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Abstract—During the manufacturing of tires or due to exces-
sive use, steel-cord belt plies may get damaged, single wires or
even entire cords may break. Steel cord discontinuities do not
always cause visibly detectable degeneration on the surface of the
tire, nevertheless, in these cases non-destructive testing methods
can still reveal defects inside the tire. In this paper we propose a
simple yet efficient method to detect discontinuities of steel-cord
belt plies in the tread area of tires, using automatic analysis of
X-ray images.

Index Terms—automatic tire inspection, steel cord discontinu-
ity, x-ray

I. INTRODUCTION

Tire manufacturing is a complicated process where many
components are used to build the different parts. In this study,
the important parts are the Tire tread which is the portion of
the tire that comes in contact with the road, the Tire belts
which are rubber-coated layers of steel, fiberglass, rayon, and
other materials located between the tread and plies, and the
Tire bead which are rubber-coated loops of high-strength steel
cable (see also Fig. 1).

Quality control is an essential part of the tire manufacture.
It can consist of visual inspection, check for imbalance, force
variation control, and X-ray control. The latter one is suitable
to detect impurities, air bubbles or discontinuities in the
interior of the tire. X-ray images are often analysed by human
observers which may result in misjudgement of the tire. To
improve the speed and efficiency, automatic detection methods,
using image processing and artificial intelligence shall be
developed. Defects in the sidewall can be detected by many
different approaches (see, e.g., [1]–[5]). However, there are
just few references discussing the detection of defects in tread
area. In [6], the authors proposed a detection method based
on the feature dissimilarity analysis, which can locate the
defects (such as impurity, bubble, and overlap) of tire images
and outperforms the traditional defect detection algorithms
in terms of various quantitative metrics. In [7], the authors
describe a detection method which also can be applied in the
tread area, but it is limited to crack detection.

In this paper we focus on detecting broken or missing wires
in the tread region, by an automatic radiographic analysis. To
our knowledge this type of failure has not been investigated
yet, even in [7] only failures caused by impurities and overlaps

were studied. Here, as a preliminary study, we provide a simple
yet efficient method to solve the problem. The structure of the
paper is the following. In Section II, we describe how the tire
X-ray images are produced. In Section III, we give a detailed
description of the proposed method and its implementation.
Then, in Section IV, we present our experimental results.
Finally, Section V is for the conclusion.

II. THE IMAGING PROCESS

We use the prototype X-ray scanner presented in [8] and
produce X-ray images from two different angles (70°and
110°), while the tire is fully rotated. Thus, we obtain two
outstretched 2D images of the examined object. The chosen
angles guarantee that the whole tread (the part of the tire where
the steel cords are present) is covered. The 70cm wide line-
detector contains 5566 pixels with 12 bit quantization ensuring
a submillimeter spatial resolution. The width of a raw X-ray
image is always 5566 pixels, while the height depends on the
diameter of the tire. Fig. 1 shows an example pair of raw X-
ray images, while Fig. 2 presents 3 samples taken from these
images, to explain the process in detail, in the followings. (For
further analysis, the images in Fig. 1(a-b) and Fig. 2 are avail-
able on the following website: http://www.inf.u-szeged.hu/
∼leko/pub/TireXRay/PreliminaryStudy/. The results for Fig. 1
can be seen in the first row of Table I, as Tire1.)

III. PROPOSED METHOD

The detection and analysis process starts with a prepro-
cessing step where the region of interest is identified. Then
we segment the steel strands and perform a morphological
thinning on the binarized image. We developed two different
techniques for tear detection (Primary and Secondary) com-
plementing each other.

A. Preprocessing

To reduce the size of the images to be analyzed we need a
preprocessing phase to determine the region of interest which
is the part between the two bead cores. The bead core is
made of steel having a large linear attenuation coefficient, thus
is observable as dark vertical strips in the image. It can be
extracted using a global segmentation, since intensities in this
part are close to the minimum. After finding the two biggest
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(a) 70° (b) 110°

(c) 70°- cropped (d) 110°- cropped

Fig. 1. (a-b) Raw X-ray images with a magnified part in the red rectangle.
(c-d) The same images after cropping the region of interest

(a) Sample no. 1 (b) Sample no. 2 (c) Sample no. 3

Fig. 2. Sample images

connected components corresponding to the bead core on the
left and on the right, we crop the intermediate area (see Fig. 1c-
d).

B. Segmentation of the steel cord strands

To segment steel cord strands we designed a special convo-
lution mask, based on the idea that in different tires the strands
are embedded in similar orientations. By conducting numerous
experiments, we succeeded to design a general convolution
mask which worked properly on each test data investigated,
and proved to be generally appropriate for our purposes. The
mask has a rectangular shape and its size is 14× 27 pixels. It
distinguishes two different regions: diagonal and background
points (Fig. 3). The width of the diagonal is 4 pixels. Formally,
the mask M14×27 is defined as follows. For an arbitrary point
(i, j) of the mask

M(i, j) =

{
-1, if (i, j) is a background pixel
#bg/#d , otherwise,

(1)

where #bg (#d) denotes the number of background (diagonal)
points respectively. In our case #bg = 283 and #d = 95.

Fig. 3. Convolution masks (enlarged)

Therefore, the value of the fraction in (1) is 283/95 = 2.9789.
The sum of the mask point values equals zero.

Of course, the resulting mask will highlight the lines only in
one direction. We can enhance the lines in the other direction
with the vertical flip of M , using the same method. Thus, in
the end, the lines with the direction of the two diagonals will
be highlighted (see first column of Fig. 5).

After the convolution, the intensities of the metal threads
will be sufficiently different from the background intensities.
Now, we perform an adaptive segmentation on the convolved
images to binarize them. In the X-ray images there can be
regions without metal strands. They remain homogeneous
even after the convolution. The standard deviation of the
pixel values in a predefined window (in our case, of size
50×50) centered at the pixel of a homogeneous region is low.
Therefore, if we treat the points with low standard deviation
as background points and keep only points of the image with
high standard deviation, we can maintain the steel strand lines
and delete the rest of the image (see second column of Fig. 5).

C. Thinning and extraction of the steel strands profile

The segmentation of the convolved images results in binary
images which indicate the steel strands with white pixels.
However, not every white pixel corresponds to a steel strand
point. In this form, the phenomenon of the tear cannot be
precisely identified yet. We could easily classify some white
pixels wrongly as strand points which, in fact, belong to
discontinuities. Thus, we have to examine the steel strands as
one-point thick lines. For this, we perform a midline thinning
on the binary images followed by a morphological pruning to
remove short branches [9]. As a result, metal strands become
one-point thick lines (see third column of Fig. 5).

Due to the fact that the tires often contain more than just
two steel cord belt plies, it may happen that the plies are
overlapped, or the metal strands appear side by side along the
tire in the same direction, or even the twisted metal strands
may slip apart (Fig. 4). In this case, the midline thinning is
likely not to give a satisfying result, namely, the one-point
thick lines do not exclusively consist of steel strand points.
Thus, an additional method is necessary.

For all the points along the extracted midlines, we identify
the perpendicular neighbor points. When at least one neighbor
pixel has a lower intensity than the actual midline point has,
we replace the midline point with the pixel having the lowest
intensity, among the investigated neighbors. As a result, we get
non-connected but consecutive point sequences, which contain
all the points with the lowest intensities, running across the
metal strands. We call this process as extended thinning (see
fourth column of Fig. 5).
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Fig. 4. Doubled metal threads

D. Primary tear detection

After the midline thinning, we can reveal tears which are
relatively long, or even shorter ones provided the steel strand
is bent. Indeed, in these cases, broken strands can be detected
as disconnected lines. It is easy to find the endpoints and the
branch points of a one-pixel wide line. A point will be an
endpoint if it has only one foreground neighbor and will be
a branch point if it has at least three foreground neighbors. If
endpoints or branch points are located not close to the borders
of the image, they indicate tears in the metal strands.

E. Secondary tear detection

In order to find shorter tears, we first have to determine
which points belong to the background and which to the
foreground. Due to the pattern of the tires we have to treat
each image point differently. Moreover, the images are often
noisy and cannot be enhanced using general filtering methods,
namely, the tears could be easily blurred which could compli-
cate their detection.

We propose the following algorithm for extracting the
background and foreground images. We first perform a basic
segmentation on the raw X-ray images. The resulted binary
image is considered to define the initial sets of the fore-
ground (object) and background pixels. After a dilation on the
foreground pixels, we calculate new intensity values for all
the foreground positions in the original grayscale image. For
this we use linear interpolation, based on the contour points
of the foreground regions. The same procedure is performed
on the background points. After an average filtering we get
two smooth images. The first one contains the background
intensities, which varies by region, based on the source X-
ray image, and the second one contains the same information
about the foreground intensities (Fig. 6).

Using the background and foreground images we can an-
alyze each point resulted in the extended thinning step, and
classify them by investigating whether their intensity is closer
to the background or to the foreground intensity, i.e.,

distOrigFg(i, j) = abs(origint(i,j) − fgint(i,j)) , (2)

distOrigBg(i, j) = abs(origint(i,j) − bgint(i,j)) , (3)

classify(i, j) =

{
tear, if distOrigFg(i, j) > distOrigBg(i, j)

metal thread, otherwise,
(4)

where origint(i,j) denotes the original intensity, fgint(i,j) and
bgint(i,j) is foreground and background intensity in the (i, j)
position, respectively. As a final step all the points classified as
tear points and having no tear point neighbors are considered
as noise and eliminated from the tear points.

IV. RESULTS

The output of the process is an image marked by colored
circles at the possible position of the tears (see Fig. 7).
Analysing this, an expert can decide whether these are real
tears or not.

To evaluate the methods we calculated the precision and
recall measures [10], [11]. Denoting the number of True
positive, False positive, True negative, and False negative
examples by TP, FP, TN, and FN, respectively, they are given
by

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
. (5)

Our aim was to maximize Recall, because it is not accept-
able to classify a tire as perfect if it contains tears. Precision
is of less importance in our case, because - as we mentioned
- after our designation a specialist will decide whether there
is a real tear or not. Table I presents the calculated values
together with the running time of the analysis, using X-ray
images of five tires. The number of broken strands is given
in the second column. The X-ray images of Tire 1-4 were
manipulated by creating 16-16 artificial defects using an image
processing software. Tire 5 contained 16 artificial and 12 real
broken strands. Recall is 1.0 in each case which shows that
no real tear is lost. High Precision values also show that
the majority of the indicated discontinuities are indeed real
tears. Thus, in summary, the developed automatic method
can greatly help the experts in detecting the steel cord tears.
From a practical point of view, the running time seems to
be acceptable, too. Nevertheless, it could be further sped up
with code optimization or parallel processing techniques, for
example.

TABLE I
RESULTS

Tears[nr] Recall [%] Precision [%] Runtime [sec]
Tire1 16 1.000 0.941 326
Tire2 16 1.000 1.000 233
Tire3 16 1.000 0.889 351
Tire4 16 1.000 1.000 267
Tire5 28 1.000 0.966 278

Average 1.000 0.959 291
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(a) Sample image no. 1

(b) Sample image no. 2

(c) Sample image no. 3

Fig. 5. The steps of the detection process on the sample images of Fig. 2. From left to right: convolution, segmentation, thinning, extended thinning
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Fig. 6. Background and foreground images extracted from Sample image
no. 1

(a) Sample no. 1 (b) Sample no. 2 (c) Sample no. 3

Fig. 7. Results - Red: primary tear detection, Blue: secondary tear detection

V. CONCLUSION

In this paper we described an automatic method to localize
tears in steel cords of tires of the tread region, using X-ray
images. The method uses image processing techniques to find
the defects. For the evaluation of the proposed solution, we
conducted experiments on X-ray images of different tires. We
found that the method can find the tears in all the cases,
and just rarely results in false positive evaluations, which
can be easily selected out by an expert. Thus, a promising
and efficient tool is developed to help quality control in tire
manufacturing.

The paper presents a preliminary study. In our future work
we plan to conduct a thorough experiment using also other
measures to evaluate our results. We intend to increase the
value of precision, incorporating further knowledge about the
metal strands and their possible tears. A fast implementation
is also among our future plans. We noticed that the running
time is mostly affected by processing the foreground and
background images, due to the linear interpolation. Thus, as a
first step, this part of the algorithm should be revisited.

ACKNOWLEDGMENTS

The authors thank the GriffSotf ZRT company for providing
access to their 3D Tire Scanner and Gábor Petrovszki for
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