
HARDWARE-AWARE MODEL OPTIMIZATION TOOL FOR EMBEDDED DEVICES

Cagri Ozcinar1∗ , Dongsung Kim1∗, Benjamin Rufus Duckworth1, Shayan Joya1, Nicolas Scotto Di Perto1,
Attila Dusnoki2, Márkó Fabó2, Dániel Vince2, Gábor Lóki2, Ákos Kiss2, Christopher Alder1

1Samsung Research United Kingdom, Staines-Upon-Thames, United Kingdom
2University of Szeged, Department of Software Engineering, Szeged, Hungary

ABSTRACT

Designing deep neural network models for embedded devices

is a challenging task since the models need to be lightweight,

fast, and accurate. This paper proposes a hardware-aware

model optimization tool (HOT) to optimize a given model in

terms of latency or accuracy by replacing its existing opera-

tors with the best-performing operators for target hardware.

The proposed tool finds optimal operators with high accu-

racy and low latency in a short searching time while keep-

ing the existing model structure rather than finding an en-

tirely new network architecture. The result shows that the

HOT improves MobileNetV2 backbone based models by up

to 13.93% in accuracy (mAP) or 37.84% in latency (ms)

with cascaded pyramid network (CPN) (pose estimation) and

31.03% in mAP or 56.64% in latency (ms) for single shot

multi-box detector (SSD) (object detection) on digital televi-

sion.

Index Terms— optimized model, embedded devices,

hardware-aware, deep neural network

1. INTRODUCTION
On-device artificial intelligence (AI) has made significant

progress in improving user experience. Recent embedded de-

vices have been equipped with AI accelerators such as neural

processing units (NPU) and tensor processing units (TPU) to

improve the operation efficiency. Running deep neural net-

work (DNN) models on these emerging embedded devices

instead of resorting to cloud services becomes an effective

solution for reducing costs, and obtaining low inference la-

tency.

Embedded devices have limited computing power, so a

DNN model designed to be executed in the cloud will not run

due to device constraints, such as memory. The initial ap-

proach is to develop a suitable model for embedded devices

manually. For instance, MobileNetV2 [1] uses depthwise-

separable convolution rather than traditional convolution to

reduce computational complexity. Recent works, however,

show that some computationally efficient operations, such

as depthwise-separable convolution, perform worse on TPU

*Equal contribution

than a traditional convolution even though it is intended to

reduce the number of parameters for less computation [2].

Current neural architecture search (NAS) techniques

could present a suitable embedded DNN architecture by ex-

ploring a predefined search space but they require high com-

putation cost due to their search algorithms [3]. For instance,

MnasNet [3] reveals that a search for a suitable ImageNet

classification model optimized for mobile phones, where each

candidate is trained from scratch, can take 4.5 days on 64 TPU

devices. The majority of NAS techniques have also ignored

hardware constraints which are faced by many companies.

This paper proposes a practical hardware-aware model

optimization tool (HOT) which has a full pipeline from model

selection, hyper-parameter optimization (HPO) for the train-

ing to deployment on the target device. Our proposed op-

timization algorithm, called AutoSearch, quickly finds the

most suitable DNN model for each target device under its

constraints. To reduce the model search time, it uses a pre-

defined search space and latency lookup table (LUT) created

from target devices and utilizes integer linear programming

(ILP) for the best model selection.

Our contribution in this paper is threefold. First, we pro-

pose a new model optimization tool that can find optimized

DNN models which maximize the target device’s utiliza-

tion. Second, our algorithm reduces the architecture search

time dramatically compared to the existing NAS techniques.

Third, we explore the DNN optimization problem with two

practical use-cases on commercial digital television (DTV)

for the first time to the best of our knowledge.

2. RELATED WORKS
Designing optimized DNN models for embedded devices has

been an active research topic in the recent years. Especially

NAS has become increasingly popular for designing DNN

networks optimized for embedded devices. MnasNet [3] was

the first attempt to consider model latency as the main objec-

tive. It showed the output model is better than the human-

designed ones. EfficientNet [4] goes further by using NAS to

design a baseline model and create a family of models allow-

ing scaling of the depth/width/resolution easily. Still, it does

not consider the utilization of each target device for further

978-1-6654-4989-2/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 M

u
lt

im
ed

ia
 &

 E
x
p
o
 W

o
rk

sh
o
p
s

(I
C

M
E

W
)

| 9
7
8
-1

-6
6
5
4
-4

9
8
9
-2

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
M

E
W

5
3
2
7
6
.2

0
2
1
.9

4
5
6
0
0
4

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 07,2021 at 16:27:43 UTC from IEEE Xplore. Restrictions apply.

improvement. Accelerator-aware NAS [2] highlights the ben-

efits of customization of DNN architectures for the Google

Edge TPU with building blocks for high overall utilization

through reinforcement learning (RL) methods. However, an

RL controller generally takes a longer time to find the best

candidate model due to the sequential processing of the feed-

back. It has limitations to use a latency prediction simulator

instead of the actual latency from the real hardware.

Our approach is to create a family of models by changing

operators and scaling factors from the given baseline model.

We maximize the target device’s capacity to reduce the la-

tency or improve accuracy by using the hardware’s specific

features. Instead of using expensive search algorithms (e.g.,
RL and evolutionary computation), our proposed search al-

gorithm, AutoSearch, finds the suitable candidate models by

solving the formulated optimization problem using a LUT and

a set of practical constraints.

3. MODEL OPTIMIZATION SYSTEM

HOT has model selection, training, and deployment modules

as shown in Fig. 1. First, the model selection module per-

forms a search with a given model by replacing operators and

selecting the best tk candidate models. The AutoSearch al-

gorithm utilizes a LUT built by measuring each operator’s

latency, floating point operations per second (FLOPS), and

memory consumption on the target device and saving it in a

database. Our algorithm determines a set of candidate models

by solving the formulated ILP with practical constraints, such

as latency budget and device memory capacity. Also, it could

reduce the search time by training each candidate model in

parallel with multiple GPUs.

Next, as the new model requires a new set of optimal

hyper-parameters in training, the training module contains

HPO. It supports grid search or Bayesian hyper-parameter op-

timization techniques [5], finding a set of optimal learning pa-

rameters (learning rate, optimizer, weight decay) for a given

model.

Finally, the deployment module gives an interface to

real target devices and invokes a hardware-level optimizer to

quantize a given optimal model to 8 bit or 16-bit binary for-

mats. It improves memory size and latency on DTV with ten-

sor virtual machine [6, 7]. The deployment module provides

a server capable of handling multiple requests for compilation

and profiling, running on the real target device for generation

of the LUT, and caching into the database for later usage as

required.

4. MODEL SELECTION

In this subsections, we describe each part of the model se-

lection module of the tool. In particular, we introduce our

AutoSearch by formulating the MobileNetV2 model [8]. The

HOT can equally be used by other models, such as ResNet [9],

by creating their LUTs.

4.1. Search space

Search efficiency is an essential part of the practical NAS. For

this reason, we make the search space discrete and constrain

it with a set of candidate operators supported by the target

device. The search is done at a block level in the given model,

such as an inverted residual block (IRB) of the MobileNetV2.

We optimize MobileNetV2 by replacing its operators and

applying variable expansion rates and kernel sizes throughout

seven IRBs in Fig. 2. Our search space utilizes an expansion

rate {3, 6, 9} at IRBs 2-7, and a constant at IRB 1 {1}. Simi-

lar to the original design policy of the MobileNetV2, we use a

constant expansion rate at the first block to avoid any unnec-

essary latency increase. We utilize kernel size k ∈ {3, 5} as

they are widely used in modern networks. We aim to search

three different bottleneck structure types in each IRB: a) A

bottleneck structure with depthwise pointwise convolutions

in MobileNetV2 [8]; b) A bottleneck structure with standard

2D convolutions [2]; c) The inverse positioned pointwise con-

volutions with the sandglass block [10] as shown in Figure 2.

Here, k denotes the selected kernel size.

4.2. Accuracy- and Latency-aware optimization

To obtain a set of accurate or low-latency models, S∗
acc or

S∗
lat, for a given target device, each optimal model is chosen

to maximize the model quality or to minimize the model la-

tency performances. Based on the optimization objective, we

determine the best tk candidate models for training. We first

formulate the model selection problem using the following

practical constraints:

1. Latency: A latency budget for a selected model to per-

form properly on a target device, Lbudget.

2. Memory: A maximum memory limit for the selected

model memory size on the target device, Mmax.

In accuracy-aware optimization, our objective is to maximize

utilization of a given target device and select the most optimal

model for a given latency constraint. In this work, we do not

take the power efficiency of the device into account. To reflect

the model quality without a need for training, our formulation

is based on the FLOPS count which is assumed to have a lin-

ear relationship with model quality [4, 11]. FLOPS is one of

the most prevalent ways to estimate the amount of calcula-

tion in DNN model. In our own experiment, we have found

a correlation coefficient value of 0.90 as a linear relationship

between FLOPS and quality in terms of mAP for pose esti-

mation task. We utilize the LUT which contains FLOPS cost,

memory usage and inference latency measured on the target

device for each possible IRB in MobileNetV2. Thus, our op-

timization problem can be formulated as follows:

S∗
acc : arg max

c

(
c1sxs+

∑

j∈J
yijc

2−7
ij

) ∀i ∈ I ∀s ∈ S, (1)

where c1s is the FLOPS cost for the s block type, s ∈ S ,

and S is a set of different block types of IRB 1. Also, c2−7
ij

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 07,2021 at 16:27:43 UTC from IEEE Xplore. Restrictions apply.

+ +

LUT

AutoSearch

Latency
budget

Memory
budget

Hyper-
parameter

search

Model search

Trainer

Dataset

Hardware

Look-up-table (LUT) preperation

H

Model Selection Training Deployment

tk
candidate

models

Fig. 1: Schematic of the proposed model optimization system.

Fig. 2: Different types of blocks for MobileNetV2. (a) IRB with
depthwise pointwise convolutions, (b) IRB with standard 2D convo-
lutions, (c) The inverse positioned pointwise convolutions with the
sandglass block.

represents FLOPS cost for the i block type of the j-th block,

i ∈ I. I is a set of different block types of IRBs 2-7. Here, xs

and yij are decision variables (xs = {0, 1} and yij = {0, 1})

for IRB 1 and for IRBs between 2 and 7, respectively.

Equation (1) maximizes the FLOPS cost and it is subject

to the following constraints:
∑

s∈S
xs ≤ 1 and

∑

i∈I
yij ≤ 1 with ∀j ∈ J (2)

∑

s∈S
l1sxs +

∑

j∈J

∑

i∈I
l2−7
ij yij ≤ Lbudget, (3)

∑

s∈S
m1

sxs +
∑

j∈J

∑

i∈I
m2−7

ij yij ≤ Mmax, (4)

where ls and ms are the inference latency and the device

memory usage for the s block type, respectively.

Equation (3) addresses the Latency constraint by limit-

ing the search space with a given latency budget, Lbudget.

Equation (4) satisfies the Memory constraint by setting the

maximum allowed memory budget Mmax of the feature ex-

tractor model, and M budget = Mmax −Mhead. To estimate

M budget, we subtract the calculated memory for the operators

outside of the feature extractor model, Mhead, from the total

Fig. 3: Accuracy (mAP) vs NPU latency (ms) of the AutoSearch and
the baseline (MobileNetV2 SSD).

memory capacity of a given embedded device, Mmax. The

ILP problem proposed in Eq. (1) can be solved by a generic

solver GNU linear programming kit in less than one second

on Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz with 126

GB of RAM.

Our objective is to find a set of candidate models in

latency-aware optimization, S∗
lat, which provides the lowest

latency on a given target device. For this, similar to Bichen et
al. [12], we estimate the total latency of the network by sum-

ming up the latency of each IRB in search spaces and deter-

mine the best tk candidate models.

5. EXPERIMENTS

We target an NPU device in a given DTV for model optimiza-

tion and evaluate our tool on two different applications: SSD

object detection [13] and CPN pose-estimation [14]. We de-

fined tk as 8, which shows a good accuracy-latency trade-off

with a reasonable search time. We train each candidate model

on GeForce RTX 2080 Ti GPUs with 11GB memory. In our

algorithm, AutoSearch Accuracy, we set Lbudget=30 ms as

the required maximum latency budget and defined three vari-

ants of models, small (S), medium (M), and large (L). We

set 0.7, 1, and 1.3 as widths of MobileNetV2 to AutoSearch

Accuracy -S, -M, and -L, respectively.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 07,2021 at 16:27:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Accuracy (mAP) vs NPU latency (ms) of the AutoSearch and
the baseline (MobileNetV2 CPN).

5.1. Object detection
We merged Pascal VOC 2007 and 2012 datasets [15], and

trained MobileNetV2 SSD for 400 epochs. We used ADAM

optimizer, an initial learning rate with {0.0005, 0.0007} and

a factor of gamma {0.3, 0.5, 0.7} with batch size 32. We used

standard image augmentation techniques during training, in-

cluding random crops, flipping, hue, saturation, contrast, and

brightness distortions.

We compared our AutoSearch models with the original

baseline MobileNetV2 [8] with SSD. Figure 3 shows the

performance of accuracy versus NPU latency. Looking at

the results, we observe that the AutoSearch latency model

is 56.64% faster and has 23.79% better mAP than the base-

line model. We also see that the proposed AutoSearch Ac-

curacy model’s small, medium, and large variants achieve

23.44%, 27.58%, and 31.03% mAP improvement on val2017

of COCO dataset [16], respectively.

5.2. Pose estimation
We used 2017 COCO multi-person keypoint dataset [16],

and trained the network with ADAM optimizer and 32 batch

for 90 epochs. We changed an initial learning rate with

{0.005, 0.007}, a factor of gamma {0.3, 0.5, 0.7} in a grid

way. We used augmentation techniques such as zooming, flip-

ping horizontally, rotating, and color dithering at training.

Similar to the previous experiment, we compared our

models with an original baseline model, MobileNetV2 [8]

with CPN. The results in Figure 4 show that the AutoSearch

Latency model outperforms the baseline model in latency by

37.84% and accuracy by 3.25%. The small, medium, and

large variants of the AutoSearch Accuracy model achieve

4.86%, 8.10%, and 13.93% mAP in val2017 of COCO

dataset [16], respectively.

6. CONCLUSION
This paper presents an automated hardware-aware model op-

timization tool (HOT) for redesigning a given MobileNetV2

network using operators optimized for a target NPU device

with minimum human intervention. Our approach has shown

that it finds optimized models that maximize the target de-

vice’s utilization to improve the latency or accuracy with a

small amount of search time. We have demonstrated two ap-

plied vision tasks, object detection and pose estimation, to

have better latency (ms) or quality (mAP) on a given digital

television after the optimization process.

7. REFERENCES

[1] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam,

“Mobilenets: Efficient convolutional neural networks for mobile vision

applications,” arXiv:1704.04861, 2017.

[2] Suyog Gupta and Berkin Akin, “Accelerator-aware neural network de-

sign using automl,” in On-device Intelligence Workshop at MLSys,

2020.

[3] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-

dler, Andrew Howard, and Quoc V Le, “Mnasnet: Platform-aware

neural architecture search for mobile,” in CVPR, 2019, pp. 2820–2828.

[4] Mingxing Tan and Quoc V Le, “Efficientnet: Rethinking model scaling

for convolutional neural networks,” arXiv:1905.11946, 2019.

[5] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton,

Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy,

“BoTorch: A Framework for Efficient Monte-Carlo Bayesian Opti-

mization,” in Advances in NIPS, 2020.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, et al., “Tvm: An automated end-to-end optimizing compiler for

deep learning,” in 13th SENIX OSDI, 2018, pp. 578–594.

[7] Sunwoong Joo, Attila Dusnoki, Martyn Bliss, Ben Duckworth, Nico-

las Scotto Di Perto, Markó Fabó, Gábor Lóki, Dániel Vince, Ákos Kiss,

and Cheul-hee Hahm, “A memory-aware performance optimization of

tensor programs for embedded devices,” in ICCE-Asia. IEEE, 2020,

pp. 168–171.

[8] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,

and Liang-Chieh Chen, “Mobilenetv2: Inverted residuals and linear

bottlenecks,” in CVPR, 2018, pp. 4510–4520.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep

residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–

778.

[10] Zhou Daquan, Qibin Hou, Yunpeng Chen, Jiashi Feng, and Shuicheng

Yan, “Rethinking bottleneck structure for efficient mobile network de-

sign,” in ECCV, 2020.

[11] Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan

Gabrys, and Quoc V Le, “Autohas: Efficient hyperparameter and ar-

chitecture search,” arXiv:2006.03656, 2020.

[12] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,

Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt

Keutzer, “Fbnet: Hardware-aware efficient convnet design via differ-

entiable neural architecture search,” in CVPR, 2019, pp. 10734–10742.

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C Berg, “Ssd: Single shot multi-

box detector,” in ECCV. Springer, 2016, pp. 21–37.

[14] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang

Yu, and Jian Sun, “Cascaded pyramid network for multi-person pose

estimation,” in CVPR, 2018, pp. 7103–7112.

[15] Mark Everingham, Luc Van Gool, Christopher KI Williams, John

Winn, and Andrew Zisserman, “The pascal visual object classes (voc)

challenge,” IJCV, vol. 88, no. 2, pp. 303–338, 2010.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-

ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, “Microsoft

coco: Common objects in context,” in ECCV. Springer, 2014, pp. 740–

755.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 07,2021 at 16:27:43 UTC from IEEE Xplore. Restrictions apply.

