5). No similar water molecules
are present in the NAM and SAM complexes (Supplemental
Material, Figure S7) owing to the more compact helical

Figure 3. Receptor sidechain positions in NAM and PAM complexes. Distribution of OG1 of T781 (orange), O of Y659 (grey) and water (blue). Direct and water
mediated H-bond is characteristic in NAM complex and rare in PAM complex.
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bundle in these structures. A comparison of the abundance
of water molecules near to the residues in the PAM versus
the NAM complexes identifies residues delimiting the water
channel in the PAM complex (Supplemental Material, Table
S2). L6623.47c, A7716.36c, I7746.39c, T7776.42c, M7786.43c,
T7816.46c and C8167.46c were found to have increased num-
ber of neighbouring water molecules and are situated under
the ligand toward the cytosolic region. An analogous water
channel in class A GPCRs was recognized as a characteristic
component of active structures(Angel et al., 2009; Yuan

et al., 2014). To check if the formation of the water channel
is a distinctive feature of activated mGluR5, an additional MD
study was performed in which compound 3 (PAM) in the
activated receptor complex was replaced by 1 (NAM) and
the G-protein was removed. The water channel disappeared
in the simulation and other features of the NAM-complex
were restored. In particular, direct and water mediated H-
bonds between Y6593.44c and T7816.46c, and the ionic and
polar interactions among residues K6653.50c, E7706.35c,
S613ICL1 and K8217.51c assure close contacts for helices TM3,
TM6 and TM7. The SASA of the binding site was reduced to
the size previously obtained for the inactive receptor com-
plexed with NAM.

Conclusion

MD simulations expose structural differences between NAM
and PAM complexes that are associated with the activation
of the mGluR5 receptor. This class C GPCR has a chamber in
the TM region where class A receptors have their orthosteric
binding site, and this chamber can function as an allosteric
site. No endogenous ligand is known to bind to this site,
rather it is occupied by water molecules. Our simulations
show that the activation of the receptor assisted by a PAM
exhibits structural transformations similar to those in class A
activation. The backbone movements of TM helices are
accompanied by the breaking of interactions like the ionic
lock of residues K6653.50c, E7706.35c, S613ICL1 and K8217.51c

and the hydrogen bond between Y6593.44c and T7816.46c. In
addition, residues enclosing the allosteric site, namely,
S6543.39c and Y6593.44c, both close to the aromatic substitu-
ent causing functional switch of the ligands, change their
conformation that leads to an increased and more polar
chamber. Interestingly, the role of intrahelical waters has not

Figure 4. Interhelix separations distinguish active (blue) from inactive (red) structure. TM3, TM6 and TM7 are in direct contact with the G-protein and their
increased separation and surface, characteristic to the active structure, facilitates G-protein binding.

Figure 5. Continuous water channel in the PAM–receptor complex under the
ligand at the intracellular side.
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been investigated in the recent studies (Llinas del Torrent,
Casajuana-Martin, Pardo, Tresadern, & P�erez-Benito, 2019).
We found that the TM bundle becomes less tightly packed
and a continuous water channel is formed among the TM
helices in the intracellular side below the PAM, analogously
to the formation of a water channel upon activation of class
A GPCRs (Angel et al., 2009; Yuan et al., 2014). Moreover, the
extended surface created by TM helices, in particular TM3,
TM6 and TM7, facilitates G-protein binding leading to signal
transduction. These intramolecular changes revealed by the
MD simulations contribute to the activation that is also char-
acterized by intermolecular structural rearrangements as
observed for mGluR1 (Hlavackova et al., 2012) and mGluR5
(Koehl et al., 2019) receptors.

Residues showing characteristic structural differences in
the NAM and PAM complex structures are recognized as part
of the activation mechanism. These residues are sequentially
and spatially close to or identical with the analogous
switches identified in class A receptors as key residues in the
activation process (Binet et al., 2007; Nygaard, Frimurer,
Holst, Rosenkilde, & Schwartz, 2009; Trzaskowski et al., 2012).
Our comparative MD simulations of mGluR5 complexes with
NAM, SAM and PAM ligands strongly suggest that mGluR5
activation proceeds via similar changes in residue interac-
tions and the activation mechanism of class A receptors is
preserved at a large extent in mGluR5.
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