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Pulmonary diseases represent four out of ten most common causes for worldwide
mortality. Thus, pulmonary infections with subsequent inflammatory responses
represent a major public health concern. The pulmonary barrier is a vulnerable entry
site for several stress factors, including pathogens such as viruses, and bacteria, but also
environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or
pathogen-associated molecular pattern and inflammatory agents e.g. damage-
associated molecular pattern cause significant disturbances in the pulmonary barrier.
The physiological and biological functions, as well as the architecture and homeostatic
maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting
the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and
cytokines, and is further covered with a mucus layer containing antimicrobial peptides,
which are responsible for the pathogen clearance. Submucosal antigen-presenting cells
and neutrophilic granulocytes are also involved in the defense mechanisms and
counterregulation of pulmonary infections, and thus may directly affect the pulmonary
barrier function. The detailed understanding of the pulmonary barrier including its
architecture and functions is crucial for the diagnosis, prognosis, and therapeutic
treatment strategies of pulmonary diseases. Thus, considering multiple side effects and
limited efficacy of current therapeutic treatment strategies in patients with inflammatory
diseases make experimental in vitro and in vivo models necessary to improving clinical
therapy options. This review describes existing models for studyying the pulmonary barrier
function under acute inflammatory conditions, which are meant to improve the
translational approaches for outcome predictions, patient monitoring, and treatment
decision-making.
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INTRODUCTION

Main functions of the lung as oxygen delivery and decarboxylation
require unique structures within the lung tissue, providing
physiological oxygen levels necessary for all human cell
functions. Pulmonary functions are based on gas-exchanging
units, i.e. alveoli mainly covered by epithelial cells. Together
with the pulmonary capillary endothelium and the basal lamina
inbetween, these alveolar epithelial cells (AECs, comprising two
main cell types: pneumocytes type I, and pneumocytes type II)
form a tight barrier. This so-called air-blood barrier enables an
efficient gas exchange between air and blood, prevents the influx of
protein-rich fluid into alveolar spaces, and protects the body from
pathogenic microorganisms and environmental pollutants (1).
Undisturbed gas exchange is crucial for maintaining oxygen
supply and cell survival. Therefore air-blood barrier dysfunction
is a critical pathological event leading not only to lung injury but
potentially to patient morbidity and death (2, 3). Physiologically,
maintenance of the barrier is guaranteed by anti-inflammatory
reactions, involving complex interactions between and among
immune cells and structural lung cells (4, 5). In particular, the
interaction of AECs with alveolar macrophages (AMs) maintains a
balance in the air-blood barrier, and enables self-repair processes
at and of the barrier (6). However, aerogene stimuli like bacterial,
viral, and fungal agents, as well as inhaled toxic particles and
physical stress factors as pressure waves, trigger local and systemic
pro-inflammatory reactions mediated by immune cells, such as
dendritic cells (DCs) and AMs (7–9). This provoked release of
pro-inflammatory mediators (e.g. tumor necrosis factor (TNF)-a,
interleukin (IL)-1b, IL-8) as well as the production of reactive
oxygen and nitrogen species (RONS) (10, 11) outweigh the anti-
inflammatory processes at the air-blood barrier. Pulmonary
inflammation plays an important role in the pathogenesis of
acute pulmonary diseases, like pneumonia, as well as in the
development and progression of chronic inflammatory disorders
such as asthma and chronic obstructive pulmonary disease
(COPD) (12, 13). Moreover, damage of AECs contributes to the
development of acute respiratory distress syndrome (ARDS), one
of the most destructive inflammatory processes occurring in the
lung (14). Due to the vital role of the lungs in gas exchange,
excessive inflammation in the lung tissue often leads to life-
threatening conditions (15).

Lung injury is the primary cause of patient morbidity and
mortality in many diseases, including coronavirus disease (SARS-
CoV-2). The histopathological studies demonstrated a significant
and profound alveolar damage and pneumonia, which progresses
to ARDS and in the long-term to lung fibrosis in a multitude of
patients (16). Meanwhile, the clinical manifestation of SARS-CoV-
2 is paralleled by a sudden surge in pro-inflammatory cytokines
known as “cytokine storm,” parenchymal loss, immune
infiltration, and fluid-filled alveoli, altogether potentially
resulting in an acute pulmonary failure and death (17, 18).
Thus, to develop safe and effective therapies for infectious and
inflammatory pulmonary diseases, it is crucial to understand cell-
type-specific changes as well as the mechanisms and sequalae of
the humoral immune responses in the lung. Additionally, reliable,
well-defined experimental models with standardized conditions
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can provide a high-throughput therapeutical screening tools.
Apart from in vivo models, several in vitro approaches have
been developed to mimic the response to both pro-
inflammatory stimulation and anti-inflammatory treatment,
which range from simple cellular monolayers, multicellular
models with primary or immortalized cell lines, primary tissue-
derived organoids, alveolosphere cultures, to 3D multicellular
systems of lung epithelial tissue. These approaches serve as a
versatile and realistic toolkit for modeling and studying the
pulmonary barrier function, and as screening tools for drug
efficiency and safety. In the current review, we highlight
different in vivo and in vitro models to examine pulmonary
barrier, particularly during acute inflammatory conditions
leading to lung injury.
THE ROLE OF OXIDATIVE STRESS IN
LUNG HOMEOSTASIS AND
BARRIER INJURIES

Depending on the type of RONS that is generated, they can either
cause oxidative damage to biomolecules and biological structures
or contribute to intracellular signaling cascades (19). Early phase
RONS, such as superoxide, hydrogen peroxide and nitric oxide
(NO) are predominantly involved in signaling, while secondary
RONS, such as peroxynitrite (ONOO) and hydroxyl radical are
associated with oxidative damage to biological structures (19).
Excessive production of RONS and oxidative damage may
initiate a loop forward vicious cycle causing further damage to
host cells (20, 21). This is due to the fact that induction of
oxidative stress can further accelerate inflammation via NF-kB
mediated pathway (22). Enhanced RONS generation and
subsequent activation of oxidative stress-related pathways are
the key processes causing damage to the pulmonary barrier via
several specific pathological mechanisms (23). Thimmulappa
et al. suggested eight oxidative stress-related mechanisms
underlying pulmonary barrier damage: (1) lipid peroxidation, a
process which disturbs the integrity of lipid bilayer of epithelial
cells increasing their permeability, (2) RONS-induced activation
of inflammatory response, (3) RONS-mediated activation of
pathways involved in programmed cell death and more
recently ferroptosis (24), (4) oxidative stress-mediated
mitochondrial dysfunction, (5) endoplasmic reticulum stress-
mediated disruption of protein synthesis (6) RONS-mediated
epigenetic modifications via direct interaction with DNA/RNA,
(7) activation of profibrotic mechanisms associated with
endothelial cell dysfunction, and (8) airway mucus
hypersecretion (23). AMs play a key role in the induction of
these RONS-mediated pathways, since they are the first immune
cells dealing with pathogens or foreign substances in the lung.
They respond to bacterial/viral pathogens or their components
such as pathogen-associated molecular pattern (PAMPs) or to
substances released from damaged host cells (damage-associated
molecular pattern, DAMPs) by releasing pro-inflammatory
cytokines such as CXCL8, which upon release recruit
neutrophils, the strong generator of ROS, into the lungs. AMs,
July 2022 | Volume 13 | Article 895100
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AECs and neutrophils generate RONS predominantly via
activation of NADPH oxidase (NOX)-2 located in the cellular
membrane of these cells (25, 26). The activity of this enzyme is
tightly linked to the intracellular generation of mitochondrial
RONS. In addition to RONS derived from NOX and
mitochondria, also xanthine oxidase and uncoupled NO-
synthase (NOS) can contribute to excessive RONS generation
occurring upon inflammatory conditions (27). Activation of both
NOX-2 and NOS in turn stimulates the production of
mitochondrial RONS and their release in cytoplasm via two
discrete feed-forward loops (28). This interplay between
intracellular and extracellular RONS generators can be
beneficial in elimination of bacteria (28). However, the
overproduction of intracellular RONS uncouples endothelial
isoform of (e)NOS, which leads to formation of harmful
peroxynitrite (ONOO-) instead of NO. ONOO- further
aggravates oxidative stress and endothelial dysfunction (29). In
addition to PAMPs and DAMPs, angiotensin (Ang)-II also
activates NOX-2 via protein kinase (PK)C pathway (30), which
leads to excessive RONS generation and pulmonary barrier
damage particularly during SARS-CoV-2 infection. Therefore,
oxidative stress and exaggerated inflammation are the major
contributors to pulmonary barrier disruption which plays critical
role in the pathogenesis of pulmonary diseases, including ARDS.
Although pulmonary immune and oxidative homeostasis will
not be further addressed in this review, it is of utmost importance
to note that the pulmonary homeostasis is maintained by a
complex network of tissue-resident cells as well as recruited
immune cells. Incorporation of this complexity and
orchestration into in vitro models is highly challenging but
essential to determine und identify novel strategies for disease
prevention and treatment. Therefore, it is essential to unfold this
complexity by understanding different cellular and factoral
entities of the pulmonary barrier and their incorporation into
the experimental models.
SPECIAL FEATURES OF THE
MICROCIRCULATORY
PULMONARY BARRIERS

Pulmonary microcirculation is an important component of the
pulmonary barrier, and it is characterized by unique features
differing from those of the systemic microvasculature. The
pulmonary circulatory bed belongs to the low-resistance
circulation area that must adopt to the cardiac output. Lung
capillaries have extremely high density (comprising of ~600
billion capillaries) (31, 32) with considerably low flow and
narrow diameter (33). Lung capillaries originate directly from
relatively large arterioles and not only from arterioles with
precapillary sphincters (34), therefore, they are less protected
from increases in pulmonary arterial pressure and prone to
edema formation (35). In contrast to the systemic circulation,
pulmonary circulation responds to hypoxia by vasocontriction
and not with vasodilation (36). Pulmonary microvessels
temporarily entrap polymorphonuclear leukocytes (PMNs)
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during a physiological process called PMNs margination,
whereby 2-3 times higher number of PMNs reside in lung
microvessels than in the systemic circulation, reaching
dynamic exchange and an equilibrium between the two
compartments (37). Unlike systemic circulation, PMNs
emigration into the alveolar space takes place not only in
postcapillary venules, but also through the capillary network
(38) and larger arteries (39). Another unique feature of the lung
microvasculature is constitutive expression of adhesion
molecules (P-selectin and ICAM-1) (40–42). Nonetheless,
typical intravascular rolling of PMNs was not reported in lung
capillaries (43), and the role of classical adhesion receptors
involved in neutrophil recruitment (selectins and integrins)
remains to be debate in the inflamed lungs. As opposed to the
systemic circulation, PMNs adhesion occurs through both
CD11/CD18-dependent and -independent ways, depending on
the cause (e.g. the source of infection) (44, 45). In addition, the
role of dipeptidase-1-dependent PMNs adhesion has been
recently reported (46). Therefore, it is important to optimally
model pulmonary vasculature in the experimental set ups and
choose an appropriate method to examine changes induced upon
acute injuries. In further chapters of this review, we provide an
overview about possible in vitro models addressing this
complex issue.

Figure 1 provides an overview on general mechanisms of
pulmonary barrier damage.
IN VIVO EXAMINATION OF THE
PULMONARY MICROCIRCULATION

Direct assessment of pulmonary microcirculation in septic
patients is difficult to implement, thus suitable in vivo models
are used to analyze several aspects of sepsis-related pulmonary
dysfunction. In vivo examination of changes in microcirculation
of the whole lung can be conducted by several methods including
micro-computer tomography (CT) (47), and dynamic
approaches such as single photon emission computed
tomography (SPECT) (48) or microsphere techniques (49). If
acquisition of spatiotemporal changes in circulatory and cellular
inflammatory features of the microcirculatory compartment are
of interest, different forms of intravital microscopy (IVM) could
probably be a tool of choice (50, 51). These methods are based on
conventional, one/two-photon or confocal fluorescence
microscopic imaging methods as well as polarized light- and
sidestream dark-field-based approaches in nearly all
experimental animal species. During examination of the lung
with IVM, observation of superficial microcirculation network of
subpleural alveoli can be made possible via a surgically
implanted thoracic window approach (52) supplemented with
suctioning devices for stabilization purposes (53, 54). Yet,
pulmonary motions and the beating heart cause fluctuations in
vascular pressure and motion artifacts. Pulmonary movements
could be overcome by taking recordings during end-expiration
or after cessation of mechanical ventilation (55). Although the
penetration depth of IVM methods is limited (<100 mm) (54),
July 2022 | Volume 13 | Article 895100
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time-wise changes in microvascular diameters and capillary
recruitment (55, 56), in cell-to-cell interactions (57–59), as well
as alterations in endothelial glycocalyx (GX) integrity (60, 61)
can be detected. Once IVM is combined with other methods, e.g.
optical coherence tomography or multispectral oximetry,
alveolar/airway dynamics (62, 63) and alveolar dynamics in
parallel with capillary perfusion (55) can also be examined.
Furthermore, subcellular process can be observed with two-
photon microscopy at high resolution (54).

Leukocytes represent a particularly important first line of
defense against airborne pathogens in the lungs. To date, IVM
provides one of the best real-time methods to assess PMNs-
endothelial and PMNs-platelet-endothelial interactions with
regards to physiological PMNs margination (57, 64, 65). IVM-
based studies have revealed the impact of leukocyte-platelet
interactions (66) and their role in endothelium activation in
the lungs (67, 68).

Although current experimental models are incomplete to
recapitulate the major features of an acute lung injury and its
clinical manifestation, the ARDS (69), the microcirculatory
manifestations, ventilation- and sepsis-induced acute lung
injury have been thoroughly examined in several studies.
Numerous reports highlighted the impact of ventilation on
microcirculatory processes in the lungs under experimental
circumstances. Accordingly, respiration with high positive end-
expiratory pressure (PEEP) values cause deterioration in
capillary perfusion (56), and high respiration volumes evoke an
exacerbation of endothelial-inflammatory cell interactions (70,
71). Ventilation-induced lung injury is also associated with the
formation of neutrophil extracellular trap (NET) or NET-osis
(72). Furthermore, increases in the lung microvascular pressure
have been shown to increase cytosolic and intramitochondrial
Ca2+ levels of endothelial cells (64, 73) with subsequent increase
Frontiers in Immunology | www.frontiersin.org 4
in pro-inflammatory cytokines and endothelium-derived
adhesion molecule expression (64, 74). Looney et al. recently
suggested that alveolar epithelium and vascular endothelium
form a cellular syncytia favoring the spread of Ca2+ signal in a
vectorial manner so as to achieve inflammatory communication
in the multicellular environment within the lung, in response to
mechanical forces (50).

Sepsis models are frequently used as acute lung injury models,
and their relevance is marked by the fact that ARDS is a critical
prognostic factor for mortality of clinical sepsis (75). In sepsis,
lower pulmonary infections represent the leading cause of death
(76). Further, diminished functionality of the microcirculatory
perfusion is associated with increased mortality in septic
patients. Notably, the ProCESS trial demonstrated an
association between vascular density and De Backer score of
sublingual microcirculation at 72 hours with 60-day mortality in
septic patients (77). In experimental sepsis, CD11b/CD18-
dependent PMNs accumulation in lung microvessels with a
resultant mismatch in pulmonary ventilation-perfusion ratio
could be visualized using IVM (59). Moreover, a link between
heparanase-dependent process and the increase in PMNs
adhesion has been demonstrated with IVM in the lungs of
septic patients.

Moreover, IVM method allows the examination of
endothelial surface layer GX which is in direct contact with the
blood (78). Schmidt et al. showed that GX in the pulmonary
endothelial cells appears to be thicker than in the systemic
circulation, and is more vulnerable to sepsis than in other
organs (60). Indeed, experimental endotoxemia/polymicrobial
sepsis was associated with the degradation of GX (61). The
relevance of these findings is underlined by observations
whereby shedding of GX constituents from the injured
endothelia into the blood stream was found to be important
FIGURE 1 | General mechanisms damaging pulmonary barrier. Infection via pathogen-associated molecular pattern (PAMPs) or damage-associated molecular
pattern (DAMPs), the latter released due to physical damage of pneumocytes, activates alveolar macrophages (AMs) and later other immune cells migrating into
alveoli. Excessive activation of AMs leads to the development of lung injury due to excessive generation of reactive oxygen and/or nitrogen species (RONS), cytokine
storm and pro-coagulant activity.
July 2022 | Volume 13 | Article 895100
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biomarker of pulmonary failure in patients undergoing septic
shock (79). Elevated plasma levels of GX degradation products
were also demonstrated in SARS/CoV/2 patients at a severe stage
of the disease, and these changes were accompanied by GX
damage in sublingual microvessels (80).

In summary, the functionality of the pulmonary
microcirculation can be examined by several sophisticated
methods of which IVM seems to be the method of choice for
examination of pulmonary microcirculatory barrier upon lung
injury. Despite an increasing understanding on the importance
of microcirculatory changes in the progression of pulmonary
diseases, so far, no specific microcirculation-targeted therapy
reached a clinical significance. Nonetheless, real-time monitoring
of disease progression and pulmonary microcirculatory
manifestations upon therapeutic interventions may represent
an important tool towards successful treatment of acute
lung injury.
MEASUREMENTS OF PULMONARY
MECHANICS IN ANIMAL MODELS

The structural extensity of airway epithelial cells and their crucial
functions in the pulmonary barrier highlight the need to perform
a comprehensive assessment of pulmonary mechanics in the in
vivo studies. Animal models cover a wide range of pathologies
including pulmonary fibrosis (81), smoke-induced chronic
obstructive lung disease (82), neonatal chronic lung disease
(83, 84), ventilator-induced lung injury (85, 86), viral and
bacterial infections (86, 87). These models involve both airway
and parenchymal alterations forming a complex scenario.
Although the airway and lung parenchymal compartments are
structurally connected, and operate together to maintain the
pulmonary mechanics (88), characterizations of airway/
parenchymal mechanics in terms of resistance (R) and
elastance (E, the reciprocal of compliance) remained underrated.

Methodological precision and non-invasiveness tend to
oppose each other, and this is referred to as the “phenotyping
uncertainty principle” (89). At one extreme, the popular whole-
body plethysmography in unrestrained animals was suggested to
measure airway reactivity (90); however, this method has been
shown to reflect more the changes in breathing pattern than the
mechanical properties of the lungs (91). In contrast, the low-
frequency oscillometry technique (LFOT) (92), which is
considered the most sophisticated and selective assessment of
the airway and tissue mechanics to date (93, 94) requires
anesthesia and tracheostomy or intubation/cannulation of
the trachea.

There are several other methods overviewed (89, 94). A
robust traditional approach in mice (95) is the fitting of the
transpulmonary pressure to a multiple-linear model of flow- and
volume-dependence to obtain values of R and E. The main
limitation of this technique is that the airway and tissue
resistances are combined in the value of R. Attempts have been
made to implement the widespread human pulmonary function
tests such as the measurement of forced vital capacity (FVC) and
Frontiers in Immunology | www.frontiersin.org 5
forced expiratory volume in 1 s (FEV1) in small animals (96).
However, the value of this implementation is dubious as
increasing evidence challenges the sensitivity and structural
specificity of the FEV1/FVC test (97).

LFOT employs small external pressure or volume oscillations
during apnoeic intervals to estimate respiratory impedance (Z) at
multiple frequencies covering the respiratory rate of the species
(92, 98). The “constant-phase” model (CPM) of lung mechanics
(92) is fitted to the measured Z values to obtain the parameters of
airway resistance (Raw) and inertance, tissue damping (G) and
elastance (H). The unique feature of this model is that G and H
characterize the viscous losses and energy storing, respectively, of
the respiratory tissues over a wide range of breathing and
oscillation frequencies. The CPM has been validated in
multiple studies using different resident gases, demonstrating
the clear separation of the airway and tissue compartments. It
has also been shown that non-uniform behavior of the lungs
lends a virtual component to G (99). Extension of the CPM to
express inhomogeneity via distributions of peripheral airway
resistances and/or parenchymal units (100–103) has added
further flexibility to cover diverse pathological alterations in
lung mechanics. A large number of studies have contributed to
establishing normative values for the CPM parameters in
different species (93). Over 4 decades of body weight from 2-
wk-old mice to adult humans, Raw, G and H arrange on the same
trajectories and the log-log plots display high correlation
coefficients (r2 = 0.91-0.98), while the G/H ratio expressing the
mechanical efficiency or hysteresivity (103) of the lung tissue
remains at the level of ~0.2, largely independently of the lung size
(93). Thus, the LFOT-CPM method can be suggested as a
universally accepted approach, yet with a parsimonious
number of parameters, to evaluate lung mechanics in animal
models of pulmonary diseases.

Majority of the methods on lung mechanics are used on the
whole respiratory system. Therefore, the results include the
mechanical impedance of the chest wall, unless thoracotomy or
oesophageal pressure measurement is performed. In larger
mammals, chest wall properties may mask the changes
occurring in the lungs, whereas in small rodents with
compliant chest wall structures, especially in mice, this error
may be negligible.

Finally, in many models of pulmonary disease the temporal
dynamics of the development of pathological changes may
become a primary aspect. Repeated studies are technically
feasible in mice (104) and rats (105) and they can be combined
with high-sensitivity lung function techniques to properly
address the questions raised in the animal models.
ALVEOLOCAPILLARY IN VITRO MODEL
(AIR-LIQUID INTERFACE)

In the past years, several in vitro models of the air/blood barrier
were developed. The principal aim was to enable the use of a
solid method for investigations of the air/blood barrier and
determine the potential impacts of harmful exposures. In
July 2022 | Volume 13 | Article 895100
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contrast to submerged 2D culture models, the air/blood model
mimics the air surface side of the alveolar epithelium. As cells of
the pulmonary system show an environment-dependent
differentiation behavior, it is crucial to mimic this air/
interstitial environment. Airway cells cultured in the air-liquid
interface (ALI) show significant morphology and barrier
characteristics compared to the submerged culture condition
(106). Therefore, ALI models are particularly exploited to
investigate the impact of various exposures on the barrier
integrity by using several immortalized cell lineages (107). In
the ALI model, cells are grown on transwells or biological
scaffolds (108), where the basolateral side is in contact with cell
culture media, whereas the apical side of the cells is exposed to
the air (109). The currently used cell lines are either of alveolar
origin (A549 (110), hAELVi (111), hAEpC (112), and NCI-H441
(113), H358 (108), HCC827 (114) or of bronchial origin [Calu-3
(115), BEAS 2B and 16HBE 14o- (116), primary human airway
epithelial cells (pHAECs) (117)]. Interestingly, pHAECs were
successfully grown in miniaturized transwell plates (118). These
primary human cells are superior to immortalized cells in terms
of cell behaviour. However, they lack comparability due to
donor-dependent attributes. This limitation was overcome by
ALI differentiation of human-induced pluripotent stem cells into
AEC II (119). Given the lack of blood supply in ALI model,
modification made by co-culturing capillary endothelial cells,
including HPMEC (114, 120) and EA.hy 926 (121) with AECs to
optimally recapitulate the air-blood barrier (122). Combination
of both endothelial and alveolar components allows optimal
assessment of the cell-cell interaction during pulmonary
inflammation (114, 123). For instance, the impact of bacterial
component lipopolysaccharide (LPS) (124, 125) or human
inflammatory cytokines like initerferon (IFN) or TNF (118) on
the barrier is evaluated by ALI model. In such models, it is
possible to include leukocytes in addition to the alveolar cells
(126, 127) and endothelial cells in a triple culture to optimally
mimic disruptive barrier conditions during inflammation
(120, 128).

Although 2D monolayers or well-differentiated airway
epithelial cells in ALI are commonly used to investigate
pulmonary inflammation (129, 130), these models undermine
the impacts of inflammatory cells recruiting to the site of
inflammation. To close this gap, primary human vascular
endothelial cells (HMVEC-LB1), human white blood cells
(WBC), and their co-cultures can be used to evaluate their
inflammatory responses to various inflammatory stimuli (131).
HMVEC-LB1 cells can be applied as an in vitro model to
examine pro-inflammatory responses to inflammatory trigger
by measuring the production and/or release of IL-6, soluble
intercellular adhesion marker (sICAM)-1, or soluble vascular cell
adhesion marker (sVCAM)-1 (131). Furthermore, an alveolo-
capillary barrier in vitro model consisting of a co-culture system
of human distal lung epithelial cells and HMVECs was
established (113, 132) to assess epithelial-endothelial
interactions in context of acute lung injury (113). Functional
cellular junctions are formed in these models by a tight epithelial
barrier similar to in vivo conditions. More specifically, the in
Frontiers in Immunology | www.frontiersin.org 6
vitro co-culture system consist of monolayers of human lung
epithelial cell lines (A549 or NCI H441) and HMVECs on
opposite sides of a permeable membrane. Although A549
failed to show sufficient differentiation with respect to
formation of a tight epithelial barrier with intact cell-cell
junctions (113), the co-cultures of NCI H441 and HPMEC
established differentiated monolayers after stimulation with
dexamethasone by forming tight junctional protein, ZO-1 and
the adherens junction protein, E-cadherin (113). Furthermore,
the model induced a polarized epithelial cell monolayer with
typical junctional structures as confirmed by transmission
electron microscopy. Taken together, such a co-culture system
constitutes a suitable in vitro model to examine e.g. functional
barrier epithelial, and epithelial/endothelial interactions in the
pathogenesis of acute or toxic lung injury and inflammatory
lung diseases.
IN VITRO MODELS OF PULMONARY
INFLAMMATION AND
BARRIER FUNCTION

Simple monoculture studies have enabled researchers to
understand the abnormal phenotypes of lung cells in diverse
pathologies. For example, 2D models are well established for the
research of lung function, as they can fully differentiate to airway
cells as well as AEC I-like and AEC II-like cells (133). Although
2D cultures are well established in pulmonary epithelial barrier
studies, in vitro co-culture models are advantageous in
recapitulating the complex structure and function of native
lung by mimicking the multicellular interactions. Such co-
culture models aiming to assess cellular communication in the
lung include conditioned medium-exposure experiments,
epithelial-mesenchymal co-cultures, and several 3D co-culture
models. 3D cultures can be further differentiated into so-called
“human lung organoids” (HLOs). These lung progenitors can
give rise to proximal airway-like structures, as well as to alveolar
cell types (134, 135). Furthermore, biological and synthetic
scaffolds like decellularized rat and human lung slices or whole
organs can be used to develop a more functional lung cell
response to inflammation (136–138). These models provide
insights into cellular communication either directly via
assessment of cell-to-cell interactions or indirectly via
assessment of the release of soluble mediators which mimic in
vivo conditions in the pulmonary system. Nevertheless, various
models require careful assessment of cell entities as well as used
culture media to ascertain the viability and functionality of co-
cultured cells.

2D In Vitro Models
It is already known from simple co-culture experiments that the
cellular constituents of the alveolar-capillary wall may be key
determinants in the recruitment of PMNs to the lung through
the generation of chemotactic agents including IL-8 (139). This
IL-8-mediated recruitment of PMNs occurs via AM-derived
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chemokines, TNF, and IL-1 that induce IL-8 release from AEC II
cells (139). 2D models have demonstrated potential cell-to-cell
communication circuits that are important between AMs and
AECs during the recruitment phase of acute lung inflammation.
Furthermore, it was reported that unique location of the
pulmonary fibroblasts (PFs) allows communication between
the vascular compartment and alveolar airspace in a
bidirectional fashion, which is essential for recruitment of
inflammatory leukocytes into the lung (140). It is reported that
PF-derived IL-8 expression in co-culture was first dependent
upon activation of the AMs by LPS and subsequent release of
macrophage inflammatory mediators (140). Thus, interaction
between AMs and PFs may be important in the pulmonary
barrier, resulting in the generation of IL-8 and subsequent
recruitment of inflammatory leukocytes (140).

Since the AECs can release several chemokines fundamental
to both inflammatory and immune responses, a simple
monolayer culture using A549 cells which are representative of
alveolar epithelium can be used to mimic inflammatory
conditions (141, 142). A549 cells can be exposed to cell culture
medium that has been conditioned by tobacco smoke, known as
submerged culture, to study different lung pathologies (143).
This model can be used to mimic lung pathologies in COPD, as a
tobacco smoke-related pulmonary disease, which is
characterized by heterogenous pathologies including chronic
inflammation involving different cells, mainly epithelial cells,
macrophages, neutrophils, and CD8 lymphocytes (143, 144).
Exposing A549 cells to tobacco smoke-conditioned medium
provoked the release of chemokines by lung epithelial cells
(145). Such simple in vitro epithelial cell culture model may
allow the initial evaluation of novel anti-inflammatory
compounds for the treatment of e.g. COPD. Furthermore, this
approach may facilitate replacement of animal experimentation
in novel drug screening for COPD (145).

Other in vitro models to study e.g. the endothelial-dependent
mechanisms that mediate leukocyte recruitment and address
leukocyte adhesion or in depth biochemical analyses during an
inflammatory response are based on the isolation of murine
vascular endothelial cells from the lung and heart and
subsequent ex vivo in vitro culture (146). The isolated
endothelial cells with this method provided high purity rates
(85-99%) and retained their functional differences, including
constitutive and cytokine inducible adhesion molecule
expression and chemokine production (146).

Co-Culture Models in ALI
The co-culture models with two cell types have been extended for
further pathology-relevant cell types. AMs demonstrate a specific
functionality, as they inhabit a unique microenvironment with
high oxygen levels and exposure to external hazards. Thus, those
cells have been integrated in a multicellular co-culture systems of
the respiratory tract to unravel mechanisms underlying
pulmonary inflammation (122). Kasper et al. have studied the
immunological impact of distinct macrophage phenotypes that
were seeded on to the epithelial layer of an established in vitro
air-blood barrier co-culture, consisting of alveolar epithelial cells
and microvascular endothelial cells on the opposite side of a
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transwell filter-membrane (122). Of note, healthy AMs display
an anti-inflammatory phenotype, that prevents hypersensitivity
and maintains tissue homeostasis in the alveoli (147). The
physiological functions of AMs are provided by three
differentially polarized AMs types, including classically
activated M1 and alternatively activated wound-healing M2
and regulatory M2 macrophages (147, 148). LPS challenge can
be applied to evaluate activation of AMs by measuring the release
of pro-inflammatory molecules e.g. IL-8 and sICAM upon
stimulations (147, 149). M1 macrophages were used in these
models to provoke severe inflammatory-like response of the air-
blood barrier co-culture, whereas “non-inflammatory” M2
macrophages may be used to establish a quiescent,
physiological in vitro air-blood model (122). These complex
co-culture models of alveolar epithelial-endothelial cells and
macrophages provide a responsive in vitro model of the air-
blood-barrier that mimics inflammatory features similar to in
vivo condition (122). Nevertheless, it is still challenging to
identify the most appropriate cell line as well as ALI culture
method to be used in these models. Recently, studies with the
CuFi-1 and the NuLi-1 (healthy bronchial epithelial cell lines)
cells have demonstrated that both cell lines fully differentiate in
ALI culture with significant mucus production and secretion,
expose an inflammatory response characterized by IL-6 and IL-8
production, and functional tight junctions (150). Thus, in vitro
ALI models with these cell lines may be promising to investigate
the inflammatory condition in air-blood barrier co-
culture models.

3D In Vitro Models in ALI
3D cultures are superior to 2D models as they optimally mirror
the complex functional structure of a native lung. In 2008, the 3D
in vitromodel of the human airway was generated by using a co-
culture of normal human bronchial epithelial cells (HBEs) and
normal human fibroblasts for the health risk assessment of
carbon nanotubes on the human respiratory system (151). In
this model fibroblast-embedded collagen I gels were used in
combination with bronchial epithelial cells in ALI. 3D model was
generated by adding a mixture of collagen and normal human
lung fibroblasts (NHLFs) to the underside of a transwell
polyester membrane, whereas HBE cells were seeded on top of
the polyester membrane (151). Furthermore, complex tetra-
culture systems combining lung alveolar epithelial cells,
endothelial cells, macrophages, and mast cells in 3D have been
developed to accurately model inflammatory condition in
vitro (152).

Another in vitro ALI 3D human airway model includes
airway cells from patients undergoing surgical polypectomy
and MucilAir (Epithelix Sarl, Geneva, Switzerland) airway
epithelia cultured in transwell inserts (153). Here, a range of
different parameters such as cytotoxicity, cell barrier integrity,
viability, morphology, ciliary beating frequency, mucociliary
clearance, and cytokine release can be analyzed for predictive
accuracy for e.g. respiratory toxicity. In addition to ALI 3D
human airway models, various 3D airway tissue models based on
a collagenous scaffold were developed (154). The advantage of
this system is that the scaffold contains a basement membrane
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(155) that maintains natural barrier function. Complex co-
cultures of primary epithelial cells (156) primary fibroblasts,
and endothelial cells (114) can be built up on this scaffold. These
complex models have been successfully combined with the
immune cells to investigate of infection biology (108).

Another interesting approach to generate 3D lung structures
is an ultrasound trap-based technique to rapidly form cell
aggregates known as spheroids (157, 158). Here, different cell
types including A549 can be applied to study e.g. different
receptor expression and cytokine response (157). 3D spheroid
cultures “mimic” the typical in vivo cell responses to e.g.
endotoxin during the development of inflammation and may
be a superior in vitromodel compared to other in vitromodels to
study inflammatory conditions (157).

3D Bioprinting In Vitro Models
The 3D bioprinting provides a promising technique to generate
viable and functional tissues to study organ functions under
physiological and pathophysiological conditions (159). In this
model cells are printed or more specifically dispensed by
automated systems on specific substrates or materials, whereby
mixtures of the cells and extracellular matrix (ECM) components
are referred to ‘bioinks’ (160). The composition of biosubstances
has significant impact on the biofunctionality and printability of
bioinks to generate 3D structures (161). The technology of
bioprinting is divided into the methods of micro-extrusion,
droplet-based printing, and laser-assisted printing (161).

In the first attempt, Horváth et al. have established a double layer
system comprising endothelial cells, epithelial cells andMatrigel® by
3D bioprinting to generate the air-blood tissue barrier with a proven
viability of cells (162). More recently, Park et al. developed an 3D
model using tracheal mucosa-derived decellularized ECM
(tmdECM) and human dermal microvascular endothelial cells
(hDMECs) to induce blood vessel formation, lung fibroblasts
(LFs), and human tracheal epithelial cells (hTEpCs) (163). The
vascular network in this setup responded to inflammatory stimuli
by enhanced expression of adhesion molecule ICAM-1 that
maintained for several weeks (163). This approach seems to be a
promising 3D bioprinting technique to analyze the pulmonary
barrier under acute inflammatory conditions by an application of
pro-inflammatory stimuli.

Stem Cell-Based Lung Epithelial
Cells Models
Stem cell-based in vitro lung models gained more attention in the
past years, especially in the era of SARS-CoV-2 pandemic. In fact,
stem cells seem to display one major therapeutic approach to beat
SARS-CoV-2 infections, as their effectiveness is currently examined
in multiple clinical trials (164). Besides their therapeutical potential,
stem cell-based models also offer the valuable possibility to gain
detailed insights into mechanisms underlying cellular dysfunction
leading to alveolar barrier damages.

Using several progenitor lung epithelial cells, several models
have been established like 2D and partially transferred to ALI
models, 3D models, and recently multigerm 3D models (165) as
well as human pluripotent stem cell-derived lung organoids (165,
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166). So far, 2Dmodels seem to be the most widely used pulmonary
stem cell models (167). 2D pulmonary stem cell models are used for
functional analyses, as they can generate a monolayer of proximal
airway cell types as well as differentiated AEC I-like and AEC II-like
cells (133, 168). Like the immortalized cell lines used in pulmonary
research, the monolayers formed by bronchial-like or alveolar-like-
cells were transferred into ALI conditions (119, 133, 169) offering
the possibility to combine the advantages of both techniques. As a
relevant drawback of the 2D models, they take a relatively long
culture period at the ALI, and thus, are highly time consuming.
Initially, they offer a mixture of different cell types, which are
specified into selective lung progenitors (170). Nevertheless, stem
cell-based models represent a huge step towards the transferability
offindings into clinical settings. By combining progenitor stem cells
and 3D models, the interplay of several differentiated alveolar cells
can be evaluated in a human-comparable chemically and physically
microenvironment (136, 171).

Human Lung Organoid Models
3D stem cell-based models were further improved to lung
organoids, generating even higher clinical applicability (172,
173). Organoids are nowadays widely defined as 3D structures
grown from stem cells and displaying organ-specific cell types as
well as self-organizing and self-renewal capacity (174). These
highly complex “mini-organs” can be built from various stem
cells including human pluripotent stem cells (hPSCs). Therefore,
the assessment of a patient-specific inflammatory influences and
pathogen-sensitivity or reliance is now a reachable goal (175).
HPSCs are developed into lung lineages in a process called direct
differentiation, which mimics natural signals to induce different
steps of differentiation: gastrulation, patterning, and specification
(176). In addition to hPSCs-derived human lung organoids
(HLOs), human airway basal cells serve as progenitor cells to
form lung organoids (177, 178), increasing the cell sources for
the generation of lung organoids.

Lung organoid models provide the opportunity to assess
infection and mechanical stress at different developmental stages
(179). HLOs can be used to evaluate the mechanical lung
compression in utero during the pseudo glandular stage (180).
Furthermore, lung organoids support the growth of viruses in the
absence of selective pressure and by adapting to culture conditions,
thus, can be used in pulmonary viral infection studies. For example,
lung infection at different degrees of prematurity can be assessed by
HLO model e.g. to explore impacts of early viral infection on lung
development. 3D alveolar organoids have also been used to assess
pathomechanisms of emerging viral infections like SARS-CoV-2.
Most recently, an alveolosphere culture system of human AEC II
was established from alveolar-progenitor cells (181). These cells
maintained their cardinal features in vitro like self-renewal and
differentiation into AEC I as well as surfactant production (181). As
the organoid AEC II cells highly express SARS-CoV-2 entrance
receptor angiotensin-converting enzyme receptor type 2 (ACE-2),
similar to in vivo condition, they were used in SARS-CoV-2 studies
(178, 181). Another study examined amass spectrometry analysis of
infected AEC II cells, derived by a hPSC based alveolosphere model
(182). Tight junction proteins like claudin-18a were significantly
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decreased in infected AEC II cells, displaying an impaired apical
barrier which might be causative for the lung edema formation as
observed in ARDS (182). Besides, alveolosphere organoids served
already to examine the negative effects of external factors on the
alveolar epithelium. Of note, alveolar organoids exposed to ambient
particulate matter showed enhanced expression of ACE-2,
increasing the susceptibility to SARS-CoV-2 (183). Taken
together, HLO can serve as a crucial in vitro model to understand
cellular mechanisms as a response to toxic stimuli as well as to
pulmonary infections (181). Nevertheless, HLOmodel needs special
handling, cultivation improvements, and further research.

Lung-on-a-chip (LOAC) In Vitro Models
Generation of tissue models showing various physiological
functions and minimal numbers of cells is necessary. The use of
minimal number of cells is advantageous due to the lack of cell
donors and functional cell lines and the variable composition of
necessary hydrogels for efficient cell culture of organoids, stem cells
or embryonic cell cultures (184, 185). Furthermore, it is well known
that physiological stimuli, such as stretching (186) fluid shear stress
(187) or air contact (188), significantly alter specific functions,
especially in airway cells (188). For this, few labs started to
develop microfluidic systems for the culture of one or more tissue
models (189). One of the first andmost successful developedmodels
is the “lung-on-a-chip” (LOAC) (190) that Ingber’s group reported
in 2010. This model was based on a biomimetic microsystem that
reconstitutes the critical function of alveolar-capillary interface of
the human lung (190) by co-culturing alveolar and endothelial cells
on a flexible membrane. The breathing function is mimicked by
applying a regular vacuum in the device. Furthermore, this vacuum
moves the membrane and induces stretching of the cellular layer,
enabling long term functional culture of the lung model. Such
innovative bioengineered LOAC in vitro models hold future
promises for understanding abnormal pulmonary homeostasis
and assessing therapeutic strategies in the pulmonary diseases
(191, 192). Of note, LOAC models are used do simulate early
Mycobacterium tuberculosis infection of the lung and reproduces
complex integrated organ-level responses to bacteria and
inflammatory cytokines released into the alveolar space (193).
LOAC models are also successfully used to investigate
mechanisms underlying pathogenesis of acute respiratory SARS-
CoV-2 infection. In this LOAC model, a co-culture of human
alveolar epithelium, microvascular endothelium and circulating
immune cells was established under fluidic flow. Transcriptional
analyses revealed an activated innate immune response in
epithelium and cytokine-dependent pathways in the endothelium
upon infection with SARS-CoV-2 (194).

The final aim for using these models is development of low-
cost alternatives to animal and clinical studies for drug screening
and toxicology applications. Nevertheless, the combination with
other organs is necessary and under development to address the
multiple organ interactions (195).

Precision-cut Lung Slices (PCLS) Models
The high-throughput precision-cut lung slices (PCLS) model
includes culturing fine sliced lung tissue explants collected from
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patients with pulmonary diseases or experimental animal models
by either submerging these slices in culture medium or in ALI
(196). The PCLS model was initially developed to largely screen
the immunotoxicology impacts of various therapeutic compounds
as well as environmental exposures on the lungs (197). In obvious
contrast with other in vitro models, in PCLS the lungs preserve
their structural and cellular compositions which is advantageous
to investigate cell-cell interaction in the lung microenvironment
(197). Furthermore, the extracellular matrix (ECM) which acts as a
scaffold reinforcing tissue architecture remains intact in the PCLS
(196), making it a suitable model to investigate lung repair and
regeneration upon injury. Indeed, a recent study reported that
PCLS models are ideal to monitor alveolar regeneration, which is
impaired in acute lung injuries, particularly in ARDS (198). In line,
PCLS has been successfully used in a study to investigate alveolar-
specific regeneration after injury by acid (199). However, the blood
perfusion is absent in PCLS models, which causes the exclusion of
recruited immune cells from the circulation to the lung (200). A
solution for this limitation is to co-culture PCLS with peripheral
blood mononuclear cells (201). Moreover, due to the incisions for
cutting the lung tissues to fine slices, it is not expected to be an
ideal model for investigating lung barriers as barriers may be
locally damaged. Another disadvantage of PCLS is overlooking the
interaction of other organs with the lung. For instance, gut-lung
interaction is well-known to impact lung microbial compositions
(202) as a factor that may affect the barriers (203) which is missed
in PCLS models. Although short-term viability of cells in culture is
another issue with this model, recent studies found that
cryopreservation or coating with hydrogels may increase the
culture window from a few days to several weeks (204, 205). In
summary, PCLS models have shown limited applications for
investigation of lung barrier integrity during acute lung injury
and may only be used to monitor cellular and ECM regeneration
upon lung injury.

Table 1 summarizes in vivo and in vitromodels of pulmonary
barrier to study acute inflammatory diseases, and Table 2
provides the benefits and limitations of different in vitro models.
CONCLUSIONS

Extensive understanding of mechanisms underlying pulmonary
barrier dysfunction is pivotal for the development of therapeutical
strategies in acute lung injuries. To better understand molecular
mechanisms leading to both deterioration and consecutive
dysfunction of pulmonary barrier several in vitro and in vivo
models have been developed. In this review, we highlighted the
development and applications of these models, including 2Dmono-
and multiple cell-types, co-culture models, 3D air-liquid interface
models, 3D bioprinting models, lung-on-a-chip, precision-cut lung
slices, and lung organoids. These models may improve our
understanding of the complex pulmonary homeostasis under
regular and pathophysiological conditions by mimicking the in
vivo environment. Given the increasing number of studies applying
these models, they represent valuable platforms to assess cell-to-
matrix, cell-to-cell interactions as well as the role of exogenous and
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endogenous inflammatory or danger associated molecules in lung
damage and repair mechanisms. The use of such complex 3D
models will further improve the incorporation and assessment of
specific cellular phenotypes and humoral factors by sustaining cell
functionalities in a manner that resembles the in vivo conditions to
elaborate their impact on morphology, toxicity, viability, barrier
integrity, ciliary beating frequency, mucociliary clearance, as well as
cytokine release. The understanding of complex interactions
between lung structural cells, (immune) environment, and cellular
matrix in the lung micromilieu will provide further options to
investigate novel therapeutics for targeting different pathogenic
mechanisms in acute lung injury.
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