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Abstract: Fog computing provides an effective solution to various problems by extending the cloud’s
functionality to typically more limited computing units closer to user devices. Fog computing can
provide a higher level of user experience due to its geographic and network topology location and
distribution. IoT services also need to be managed seamlessly to ensure adequate QoS (due to the
mobility of devices or the temporary periods without an internet connection). Such domains are
combined under the auspices of Dew computing, as in critical cases, extending an IoT service to
the end user’s device is a feasible task. Such scenarios can hardly be investigated at a large scale
due to the lack of dedicated simulation environments. In this paper, we present an extension of the
DISSECT-CF-Fog simulator with a Dew computing model, to enable the simulation of IoT-Dew-Fog
systems in a cost-effective manner. In particular, we focus on service migration options for mobile
devices and cases with temporary internet access limitations. Finally, we performed measurements of
real-world use cases with the extended simulator as an evaluation. Our simulation results show that
the proposed proactive strategy reduces the processing time of IoT data, exploiting an IoT-Dew-Fog
environment.

Keywords: Dew computing; fog computing; Internet of Things; simulation

1. Introduction

The number of smart devices connected to the internet has grown exponentially in the
last decade, driven by rapid technological advances and ever-increasing user demand. Ac-
cording to Cisco’s annual internet report (visited on 15 May 2022):
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/white-paper-c11-741490.html), by 2023, the number of mobile devices will reach 13.1
billion globally, of which, 1.4 billion devices will have 5G capabilities. The large amounts
of data generated by these devices significantly burden traditional cloud computing-based
networks; therefore, various distributed and decentralized network paradigms have gained
ground. Fog computing complements previous cloud technology by bringing services
closer to the users.

Compared to the traditional cloud model, the fog model is more supportive of mobile
data processing, as it is more efficient in maintaining minimal latency and predictable
response times. Services that process short life-cycle data streams are typically deployed
to computing units located at the edge of the network. In the fog model [1], the units
are limited in terms of resources, but any device may act as a fog node, which is able to
communicate over the network and has storage and computing capacity. This distributed
model also provides the possibility to use virtualized units.

Distributed models are intensively researched due to the emergence of the Internet
of Things (IoT) and 5G technology. Cloud computing and its complementary models
have major roles in the development of IoT applications, especially in storing data and
processing related tasks with low latency requirements or deadline constraints.
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Although the fog model resolves the problems induced by the volume and diversity
of IoT data, mobile data processing is not a trivial task. Data center coverage is limited;
due to the long distances covered by the movements of mobile devices, the data to be
processed potentially need several network hops to reach their destinations. Furthermore,
increased latencies and unpredictable response times degrade the quality of service (QoS).
One possible way to reduce the negative impact, as much as possible, is to dynamically
migrate the IoT services to a more optimal (preferably closer) location. Movement-induced
service migration is a challenging problem that needs to be addressed from many different
angles. For example, the distance between the device and the node (both physical and
network distance), the size of the service to be migrated, the available bandwidth, or the
current load on the destination node.

Cloud-influenced domains, such as fog, edge, and mobile edge computing [2], are often
utilized to outsource cloud computing features and services to the perimeters of mobile
networks. Such complex networks strongly rely on (typically the internet) connections;
therefore, another novel paradigm was introduced, namely Dew computing, to deal with
the lack of internet access. Dew computing compounds the basic capabilities of end devices
and the cloud model. In this area, IoT data can be discovered, processed, and stored locally
in the case of offline modes. When a network connection is established, the end devices may
initiate synchronization with the fog and cloud services. With the Dew concept, various
challenges arise, such as resource and network utilization, limited storage, and energy
consumption [3].

The concept of Dew computing can be applied to various domains [4], such as air
transportation systems, including flying objects (meteorological drones, airplanes, etc.),
healthcare systems aimed at real-time monitoring of patients and interactions with doctors,
smart manufacturing focusing on Industry 4.0, and traffic control relying on distributed
surveillance systems.

The main contributions of the paper are as follows:

• We present an overview of Dew computing and extend the DISSECT-CF-Fog simulator
with a Dew model to represent IoT-Dew-Fog systems.

• We introduce realistic, Dew-based IoT use cases exploiting service migration and
offline data management.

• We evaluate the use cases in the extended simulator, pinpointing some technical
challenges that Dew computing can bring to these complex systems.

The remainder of the paper is as follows. In Section 2, we briefly discuss the Dew
computing domain and related simulation approaches, in Section 3, we introduce the
simulator and its components, in Section 4, we present two IoT-Dew-Fog use cases for
exemplifying its utilization. Finally, in Section 5, we conclude our work.

2. Related Works
2.1. Dew Computing

The relatively recent expansion of the use of processing units in a vast majority of
technical products, including home and office control and appliances, industrial equipment,
traffic control (earth, sea, and sky), vehicles, lighting, personal data collecting/processing
wearables (e.g. health and sports-oriented) etc., including mobile computing, storage,
sensing, and communication integrated personal devices (so-called “smartphones”) and
home computers have led to the necessity to expand the paradigmatic structure of cloud
and fog computing with a low-level paradigmatic layer, the Dew computing layer [5–7],
enabling seamless inclusion of the mentioned (very heterogeneous) types of processing
units into the Rainbow global service ecosystem) [8,9].

The major distinction between the equipment in the cloud/fog/edge areas of the
hierarchy and the Dew computing area is that the equipment in the cloud/fog/edge areas
are primarily dedicated to general tasks involving computations and communications,
and are integral parts of the internet. The Internet of Things (IoT) is a natural extension
of the internet and presupposes that “Things” will communicate through (and be a part



Appl. Sci. 2022, 12, 8809 3 of 12

of) the internet. However, regarding all of the equipment that we mentioned, they have
one important thing in common: they have to be self-standing, self-sufficient systems,
i.e., they must perform their functions completely independent of any connections with
other equipment or systems. Hereby, we define the self-sufficient system as an indepen-
dent system of components that can perform its intended functions without any external
communication/processing needs (for example a car, a washing machine, a traffic lights
system, etc.). All of that equipment is outside of the edge of the internet, including mobile
devices and personal computers. However, it can be very beneficial if such equipment
could be ’coordinated’, and cooperate with cloud and/or fog services whenever an internet
connection is established. However, it must be noted that non-internet connectivity is also
a major aspect at present and there will be an increasing amount of future equipment (LAN
and ad hoc radio/wire/optical connections).

Therefore, at the layer of Dew computing, it is possible to solve the large diversity of
communication and information/services. In this paper, we exemplify how to model such
tasks in a state-of-the-art simulator called DISSECT-CF-Fog. In the next subsection, we
provide an overview of Dew modeling possibilities in the simulation field.

2.2. Simulation Approaches

Investigating and maintaining IoT-Fog-Cloud systems in the real-world could be
extremely expensive due to the financial expenses of IoT devices and cloud services.
Furthermore, examining various scheduling and offloading algorithms may be time- and
energy-consuming. Simulation approaches have become acceptable solutions for such
purposes among researchers because they mimic existing systems in realistic manners.
They ensure cost-efficient and scalable environments to test and validate new procedures
and algorithms, in which results can be used for further modification of the real system.

One of the most well-known simulators dedicated to modeling the cooperation of IoT
and fog computing is called iFogSim [10], which extends the functionality of CloudSim
toward fog computing. With the latest version, device mobility can be simulated, which
attracts the need for application service migration as well, because the positions of the end
devices change frequently. This can cause increased response times and the required QoS
cannot be guaranteed without migrating services to a more suitable provider. Furthermore,
fog node clustering and microservice orchestration of application services are also part of
the upgraded system. The literature may refer to this extension as iFogSim2.

MobFogSim [11] is derived from the original version of iFogSim, supporting user (i.e.,
device) migration to minimize access delay by triggering the handover of user devices be-
tween computing nodes. Mobility may require migration solutions for VMs and containers
to mitigate increasing latency and improve QoS. IoTSim-Edge [12], similar to iFogSim, is
built upon CloudSim, and it extends its capabilities with IoT-related behavior, including
IoT data generation, battery drainage simulation, local and remote IoT data processing,
as well as device mobility. EdgeCloudSim [13] relies on CloudSim as well; therefore, it
inherited the functionalities of the core simulator. However, it has a new CPU utilization
model, device mobility, and edge orchestrator.

To the best of our knowledge, DewSim [14] is currently the only simulator that models
a Dew computing environment directly. It mainly focuses on simulating mobile device
clusters, of which, members are considered the primary computing resource providers.
Trace-based battery simulation is also available in the simulator in order to model battery
drainage realistically. With different job allocation strategies, jobs are only distributed
among battery-dependent devices; moreover, non-battery-dependent devices and detailed
physical infrastructure management are not considered at all. P. Sanabria et al. [15]
introduced an extended version of DewSim, which supports simulating hybrid Dew/edge
environments, including non-battery-dependent devices; however, the management of the
computing infrastructure is still missing.

DISSECT-CF-Fog [16] deals with a detailed IaaS model, including physical and vir-
tual machines, storage, and data center network properties, among others. In general, its
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components are split into two main parts, physical and virtual layers. The physical param-
eters describe the physical capabilities of the fog and cloud nodes. The fog extension also
provides a comprehensive IoT layer representation, where IoT physical layer components
(sensors and actuators) can be represented, and smart devices with different properties
can be modeled. In the virtual layer, IoT applications running on the computing node are
responsible for processing data. This layer also considers the energy consumption of the
entities, IoT device mobility, and pricing schemes of real providers.

We present the simulators in Table 1, where we denote the domains (IoT, edge/Dew
computing and fog/cloud computing) and the functionalities available in the tools. Ac-
cording to the preliminary analysis and previous studies [16,17] (which showed that
DISSECT-CF-Fog is more scalable, reliable, and faster than iFogSim), in this paper, we chose
DISSECT-CF-Fog to extend towards IoT-Dew-Fog systems by modeling Dew computing.

Table 1. Summary of the related simulation approaches (
√

means the simulator contains
that functionality).

Simulators Internet of Things Edge/Dew Computing Fog/Cloud Computing

- IoT Devices Battery/Energy
Consumption Mobility - IaaS Migration

iFogSim
√ √ √

X
√ √

MobFogSim
√ √ √

X
√ √

IoTSim-Edge
√ √ √ √ √

X

EdgeCloudSim
√ √ √ √ √

X

DewSim
√ √

X
√

X X

DISSECT-CF-Fog
√ √ √ √ √ √

3. The Proposed Model for Dew Computing

High distances between the IoT devices and fog/cloud nodes can cause critical in-
creases in service response times. Furthermore, the lack of internet access also requires
effective solutions to provide continuous service. If a smart device has sufficient computing
and storage capacity, the service can be migrated to the associated smart device. In most
cases, the capacities of end user devices, which can also be local PCs or tablets, are more
limited than the fog nodes serving them; therefore, computational tasks may take more
time to complete. The requested service should only be installed on a smart device if the
increased response time due to distance is expected to be less than the response time of
the application running on the device. Such migration and further CPU-related tasks can
affect the battery life of the device and may increase its energy consumption dramatically,
or slow down the performance of other tasks.

DISSECT-CF-Fog has a generic IoT device representation, which transmits the infor-
mation collected by the sensors to the processing units. To model Dew-related use cases
realistically, this representation was extended to provide various behaviors, including
service migration to mobile devices and temporary internet access limitation. To be as real-
istic as possible, the simulator also supports several types of device mobilities: (i) random
motion moves at random speeds between the minimum and maximum values in a random
direction in a circle of radius r for a period t, and then at the t + 1 moment, the speed
and direction may change. When the device reaches the edge of its moving environment,
the device is turned back according to the current degree of motion. (ii) Deterministic motion
is capable of moving at a given speed based on predefined geographic positions l1, l2, . . . , ln
in the specified order. When the device reaches position li, the next destination, if any, is
li+1. If there are no more positions, the device stops. Finally, (iii) GPS movement deals
with real GPS data. The coordinates are read from the files in a corresponding timestamp.
Besides these movements, devices can be placed in static positions; in this case, the initial
geographic coordinates of the device did not change during the simulation.
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3.1. Service Migration

Moving IoT devices may switch service providers at any time in order to ensure
the best QoS, which is called mobility-induced service migration. The main issue is how
to seamlessly redirect users to other computing notes without interrupting the service,
especially in the case of time-sensitive applications. Service migration can be distinguished
based on timing [18]. In case of proactive migration (i), the migration of the requested
service must be done before the device starts using it. With a proactive strategy, near-
continuous service is provided; however, it requires a preliminary decision. In case of an
incorrect decision, unnecessary migration can be costly and degrade QoS. With the reactive
strategy (ii), unnecessary migration can be avoided; however, partial outage of the service
is likely because the migration process is induced after the handover of the IoT devices.
Whichever strategy is used, the network properties, the physical distance, and the size of
the service influence the length of the process.

We focused on proactive migration mechanisms because service interruption is un-
acceptable for today’s real-time applications. As a result, the service is already ready by
the time the user’s device is received by the new node. In order to make such decisions,
the strategy has to decide when and where the service should be migrated. Typically it is
initialized when the response time or the latency increase due to the distance between the
node and the IoT device. To decide which other node (i.e., where) the service should be
migrated, the actual load, network delay, and physical position can be considered.

In this paper, a Markov chain was used for proactive migration prediction, because it
is a popular method for mobility estimation due to its efficiency and intuitiveness [19].
The Markov model looks at a set of data and attempts to establish rules between the
different directions of movement. The next estimate is based only on the measurements
that preceded it. Hence, the k-order Markov model examines the k− 1 of data preceding
the estimate.

The Markov chain defines a so-called Markov space, which can be written as a vector
of finite size. Let MS denote the Markov space, and MSt = xt denote the probability that
the model is in the xt state at time t (t = 0, 1, . . . ), formally:

P(MSt+1 = x|MS1 = x1, . . . , MSt = xt = P(MSt+1 = x|MSt = xt) (1)

The first step in a predictive procedure based on the Markov model is to define a
state transition matrix (denoted by P), where each element represents the probability of the
transition between two possible states, formally:

Pi,j = P(MSt+1 = xj|MSt = xi) (2)

Of course, the number of transitions can be increased if we want to take into account
earlier states in time, formally:

P(k)
i,j = P(MSk = xj|MS0 = xi) (3)

The transition matrix stores the probability between two directions measured in
degrees. This means that the size of the matrix is N × N, where N = 360. For example,
the 10th row and 250th column of the matrix give the probability that currently the device
is moving at an angle of 10 degrees, and in the next step, it will turn to the angle of
250 degrees.

In this model, we deal with the following assumption: The transition probability between
two closer angles is proportionally higher than further angles. For instance, the probability
that the device will turn from 90 degrees to 92 degrees is much higher than turning from
90 degrees to 180 degrees. Furthermore, the chances of turning from 90 degrees to 0 degrees
are the same as turning from 90 degrees to 180 degrees.

As we initially had no information about the moving behavior of the devices, we used
the assumption mentioned earlier to initialize the matrix P, as follows:
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1. With an appropriate function, which strictly monotonically increases, 0 to 179 degrees
are determined. In this paper, the following function is used, but it can be easily
changed in the simulator: ( e

π

)−0.2x
(4)

2. From 180 to 359 degrees, the previously defined values are mirrored and added to the
original vector in reverse order. The resulting values are shown in Figure 1.

3. The sum of the vector elements must be 1; therefore, each element is normalized in
the vector.

4. Each row of the matrix is obtained by shifting the elements of the vector constructed
before by the corresponding row of the matrix so that the highest values lie on the
diagonal of the matrix. The left neighbor of element 0 is element 360, and the right
neighbor of element 360 is element 0.

Figure 1. Vector values of 360 degrees.

As the simulator runs, we update the transition matrix of a device based on its
movement. The element of the matrix (i, j) is incremented by a constant ( 0.025

∑360
j=1 Pi,j

) if there is

a transition from i to j.
A weighted Markov model takes into account the partial results of previous steps with

different weights. It can be assumed that older movements have less effect on the outcomes
of the next move than recent movements. Thus, the weight coefficients decrease from 1 to k
for a k-order model. We define the weights as follows [20]:

ωi =
k− i + 1

∑k
m=1 m

, i = 1, 2, . . . , k. (5)
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As the last step to determine the estimated direction, we calculate the probability
of each possible direction (360). Assume that the current direction is dir1, the previous k
directions are dir2, dir3, . . . , dirk, and the possible direction is dirn:

dir1 → dirn :=
k

∑
j=1

ωjP
(k)
dirj ,dirn

(6)

The resulting values are compared, and the maximum value is chosen to obtain the
estimated value.

3.2. Limited Internet Access

The two main features of Dew computing are (i) independence when the functionality
of the cloud service is still available even with a limited internet connection, and (ii)
collaboration, when the information sampled and collected is exchanged automatically with
the cloud service. It can happen continuously or when internet access recovers. Dew
computing extends the cloud functionalities to the end users’ gadgets, such as laptops,
smartphones, and so on, which is often called a Dew server.

The different positions of the local Dew servers are depicted in Figure 2. Since distance
can have a critical impact on service response times, in this work, the movements of the
devices are also considered (devicea, deviceb, devicec). The increasing latency of the computing
nodes (nodei, nodej) is depicted by the ranges (range(nodei), range(nodej)), the closer a device
is to the boundary of the range, the higher the latency it deals with. These limitations are
considered as follows: devicea is located inside two ranges; therefore, it can decide which
node will be advantageously utilized by the device. Various properties can be involved in
such decisions (utilization cost, latency, workload). Moreover, deviceb device is limited to
communicating with the center node of the range. Finally, devicec is too far from any center
nodes, which means it is considered a Dew server in a non-internet zone.

However, if it is reached in the future by its movement (any range covered by at least
one node), the device would be able to begin communicating with a more beneficial fog
node. Typically, the nodes with fewer computing tasks and shorter response times are
preferred by the devices. On the contrary, if any device leaves a range (i.e., the response
time/latency becomes intolerable), it will act as a Dew server.

range(nodei) range(nodej)

nodei nodej
devicea

devicec

deviceb

movement
movement

movement

Figure 2. Limited internet access to smart devices.
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For Dew computing, only smart devices are considered that have sufficient networking,
storing, and processing abilities; thus, the service can be migrated to the associated smart
device. However, this should be handled with care, as it can greatly affect the battery life of
the device or slow down other tasks. In most cases, the capacity of the end users’ devices
is more limited than fog and cloud nodes, so computational tasks may take more time
to complete.

Nevertheless, today’s smart devices, such as laptops, tablets, personal computers, and
phones, fulfil the requirements of Dew computing to serve as Dew servers.

To model a smart/Dew device as similar as possible to a fog/cloud node, virtual
layers should be provided. As most Dew devices have general purpose memories and
CPUs, this is an easy task. In the virtualized Dew device architecture, we assume that there
is only one VM at a time, which is vertically scalable, (i.e., more resources can be allocated
to a given VM if needed). On the other hand, a standard fog server is also horizontally
scalable (i.e., it can run multiple VMs at the same time).

As a result, the device behaving as a Dew server (running a Dew service) will be
different form a full-fledged fog node, as it will not be able to serve other devices, but will
only respond to data from its own domain, which is processed and evaluated locally.

4. Evaluation
4.1. Weather Forecasting Scenario

In this subsection, we present an IoT-assisted weather forecasting scenario utilizing
both fog nodes and Dew services running on Dew devices. As can be sen in Figure 3, in the
central European area, drones fly and collect information about temperature, humidity, and
wind in the atmosphere (Droneblog.com (visited on 15 June 2022): https://www.droneblog.
com/how-drones-are-helping-with-weather-forecasting/), the size of the whole area is
around 850 × 230 km2. At the beginning, the devices are located at the edge of the map
(uniformly distributed) and are heading to opposite sides. Such devices are equipped with
computing and storing units (8 CPU cores, 8 GB RAMs, 16 SD-card), and fly at an average
speed of 70 km/h.

In the case of smart device data transmission, the communication delays are calculated
based on average 4G latency (50 ms) weighted with the physical distance to the node
utilized by the device.

To be as realistic as possible, we applied the cloud schema of the ELKH cloud of ELKH
SZTAKI (ELKH cloud of ELKH SZTAKI (visited on 20 May 2022): https://science-cloud.
hu/en) to determine the CPU processing power, network operations, and storage capacities
of physical machines for the experiments. Figure 3 depicts five fog nodes located in Lille,
Cologne, Frankfurt, Nuremberg, and Prague, each of them dealing with 32 CPU cores and
64 GB memory. The simulator can also calculate resource utilization costs, so we set VM
prices according to the pricing scheme of Amazon Web Services (Amazon Web Service
(visited on 15 June 2022): https://aws.amazon.com/ec2/pricing/on-demand/). Each VM
that runs on fog nodes has 4 CPU cores and 8 GB memory, which costs USD 0.116 hourly
("a1.xlarge").

To evaluate the proposed proactive service migration strategy, the following use cases
are defined: (i) without motion prediction and (ii) with motion prediction using the two-
order Markov model. In the first case, this means that service migration only happens
when the current position of a device is not covered by any node (i.e., reactive migration);
therefore, VMs are not initialized in advance. Our experiments considered a fixed number
of drones (i.e., 5000), but with different sizes of node ranges (50 and 100 km), to measure
the capacities and limitations of the defined architecture. The devices were moving around
for 12 h, and the data sampling period was set to 1 min. A measurement is equivalent to
100 bytes of data generation.

For this scenario, we used a PC with Intel Core i5-4460 3.2GHz, 16GB RAM, and a
64-bit Windows 10 operating system to run the simulations; due to the random generator
of the simulator, we counted the average values of the experiments, repeated five times.

https://www.droneblog.com/how-drones-are-helping-with-weather-forecasting/
https://www.droneblog.com/how-drones-are-helping-with-weather-forecasting/
https://science-cloud.hu/en
https://science-cloud.hu/en
https://aws.amazon.com/ec2/pricing/on-demand/
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Figure 3. The area of movements and the position of the fog nodes

To compare the results of the scenario runs defined in the previous section, we mea-
sured the following metrics in the simulator:

• No. VMs: Total number of VMs running on computing nodes.
• Node cost (USD): Total cost of the VMs with application of the AWS pricing.
• Node energy (kWh): Energy consumption of the computing nodes based on the

LPDS cloud.
• Timeout (minute): The time interval between the last data-unit procured and processed,

the shorter this interval is, the more real-time the simulation is.
• Data generated (MB): The total sizes of the generated data by smart devices.
• Data processed by device (MB): The total sizes of the data that were processed on the

device.
• Device processing time (minutes): The average processing time of the devices.
• No. initialized migration: The total number of events when a service was initialized to

migrate from a node to a device or vice versa.
• Simulation runtime (second): The necessary time to execute a simulation run in

the simulator.

The results of the evaluation scenario are presented in Table 2. Generally speaking,
when nodes overlap each other, which can only happen in the case of Cologne, Frankfurt,
Nuremberg, with the 100 km range, a device has multiple choices, it can process the data
locally or remotely. The 100 km long range ensures effective data offloading and device
handover; however, it also means the highest cost, USD 411.63. However, this effectiveness
also provides the fastest data processing, with a 1.35 min timeout.

As can be seen in Table 2, due to the proactive service migration strategy, more VMs
are used (35 in the case of the 100 km long range). Due to the uncertainty of the proactive
strategy (i.e., it can initialize launching VMs in advance, but eventually no migration
occurs due to the movement of the device), it deals with the highest energy consumption
(25.89 kWh) and initialized migrations (22,487).

It can also be observed that, in the first case, without motion prediction, around 60%
(203 MB) of the data—and in the second case, with motion prediction, around 50% (121
MB) of the data—are processed by Dew devices. These ratios can also be observed when
taking a look at how much time the devices spent processing data besides generating data
(405.68 and 243.7 min).

Finally, considering the time needed to run the simulation, applying the Markov-
model, the average simulation time increased (30 s), which can be explained by matrix
multiplication, and since DISSECT-CF-Fog is an event-driven simulator, by the handling of
extra events caused by migration.
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Table 2. Results of the scenario, simulating drone movements

Without Motion Prediction With Motion Prediction Difference

Node Range (km) 50 100 50 100 ∆50 ∆100

No. of VMs 34 33 37 35 3 2

Node cost (USD) 398.6 405.5 401.2 411.63 2.6 6.13

Node energy (kWh) 19.44 24.74 20.27 25.89 0.83 1.15

Timeout (minute) 2.06 1.79 1.85 1.35 -0.21 -0.44

Data generated (MB) 343.3 343.3 343.3 343.3 0 0

Data processed by device (MB) 203.75 171.14 203.66 170.66 −0.09 −0.48

Device processing time (minute) 431.0 361.2 405.68 353.7 −25.32 −7.5

No. of initialized migrations 15,233 17,185 20,291 22,487 5058 5302

Simulation runtime (second) 305 311 339 341 34 30

4.2. Smart City Scenario

To further examine the effectiveness of motion prediction in the simulator, we used a
smart city scenario, which is another representative IoT use case. Regarding the concept of
intelligent cities, smart buses (Smart Public Transit (visited on 24 August 2022): https://
www.nexcom.com/applications/DetailByDivision/smart-public-transit) help to organize
the fleet in increasing traffic, ensure safety, and enhance the traveling experiences via GPS,
motion sensors, and video surveillance systems.

In this artificial use case, we modeled the infrastructure of a bus route with five bus
stops: (A, B, C, D, E). Within the city, there are two fog servers (node1, node2) located 5 km
apart each other. The range of the fog servers is set to 2 km. Bus stops A and B are within
the range of node1, and stations D and E are within the range of node2. Stop C is outside the
range of both fog servers.

Smart devices on the buses are able to run services (e.g., real-time route planning
based on GPS data measured). The bus drives with deterministic movement, at an average
speed of 30 km/h in direction A→ B→ C→ D→ E. Stops B and C and C and D are far
apart (3.5 and 4 km, respectively), so it is worth migrating the service to the devices.

A total of 10 devices were simulated on 2 buses, and the devices generated 50 bytes of
data every 2 min. The simulation modeled 50 min of the operation; the network settings
and the specifications of machines were the same used in the previous scenario.

The simulation was run in two ways: (i) without motion prediction and (ii) with
motion prediction. Since VM startup could be time-consuming in the case of migration,
many data may be processed with delays. The results are shown in Table 3. In the first case,
it can be observed that only 76.4% of the IoT data were processed in time, but in the second
case, this ratio increased to 96.0%, thanks to the proactive migration.

In the previous scenario, we mainly focused on the physical environment, such as the
different ranges of the computing nodes, the number of used virtual machines, utilization
costs, and energy consumption to see how an IoT-Dew-Fog system would behave within
such circumstances. The critical point of the system is the following: due to an estimation,
we initialized launching the VMs in advance, but later it turned out that VMs were created
unnecessarily, which could increase the CPU load and energy consumption. Contrarily, no
VM initialization was triggered, but it should have been to serve the higher needs. This
time, instead of focusing on the physical environment (i.e., resources, utilization price, etc.),
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we examined the accuracy of our proposed proactive strategy. The triggering method of
migration was called 250 times during the evaluation. The results of the simulation in
this scenario can be seen in Table 3. The table depicts the main monitored metrics during
the simulations.

We also compared the ratio of the predicted and actual migrations. As we can see from
Table 4, false-negative migrations (missing instructions to start a VM) and false-positive
attempts (unnecessary instructions to start a VM) occurred two and seven times using the
two-order Markov model, which is 3.6% of the total triggering events. These results confirm
that the proposed migration strategy was successful during the evaluation scenario.

Table 3. Results of the second scenario simulating smart public transport.

Without Prediction With Prediction

Data generated (byte) 25,000 25,000

Data processed in time (byte) 19,100 24,000

Data processed delayed (byte) 5900 1000

Simulation runtime (second) 11 27

Table 4. Migration prediction rate of the second scenario simulating smart public transport
.

Actual
Migration Required No Migration Required

Predicted
Migration required 41 7

No Migration required 2 200

5. Conclusions

Distributed computing paradigms continuously evolve with the technical involve-
ments. To track such changes faster, simulation approaches are used in order to investigate
complex systems realistically.

In this paper, we utilized the DISSECT-CF-Fog simulator, presenting a proactive
service deployment scheme via a weighted Markov model to handle the lack of coverage
of computing nodes. We also proposed a model of Dew servers to deal with the limited
internet access resulting from the movements of smart devices.

The results show that the DISSECT-CF-Fog can be applied to model the offline oper-
ations of the mobile devices, which is a typical feature of Dew computing. Furthermore,
we compared the Markov model-based proactive migration with a regular, reactive migra-
tion strategy, with a drone-based weather forecasting scenario; in a smart transportation
scenario, we validated the motion prediction effectiveness of our proposed strategy. In
conclusion, the Markov model gives reliable prediction; thus, the processing time can be re-
duced. However, as a trade-off, the energy consumption and the utilization costs increased.

In the future, we would like to broaden the Dew-related functionality of the simulator
to evaluate more diverse IoT-Dew-Fog use cases, considering objectives such as sparsely-
or densely-distributed services and minimization of network-service latency.
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