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Abstract: Type 2 diabetes mellitus (T2DM) is one of the world’s leading causes of death and life-
threatening conditions. Therefore, we review the complex vicious circle of causes responsible for 
T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental 
factors, and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and 
healthcare systems are dissected. Recent progress on the diagnosis and clinical management of 
T2DM, including both non-pharmacological and latest pharmacological treatment regimens, are 
summarized. The treatment of T2DM is becoming more complex as new medications are approved. 
This review is focused on the non-insulin treatments of T2DM to reach optimal therapy beyond 
glycemic management. We review experimental and clinical findings of SARS-CoV-2 risks that are 
attributable to T2DM patients. Finally, we shed light on the recent single-cell-based technologies 
and multi-omics approaches that have reached breakthroughs in the understanding of the 
pathomechanism of T2DM. 
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1. Introduction 
Diabetes Mellitus (DM) is classified into three categories: type 1 diabetes mellitus 

(T1DM, juvenile diabetes), type 2 diabetes mellitus (T2DM, adult-onset diabetes), and 
other special types such as gestational diabetes (GDM), endocrinopathies, drugs, and 
chemical-induced forms, among which T2DM represents nearly 90% of cases (Table 1). 
The main hallmark of DM is hyperglycemia ≥126 mg/dL (7.0 mmol/L) and a normal 
fasting blood sugar of between 70 and 99 mg/dL (from 3.9 to 5.5 mmol/L) [1]. Here, we 
only mention T1DM and GDM and review T2DM; the other forms are described in Table 
1 and reviewed elsewhere [2–7]. T1DM is characterized by a lack of insulin production 
with pancreatic β-cell destruction through an idiopathic autoimmune mechanism. GDM 
is a frequent pregnancy complication in which spontaneous hyperglycemia appears, even 
in non-obese women, affecting approximately 10–14% of pregnancies worldwide [8]. 
GDM can be controlled with a low carbohydrate diet and/or insulin administration during 
pregnancy, and glucose metabolism should be regularly monitored after delivery because 
it can develop into persistent T2DM and even cardiovascular disease (CVD) in the mother 
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and/or in the descendant [8]. Human placental lactogen is one of the most important 
factors during the development of gestational diabetes, and it is characterized by low 
insulin sensitivity or insulin resistance (IR) that leads to chronic hyperglycemia during 
pregnancy. This hormone is capable of provoking alterations and modifications in the 
insulin receptors [9]. T2DM also develops because of IR and/or faulty insulin secretion. 
T2DM is now being diagnosed more often in children and adolescents with obesity due 
to β-cell malfunction or unresponsiveness to insulin in the organs; in this vicious circle, 
the insulin secretion is insufficient to compensate for IR [10,11]. IR is linked to 
environmental factors, low physical activity, high-fat diet, obesity, aging in western 
society, and genetic background [10,12–14]. Genetic predisposition has been described for 
the development of T2DM via the dysfunction of several genes. Early genome-wide 
association studies (GWAS) identified approximately 70 genes with mutations or with 
single-nucleotide polymorphisms (SNPs), and recent multi-ancestry genetic studies found 
more than 500 risk loci associated with a higher risk for the manifestation of T2DM; the 
full list of these loci has been reviewed elsewhere [15–17]. T2DM represents the 
disturbance of the metabolomic homeostasis via a low insulin:glucagon ratio, with 
decreased insulin and increased glucagon production pushing the balance toward 
hyperglycemia. While insulin supports anabolic processes, the deposition of glucose, the 
production of proteins, and reductions in free fatty acids, glucagon supports catabolic 
processes such as the mobilization of glucose and the release of free fatty acids from 
adipose tissue [18,19]. The conditions of elevated blood glucose and free fatty acid level 
influences the composition of the microbiota in the gut and the release of pro-
inflammatory mediators, and the generation of reactive oxygen species leads to 
mitochondrial dysfunction and endoplasmic reticulum stress at a sub-cellular level 
[20,21]. 

Table 1. Classification of main types of diabetes mellitus [2–5,7]. 

Main types of diabetes mellitus 
1. Type 1 diabetes mellitus 
2. Type 2 diabetes mellitus 
3. Hybrid forms of diabetes 
4. Slowly evolving immune-mediated diabetes of adults 
5. Ketosis prone type 2 diabetes 
Other specific types 
1. Monogenic defects of β-cell function 
2. Monogenic defects in insulin action 
3. Diseases of the exocrine pancreas 
4. Endocrine disorders 
5. Drug- or chemical-induced 
6. Infection-related diabetes 
7. Uncommon specific forms of immune-mediated diabetes 
8. Other genetic syndromes sometimes associated with diabetes 
Unclassified diabetes 
1. Hyperglycemia first detected during pregnancy 
2. Diabetes mellitus in pregnancy 
3. Gestational diabetes mellitus 

Since hyperglycemia is the most frequent measure and pathologic trait of T2DM, our 
current report addresses the “Hyperglycemia: From Pathophysiology to Therapeutics” 
Special Issue in Life journal. Our aim is to overview different aspects of T2DM such as 
prevalence, economic burden, and signs. Non-pharmacological and pharmacological 
therapeutic interventions such as glucose-lowering efforts are reviewed. Comorbidities of 
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T2DM, as well as the pathophysiology and prognosis of COVID-19 in T2DM, are also 
discussed. Finally, the recent results of multi-omics technologies are summarized, 
identifying high-risk factors for T2DM. 

2. Prevalence of T2DM 
DM has become one of the most frequent global health problems (nearly 90% T2DM), 

with an incidence of 422 million in 2018. The prevalence of DM is continuously increasing 
and will reach 439 million subjects by 2030, and according to the International Diabetes 
Federation (IDF), it is estimated to affect 592 million people worldwide in 2035 [22,23]. 
The emergence of T2DM cases rose from 5.1% to 6.5% of the population in the USA from 
1994 to 2002 [24], and T2DM further increased to 8.5% in the US population (91.2% of all 
diabetic diseases were T2DM) according to a 2016–2017 survey [25]. The fastest economic 
and technological developments in China contributed to western-type lifestyles and 
caused a dramatic increase in the prevalence of T2DM, measured at 9.1% in 2016 [22]. In 
Switzerland in 2012, the prevalence of T2DM was 6.3% (9.1% in men and 3.8% in women) 
and increased age, obesity, and male gender showed positive correlations in a 
representative, cross-sectional study with 6181 subjects [26]. The global incidence of 
T2DM is around 7.2%, and it is expected to reach 9% by 2040 [27]. 

3. Economic Burden of T2DM 
Statistics about the expense of diabetes on the economy are mainly available for 

overall DM, but the economic burden of T2DM corresponds to 90% of DM in proportion 
with its incidence. DM is the ninth major condition that reduces the life expectancy of men 
and women by 13.2 and 13.9 years, respectively [28,29]. In 2015, five million deaths caused 
by DM and its complications were reported, contributing to the loss of active workers and 
consumers of the global economy [30]. The primary and secondary costs of diagnosed DM 
were 132 billion USD in the USA in 2002 [24] and increased to 327 billion USD in 2017, 
and the total costs associated with pre-diabetes (43.4 billion USD), GDM (1.6 billion USD), 
and undiagnosed DM (31.7 billion USD) were estimated to comprise a 403.9 billion USD 
economic burden on US society in 2017 [31]. 

The IDF estimates that the global cost of diabetes was 673 billion USD in 2015, which 
is projected to rise to 802 billion USD in 2040. More recently, Bommer et al. estimated the 
global cost burden of treating diabetes to be 1.31 trillion/year USD, an estimate 
considering both direct costs and production losses due to morbidity or premature 
mortality [28]. According to the study of Einarson et al., the average healthcare cost for a 
T2DM patient without CVD is 8310/year USD, while the cost for a T2DM patient with 
CVD is 15,105/year USD [29]. The trend of global T2DM burden was found to be similar 
to that of total diabetes (including type 1 and type 2 diabetes mellitus), while the global 
age-standardized rate of mortality for T1DM has declined [30]. 

4. Signs and Symptoms of T2DM 
Symptoms used to diagnose diabetes are as follows: (1) fasting blood glucose ≥126 

mg/dL, both (2) the oral glucose tolerance test (OGTT) and (3) random plasma glucose are 
≥200 mg/dL, and (4) hemoglobin A1c (HbA1c, glycohemoglobin) ≥6.5% (Table 2) [7]. 
Further symptoms of diabetes include thirst, polydipsia, polyuria, fatigue, constant 
hunger, weight loss, dry mouth, and blurred vision [32]. These measures do not 
discriminate between T1DM or T2DM, and only one parameter is enough to define DM. 
T2DM is mainly diagnosed with pancreatic β-cell dysfunction and peripheral insulin 
resistance [7]. These changes lead to decreased glucose uptake (hyperglycemia), 
diminished peripheral fat uptake (dyslipidemia), compromised amino acid uptake, and 
higher glucagon production [33]. However, patients with T2DM often show high 
concentrations of insulin and C-peptide. Autoantibodies—particularly against islet cells, 
insulin, glutamic acid decarboxylase, and tyrosine phosphatase (islet cell antigen 512)—
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are not generally detected in patients with T2DM [34]. A high leptin level in the sera is 
frequently associated with insulin resistance and T2DM [35]. We recently reported an 
increased leptin level in apolipoprotein-overexpressing (APOB-100) mice fed a high-fat 
diet [36]. The connection between high serum leptin concentration and CVD has also been 
reported in T2DM [37]. Obesity, endothelial dysfunction and hypertension have also been 
reported in T2DM patients with high leptin concentrations [38]. 

Table 2. The following criteria are used to establish a diagnosis of diabetes (Reference: [7]). 

Fasting plasma glucose (8 h no food intake) level ≥126 mg/dL (7.0 mmol/L) 
75 g OGTT 2 h value ≥ 200 mg/dL (11.1 mmol/L); OGTT: glucose load containing the equivalent of 75 g anhydrous 

glucose dissolved in water. 
Hemoglobin A1c ≥ 6.5% 

Random plasma glucose ≥200 mg/dL (11.1 mmol/L), sometimes appears as a hyperglycemic crisis 
Clinical symptoms of diabetes (e.g., thirst, polydipsia, polyuria, weight loss, and dry mouth) 

5. Non-Pharmacological Treatments of T2DM: Exercise and Diet 
It has long been known that sedentary lifestyle and increased calorie intake lead to 

obesity, which is the major risk factor for developing T2DM [39]. In 2015, almost 2 billion 
people were affected by obesity worldwide [40], and approximately 2.4 and 2.3 million 
deaths were caused by high body mass index (BMI)-related diseases including T2DM in 
women and men, respectively [41]. The Global Burden of Disease Study showed that 
obesity affected 38% of women, 37% of men, 23% of girls, and 24% of boys in 2013 [42], 
and it is projected that obesity will increase in 44 countries by 2025 [43]. Early randomized 
clinical trials that enrolled patients with impaired glucose tolerance led to the conclusion 
that at least 30 minutes of daily physical activity can reduce the incidence rate of T2DM 
by 46%–67% depending on the condition of the subject and the type of exercise [44–46]. 
Therefore, preventative dietary management and sporting for high-risk individuals are 
suggested, and patients with T2DM are first treated with diet modification and 
suggestions for regular physical exercise [47]. Regular daily physical activity is strongly 
advised for the prevention of T2DM in high-risk individuals with sedentary lifestyle and 
obesity [48]. A dose–response relationship between regular exercise and its beneficial 
metabolic effects is well-accepted [39]. A prospective follow-up study of 32,002 men for 
18 years showed that at least 150 min/week weight training or aerobic exercise reduced 
the risk of T2DM by 34% or 52%, respectively [49]. Umpierre et al. showed that at least 
150 minutes of structured exercise per week can reduce the HbA1c level with greater 
benefits than shorter training [50]. In our study, regular physical exercise (45 minutes of 
running five times a week) reduced body weight, serum triglyceride levels, and the 
expression of pro-inflammatory mediator TNF-α in mice fed a high-fat diet as part of an 
apolipoprotein B-100-overexpressing murine model of obesity [36]. The contribution of 
higher concentrations of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, for 
the development of T2DM and the protective effect of regular exercise was reviewed by 
Karstoft et al. [51]. Clinical trials have shown that lifestyle changes including physical 
exercise with diet modification are more effective than pharmaceuticals in preventing 
T2DM [48]. Dietary recommendations favoring the intake of whole grains, legumes, 
vegetables, and fruits at the expense of highly refined carbohydrates, sugar-sweetened 
beverages, refined grains, and red meat may ameliorate T2DM or patient conditions 
[52,53]. The Mediterranean diet (a low-carbohydrate/high-protein diet) and 
vegan/vegetarian diets are reported to improve metabolic conditions in T2DM [54]. The 
protective effect of the Mediterranean diet was shown by Keys based on a follow-up study 
of 11,579 men for 15 years. Diets with high intakes of saturated fatty acids were associated 
with CVD, but monounsaturated fatty acids (olive oil) were protective against CVD [55]. 
The consumption of the Mediterranean menu consisting of fruits (antioxidants), 
vegetables, red wine (polyphenols), fish, and olive oil (monounsaturated fatty acids) may 
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have anti-inflammatory protective effects against T2DM [56]. A low-carbohydrate diet 
(<130 g/day) lowers glycemia, HbA1c, and the need for medication [47,57]. A 2-year trial 
with 322 obese subjects showed that both Mediterranean and low-carbohydrate diets were 
more effective for weight loss and decreases in C-reactive protein levels compared to a 
low-fat diet [58]. In a 74-week clinical trial, Bernard et al. showed that a vegan diet reduced 
the HbA1c level and low-density lipoprotein (LDL)-cholesterol more efficiently than a 
low-fat diet [59]. Taken together, physical exercise, weight management, daily calorie 
intake, and the composition of food and beverages should be tailored to each patient’s 
condition while considering several parameters such as the age of the patient, 
comorbidities, geographical area (climate), and the suggested pharmaceutical 
intervention [60]. 

6. Pharmacological Treatment of T2DM 
In most cases, initial drug therapy starts with monotherapy based on clinical 

laboratory parameters such as HbA1c. The five-year VERIFY study in T2DM 
demonstrated the long-term clinical benefits of early combination treatment with 
vildagliptin and metformin in comparison to monotherapy [61]. The oral hypoglycemic 
medications approved by U.S. Food and Drug Administration (FDA) indications are 
summarized in Table 3. Sulfonylureas (SU) were the first drugs to stimulate insulin 
secretion, and they have been used since 1954 [62]. Later, non-sulfonylurea secretagogues, 
i.e., meglitinides, were introduced, e.g., Repaglinide in 1997 [63]. Both SU and 
meglitinides stimulate insulin secretion by inhibiting ATP-dependent K+ channels of 
pancreatic beta cells [63]. However, meglitinides are not the golden standard in T2DM 
therapy because its effects last less long than those of SU and can cause hypoglycemia in 
diabetic patients with chronic kidney disease (CKD) [64]. 

Table 3. Oral hypoglycemic medications approved by FDA indications [65,66]. 

Pharmacological Group Drug 
Biochemical Key Factor for 

Mechanism of Action 
Mechanism of Action 

Sulfonylureas (SU) 
glipizide 
glyburide 

gliclazide glimepiride 

K-ATP channels of beta 
cells 

Close ATP-dependent potassium 
channels that depolarize the beta 

cells, opening calcium channels and 
causing insulin release 

Meglitinides  repaglinide nateglinide 
K-ATP channels of beta 

cells 
Same as SU  

Biguanides  metformin 
Increase hepatic AMP-

activated protein kinase 
activity 

Reduce hepatic gluconeogenesis and 
lipogenesis, stimulate fatty acid 
oxidation, and increase insulin-
mediated uptake of glucose in 

muscles 

Thiazolidinediones (TZD) 
rosiglitazone 
pioglitazone 

Activate peroxisome 
proliferator-activated 

receptor gamma (PPAR-γ) 

Increase insulin sensitivity and 
stimulate fatty acid oxidation 

α-Glucosidase inhibitors 
acarbose 
miglitol 

voglibose 

Inhibit alpha-glucosidase 
enzymes in the intestinal 

brush border cells 
Inhibit polysaccharide reabsorption 

GLP-1 Receptor Agonists 

exenatide BID 
liraglutide 
lixisenatide 
exenatide 

albiglutide,  
dulaglutide 

Stimulate GLP-1 receptors Lead to the increase in insulin 
secretion 
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semaglutide 
oral semaglutide 

(Rybelsus) 

DPP-4 inhibitors  
sitagliptin 

vildagliptin saxagliptin 
linagliptin alogliptin 

Inhibit the enzyme 
dipeptidyl peptidase 4 

(DPP-4) 

Decrease glucagon release, thus 
increasing glucose-dependent insulin 

release 

SGLT2 inhibitors  

dapagliflozin 
canagliflozin 
empagliflozin 
tofogliflozin 

Inhibit sodium–glucose 
cotransporter 2 (SGLT-2) in 

the proximal tubules of 
renal glomerulus 

Inhibition of glucose reabsorption, 
resulting in glycosuria 

Cycloset  bromocriptine 
Dopamine (D2) receptor 

agonist 

Resets the hypothalamic circadian 
rhythm and improves insulin 

resistance 

Nowadays, metformin is among the preferred initial pharmacologic agents for T2DM 
according to the EASD (European Association for the Study of Diabetes) and ADA 
(American Diabetes Association) considering comorbidities and lifestyle modifications 
[67]. The advantages of metformin are its efficacy, weight neutrality, low cost, low-risk of 
hypoglycemia, and good safety profile with particular cardioprotection [68]. The 
prescription of metformin should be considered as a monotherapy or in combination with 
other glucose-lowering drugs for the therapy of T2DM [67]. In cases of renal insufficiency 
and an eGFR (estimated glomerular filtration rate) of >30 mL/min/1.73 m2, early 
combination therapy can be considered in some patients at treatment initiation to extend 
the time to treatment failure. In a high-fat diet rat model, metformin combined with a 
single low dose of streptozotocin-induced diabetes mellitus showed a renoprotective 
effect following per os administration. Moreover, lipid parameters such as triglyceride 
(TG), total cholesterol (TC), and LDL-c levels were significantly decreased following 
metformin treatment, whereas high-density lipoprotein (HDL)-cholesterol was increased. 
The authors speculate that the underlying mechanism of this renoprotective effect may be 
associated with glycemic control, lipid metabolism, and anti-oxidative and anti-
inflammatory functions [69]. Al Za’abi et al. found that metformin can be a useful drug in 
attenuating the progression of adenine-induced CKD in both diabetic and non-diabetic 
rats [70]. Increasing numbers of studies are investigating whether metformin exerts its 
hypoglycemic effect through the modulation of microbiome in the diabetic rat gut [71]. 
However, its underlying mechanism remains largely unclear, though it has been shown 
that DM leads to a higher Firmicutes/Bacteroidetes ratio in the gut microbiome that can 
be reverted by metformin [71,72]. 

Among patients with T2DM who have established CVD or indicators of high risk, 
established kidney disease, or heart failure, glucagon-like peptide-1 receptor agonists 
(GLP-1 RAs) or a sodium–glucose cotransporter-2 inhibitor (SGLT2i) with demonstrated 
CVD benefits are recommended (Figure 1) [73]. 

There is increasing evidence to support the role of sodium–glucose cotransporter 2 
inhibitor therapy in patients with CKD with or without T2DM. Individualized treatment 
with SGLT2i represents a promising therapeutic option for patients with diabetic and 
nondiabetic CKD to slow down disease progression [74]. SGLT2 inhibitors have a 
cardioprotective effect in the cardiovascular system. These have been recommended to 
treat heart failure with reduced ejection fraction (HFrEF), improving left ventricular 
ejection fraction and decreasing left ventricular end-diastolic diameter and pro-B-type 
natriuretic peptide level [75]. 
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Figure 1. Summary of glucose-lowering medication in T2DM: monotherapy and combination of 
drugs. Adapted from the 2022 ADA Professional Practice Committee (PPC) based on the work of 
Davis and Busa et al. [75–77]. This strategy suggests a selection of therapy rather than sequential 
add-on, which may require the adjustment of ongoing therapies. Treatment should be 
individualized to comorbidities (such as heart failure, atherosclerotic cardiovascular disease, 
chronic kidney disease, and cardiovascular disease), patient-centered treatment factors, and 
management needs. DPP-4i, dipeptidyl peptidase 4 inhibitor; GLP-1 agonist, glucagon-like peptide 
1 receptor agonist; SGLT2i, sodium–glucose cotransporter 2 inhibitor; SU, sulfonylurea; TZD, 
thiazolidinedione. * A treatment with DPP-4 inhibitors should be stopped when GLP-1 receptor 
agonists are used [78]. 

The first GLP-1 RA was approved by the FDA in 2005: exenatide BID injected twice 
daily. Later, other GLP-1 Ras, such as liraglutide and lixisenatide (injected once a day), 
and long-lasting drugs injected once weekly, such as exenatide, albiglutide, dulaglutide, 
and semaglutide, were developed [79]. The GLP-1 hormone is cleaved by DPP-4 
(dipeptidyl peptidase-4) within minutes, so GLP-1 RAs were used for their resistance to 
DPP-4 in order to prolong their half-life and beneficial effects [76]. The majority of GLP-1 
RAs are injectable glucose-lowering agents, with a low-risk of hypoglycemia via the 
stimulation of GLP-1 receptors leading to an increase in insulin secretion [77]. The first 
oral GLP-1 RA was Rybelsus® (oral semaglutide), which was approved by the FDA in 2019 
[80]. The effect of GLP-1 RAs is glucose-dependent, and they act as multi-target drugs on 
the (1) stimulation of pancreatic β-cell insulin production, (2) suppression of pancreatic α-
cell glucagon secretion, and (3) suppression of hepatic glucagon synthesis with (4) the 
suppression of gastric emptying time, (5) increased satiety, and (6) increased insulin 
uptake at the peripheral tissues [81]. GLP-1 receptor agonists, except for lixisenatide, 
prevent the development and progression of coronary atherosclerosis, vasospasm of 
epicardial coronary arteries, and structural/functional changes in coronary 
microvasculature [82]. 

DPP-4 inhibitors (DPP-4i) also act via the incretin (intestinal secretion of insulin) 
effect through facilitating the glucose-dependent insulin secretion of pancreatic β-cells via 
prolonging the stability of the glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP) [83]. DPP-4i are oral drugs administered once a day, 
though vildagliptin is administered twice a day [83]. The first DPP-4i was sitagliptin, 
which was approved by the FDA in 2006; others developed later include saxagliptin, 
vildagliptin, alogliptin, and linagliptin [84]. Our group showed that the DPP-4 inhibitor 
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sitagliptin has a pleiotropic secondary cardioprotective effect and protects against 
ischemia-reperfusion injury through the modulation of NOS system and transient 
receptor potential (TRP) channels [85]. In agreement with Murase et al., the inhibition of 
DPP-4 enzyme improved survival after myocardial infarction in T2DM by modifying 
autophagy in the non-infarcted region of the heart [86]. Based on the above-mentioned 
studies, it is clear that DPP4 inhibitors have other beneficial effects that are not of a 
metabolic nature such as a cardioprotective effects, especially via decreasing systolic 
blood pressure independently of glucose-lowering effects. This is valuable because the 
prevalence of hypertension in T2DM patients is estimated to be twice higher than that of 
healthy individuals [87]. 

SGLT2i are oral antidiabetics that act via blocking glucose reabsorption in the 
proximal tubule of the nephron, leading to glucosuria irrespective of the insulin level [88]. 
The first SGLT2i, dapagliflozin, was approved by the European Medicines Agency (EMA) 
in 2013, and the others are canagliflozin, empagliflozin, tofogliflozin, and ipragliflozin 
(approved in Japan and Russia) [89]. It has been significantly verified by clinical studies 
that SGLT2i reduce the risk of a series of cardiovascular or renal complications such as 
atherosclerotic CVD, myocardial infarction, and CKD [90]. T2DM-induced sterile 
inflammation, endothelial dysfunction, and oxidative stress lead to vascular injury. 
SGLT2i, especially empagliflozin, revise glucotoxicity via glucosuria and significantly 
improve cardiovascular mortality in T2DM [91]. The same research team showed that 
there is an inverse correlation between endothelial function and serum HbA1c. Moreover, 
phagocytic leukocytes and C-reactive protein (CRP) were positively correlated with 
HbA1c. The viability of hyperglycemic endothelial cells was pleiotropically improved by 
SGLT2i [92]. Apart from their main pharmacological effect in DM, it has been found that 
SGLT2i may have novel therapeutic applications for diabetes, cardiovascular diseases, 
nephropathies, liver diseases, neural disorders, and cancer based on their antioxidant 
properties and unique perspective [93].  

The early introduction of insulin should be considered if there is evidence of ongoing 
catabolism (weight loss), if symptoms of hyperglycemia are present, or when HbA1c or 
blood glucose levels are very high (HbA1c >10% (86 mmol/mol) and blood glucose ≥16.7 
mmol/L (300 mg/dL)) [94,95]. As T2DM progresses, most patients require treatment with 
basal insulin in combination with another agent to achieve recommended glycemic targets 
[96]. The ADA’s Standards of Medical Care in Diabetes recommend either starting an 
initial total daily dose of 10 units insulin or using a weight-based total daily dose from 0.1 
to 0.2 units/kg. As a rule, the basal insulin dose may be increased by 2 units for every 20 
mg/dL that the patient’s average fasting blood glucose level is over the recommended 
fasting blood-glucose level (<130 mg/dL per ADA guidelines) [73]. Despite the availability 
of the series of conventional therapies, in many cases, patients do not respond well to the 
given drug and undesirable side effects can even occur. Therefore, almost 1200 plants, the 
sources of natural products known as ethnomedicinal agents with reported anti-diabetic 
properties, are at the forefront of intensive research [97]. Among other molecules, many 
flavonoids possess anti-inflammatory effects in parallel with their ability to improve 
glucose metabolism [98]. Flavonoids, such as genistein, kaempferol, pectolinarin, and 
quercetin, have a profound anti-inflammatory effects with the stimulation of glycogen 
synthase [98,99]. In an animal model of T2DM, rutin decreased serum glucose 
concentration and inhibited protein-tyrosine-phosphatase 1B, a negative regulator of the 
insulin pathway [100]. A recent review summarized the wide repertoire and mechanisms 
of action of antidiabetic flavonoids [101]. Terpenoids are also reported as anti-diabetic 
compounds with benefits in the treatment of T2DM by normalizing blood glucose levels 
and advantages in the management of the retinopathy, nephropathy, neuropathy, and 
impaired wound healing [102]. Abscisic acid, a terpenoid phytohormone and an 
endogenous hormone in humans, can facilitate the release of insulin from β-pancreatic 
cells via the induction of GLP-1 [103]. 
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7. Clinical Complications of T2DM 
Severe T2DM may cause damage to complex organs such as the kidneys, eyes, and 

heart including vascular vessels [14]. Early-onset T2DM is associated with a greater 
lifetime risk of diabetes-associated complications than T1DM or late-onset T2DM [27,104]. 
Loss of hearing and problems with fertility are frequent complications with early-onset 
T2DM [27]. Diabetes mellitus (DM) is a chronic metabolic disorder associated with 
persistent hyperglycemia (>7 mmol/L (126 mg/dL in blood) [105]. Several factors can 
contribute to it: impaired insulin secretion, resistance to peripheral actions of insulin, or 
both. The progression of metabolic stress of hyperglycemia with the activation of Toll-like 
receptors, induction of endoplasmic reticulum stress, and activation of inflammasome 
may fuel chronic inflammation, thus augmenting pancreatic β-cell dysfunction and finally 
worsening patient conditions in T2DM [106]. Chronic and untreated hyperglycemia in 
synergy with other metabolic diseases in patients with diabetes mellitus can lead to the 
development of disabling and life-threatening health complications, most prominent of 
which are microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular 
complications, as well as a 2-to-4-fold increased risk of cardiovascular disease. It has long 
been known that hyperglycemia-mediated pathways such as the polyol pathway, 
hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein 
kinase C may harm cardiac endothelial cells [107]. While the intentions of DM treatment 
are to normalize the hyperglycemia and reduce the amount of HbA1c to a normal level, 
therapies of other metabolic disorders that are mainly associated with diabetes, such as 
dyslipidemia, hypertension, hypercoagulability, obesity, and insulin resistance, have also 
been major focuses of therapy and patient management [107]. 

Complications of diabetes are broadly divided into microvascular and macrovascular 
types. Microvascular complications include neuropathy, nephropathy, and retinopathy, 
while macrovascular complications consist of CVD, stroke, and peripheral artery disease 
(PAD) [11]. Diabetic foot syndrome has been defined as the presence of foot ulcer 
associated with neuropathy, PAD, and infection, and it is a major cause of lower limb 
amputation [108]. Finally, there are other complications of diabetes that cannot be 
included in the two aforementioned categories such as dental disease, reduced resistance 
to infections, and birth complications among women with GDM. CVD is one of the 
deadliest complications of T2DM, and patients with T2DM have two times the risk to 
develop CVD than those without T2DM [48,109]. A recent review summarized the risk of 
CVD in T2DM, shedding light on the idea that both BNP and pro-BNP may serve as 
predictive biomarkers of heart failure and CV mortality [110]. The higher risk for death of 
T2DM patients increases with the presence of CVD (hypertension), younger age (age <25 
years), severe renal failure, fatty liver, hyperlipidemia, microalbuminuria, and worse 
glycemic control [11,111]. In a cross-sectional study including 1156 patients, the one-year 
mortality was found to be higher in T2DM patients with severe hypoglycemia than those 
without [112].  

Obesity is one of the main modifiable risk factor leading to T2DM [113]. Additionally, 
obesity has frequently interconnected with high-grade systemic inflammation, thus 
promoting devastating immune activation in T2DM [114]. Factors released by the adipose 
tissue such as pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-
6 (IL-6), and IL-1b), non-esterified fatty acids, glycerol, and hormones may underly insulin 
resistance [115]. The disbalance of the immune system, the endothelial activation of 
monocytes, and macrophages in the adipose tissue may also release TNF-α and IL-6, thus 
exacerbating inflammation [116,117]. A meta-analysis of 20 clinical trials with 1065 T2DM 
patients versus 1103 healthy controls showed a correlation with monocyte activation and 
CVD risk in T2DM [116]. Obesity management with special diet, exercises resulting in at 
least 15% weight loss, and longer sleep may have great disease-modifying effect on T2DM 
[118,119]. The triglyceride–glucose (TyG) index is a potentially useful marker for 
predicting T2DM and has been reported to be associated with CVD risk. A higher TyG 
index value is associated with the presence of retinopathy and nephropathy in individuals 
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with diabetes and could be used for monitoring metabolic status in clinical settings [120]. 
The mechanism of action of TyG in T2DM pathology is not evident, but it has been 
suggested that high blood glucose levels raise the level of reactive oxygen species (ROS) 
that mediate beta cell injury [121]. Higher TyG index values have shown clear associations 
between BMI and the development of T2DM [121,122]. 

Almost 10% of deaths caused by T2DM are referable as diabetic kidney disease 
(DKD) with renal failure [123]. Albuminuria and reduced eGFR are risk factors for end-
stage kidney disease and CVD, as well as death [124]. One of the first clinical signs of such 
microvascular damage in diabetes is microalbuminuria [125]. Biomarkers predicting the 
progression of nephropathy in T2DM patients are plasma asymmetric dimethylarginine, 
serum interleukin-18 and urinary ceruloplasmin, immunoglobulin G, and transferrin 
[126].  

The development of cancer was shown to have a positive correlation with T2DM in 
the case of colorectal, lung, esophagus, thyroid, bladder, hepatocellular, gallbladder, 
breast, endometrial, pancreatic and liver cancers [127–129]. Possible causes linking T2DM 
to increased cancer prevalence are diverse factors such as aberrant endocrine status, 
obesity, chronic inflammation, hyperglycemia with increased insulin level, and additional 
sedentary lifestyle factors [130]. Metformin was shown to reduce the risk of cancer 
development in T2DM via several indirect mechanisms: (1) reducing circulatory 
androgens, (2) inducing hepatic adenosine monophosphate kinase phosphorylation, (3) 
lowering blood glucose and gluconeogenesis, (4) reducing insulin level, and (5) exerting 
anti-inflammatory effects [130,131]. Metformin was also reported as an adjuvant that 
could increase the complete pathological response rate of HER2-positive breast cancer 
patients bearing the rs11212617 single-nucleotide polymorphism (SNP) located near the 
ataxia telangiectasia mutated (ATM) gene [132]. The association of T2DM and breast 
cancer was shown by the hypoxia-independent stabilization of HIF-1α via the insulin–
PI3K–AKT, MAPK/ERK, IL-1, and NF-κB pathways. Subsequent HIF-1α-mediated events 
and the induction of glucose transporter GLUT1, glycogen synthase kinase, E-cadherin, 
and matrix metalloproteinases lead to epithelial–mesenchymal transition, the “entrance-
hall” of cancer [133]. The risks and factors involved in cancer development in T2DM 
patients have been recently reviewed elsewhere [127,134].  

8. Pathophysiology of T2DM and COVID-19 
Hyperglycemia initiates a pathobiochemical cascade that results in increased 

mortality in SARS-CoV-2-infected diabetic patients [135,136]. The underlying molecular 
mechanisms are responsible for the worsening of both metabolic and hemodynamic 
conditions. A chronic glucose level leads to the hyperglycosylation of the ACE2 receptor 
and increased viral cell proliferation [137]. It has long been known that ACE2 is 
responsible for the conversion of angiotensin I into angiotensin II during the physiological 
state, and it has been identified as the receptor for SARS-CoV-2 viral entry into cells. 
ACE2, which directly interacts with the spike glycoprotein [138], is expressed in many cell 
types and is also present in epithelium of the lung at a high density. It has been shown 
that ACE2 is highly expressed in patients with hypertension, diabetes and coronary heart 
disease, thus leading to higher viral entry during SARS-CoV-2 infection. It is also well-
known that T2DM is associated with both macrovascular and microvascular 
complications that lead to multiorgan failure, which worsens the outcome of COVID-19 
in diabetic patients and increases mortality rates. The dysregulation of glucose 
metabolism and insulin resistance contribute to vasculopathy in both large and small 
vessels through various mechanisms [139]. Diabetes, mainly T2DM, is featured by chronic 
systemic inflammation and insulin resistance, which can result in endothelial dysfunction, 
oxidative damage, changes in the mitochondrial expression of superoxides, the increased 
formation of AGEs, and the activation of the receptors for advanced glycation end 
products (RAGE). The AGE–RAGE axis increases the progression of atherosclerotic legion 
formation in the arteries and thus accelerates vascular-damage-related conditions called 
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diabetic vasculopathies [140]. However, the direct relationship between T2DM and 
COVID-19 remains complex; it is well-known that chronic hyperglycemia induces a 
dysregulated immune response in innate and adaptive immunity, including abnormal 
cytokine responses, the inhibition of leukocyte recruitment, the attenuation of 
macrophage and other leukocyte activity in eliminating pathogens, and defects in 
pathogen recognition and neutrophil functions [141]. Several other immune mechanisms, 
such as the decreased production of interleukins in response to an infection, reduced 
chemotaxis and phagocytic activity, and the immobilization of polymorphonuclear 
leukocytes, are affected in obesity. IFN-gamma released after virus infection 
downregulates the insulin-receptor expression of skeletal muscle, and viral infection 
enhances the progression of T2DM in obesity, thus worsening hyperglycemia [142]. 
Patients with T2DM tend to develop more severe forms of SARS-CoV-2 infection and have 
significant increases in acute phase proteins and inflammatory markers compared to non-
diabetics. This may also enhance tissue tropism and viral penetration into the cells, 
leading to increased virulence, pathogenicity, and susceptibility to severe infections [143]. 
In patients suffering from COVID-19, DM was found to be the third most common 
comorbidity, with a 33.8% prevalence, after hypertension and obesity [144]. Several 
mechanisms have been suggested as an underlying additional explanation for the more 
severe course of COVID-19 in patients with diabetes. Behind the impaired immune 
system, hyperglycemia and hyperinsulinemia diabetes are also associated with a 
hypercoagulable state. The metabolic disturbances associated with oxidative stress and 
impaired immunity may accelerate the occurrence of thrombotic and ischemic events. 

Patients with diabetes generally have an increased risk of thrombosis, which, in the 
case of COVID-19, can add to a high risk of death. Endothelial cell dysfunction plays a 
key role in the initiation and precipitation of thrombosis. The initiation of this process 
when the nitric oxide synthesis is decreased in endothelial cells via several mechanisms 
including the activation of NF-κB and protein kinase C (PKC) leads to the impairment of 
vasodilation, the expression of adhesion molecules, and the worsening of vascular 
inflammation. This results in increased platelet activation and a 
prothrombotic/hypofibrinolytic environment that facilitates thromboembolic events 
[145]. It is still unclear whether the dysregulation of glucose metabolism, the severe 
COVID-19 effects, or the SARS-CoV-2 infection itself is responsible for the worsening of 
carbohydrate metabolism in diabetic patients. The associations between glycemic control 
and short- to long-term outcomes were examined in a multi-center prospective cohort 
study including 574 COVID-19 patients; a one year follow up showed that the glycemic 
control was significantly associated with short-term outcomes in COVID-19 patients with 
T2DM and decreased the risk of respiratory sequelae [146]. In a German study of about 
8.8 million people, 35,865 were infected by COVID-19, and 15.8 per 1000 person-years 
versus 12.3 per 1000 person-years of these patients developed T2DM versus other upper 
respiratory infections, respectively [147]. The results of that study suggest that SARS-CoV-
2 infection may also increase the risk of developing T2DM. Future studies will answer the 
questions of whether SARS-CoV-2 really can induce T1DM, T2DM, or even a new type of 
diabetes. Long-term follow up studies are needed to evaluate whether the virus has a 
diabetogenic impact on patients with a higher risk for DM or it can stimulate a new type 
of DM [147]. 

9. Prognosis of T2DM Patients with COVID-19 
The novel coronavirus, SARS-CoV-2, infected more than 500 million and caused the 

coronavirus disease 2019 (COVID-19) with the death of more than 6 million people 
worldwide by July 2022 (online COVID-19 Data Repository at Johns Hopkins University). 
Metabolic diseases such as DM are associated with an increased risk of a severe COVID-
19 illness and death because of their associated hypercoagulation state and uncontrolled 
inflammation [148], although it seems that T1DM patients have higher risk than T2DM 
patients. Epidemiological studies have shown that hospitalization with diabetes and 
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SARS-CoV-2 infection represents as a comorbidity with poor outcome during hospital 
stay [149]. A recent study reported that 15% of T2DM patients died from COVID-19, with 
the poor prognoses for those of elder age and elevated glucose and serum amyloid A 
levels [150]. In a Swedish study of 385,021 T2DM patients, an elevated glycemic 
hemoglobin level was shown as a bad prognostic factor and the risks for hospitalization, 
admission to intensive care, and fatal outcome of T2DM patients with COVID-19 were 
twice those of a control group [151]. On the contrary, the control of the glycemic index 
was significantly associated with less mortality and hospital stay in an analysis of 574 
T2DM patients with COVID-19 in China [146]. Upon SARS-CoV-2 infection, T2DM 
patients had adjusted odds ratios (ORs): 3.36 for hospitalization, 3.42 for disease severity, 
and 2.02 for death [152,153]. In a national cohort study of 19,256 subjects in England 
conducted between March and July 2020, 18.3% of hospitalized COVID-19 patients also 
had T2DM [136]. In a Spanish study, 30.05% versus 19.57% was the ratio of deceased 
versus surviving diabetes patients, respectively [154]. Taken together, the risks of SARS-
CoV-2 infection in patients with T2DM are well-documented and urge the prioritization 
for vaccination [148,155]. In an Italian study of 277 T2DM subjects (83.4% received an 
mRNA-based vaccine of mRNA-BNT162b2 or mRNA-1273 and 16.6% received a viral 
vector-based vaccine of ChAdOx1-S), the neutralizing antibody level and the number of 
SARS-CoV-2-reactive T-cells (CD4+/TNF-α+, CD4+/IL-2+, CD4+/IFN-γ+) were higher in 
patients with good glycemic control (HbA1c < 7%) at 52 days after the second vaccine 
[156]. In a retrospective clinical study of 1356 T2DM patients hospitalized with COVID-
19, it was shown that the metformin-treated group showed less mortality and shorter 
stays in hospital, probably due to the anti-inflammatory effect of metformin [157]. 
However, T2DM therapy should be designed in accordance with local guidelines while 
taking personal parameters and comorbidities into account; therefore, current therapeutic 
regimens for the management of T2DM are not discussed here. Recent review articles 
about the management of COVID-19 in patients with T2DM have been published 
elsewhere [158–160]. 

Angiotensin-converting enzyme 2 (ACE2) is one of the best-characterized proteolytic 
enzymes and a functional receptor on cell surfaces through which SARS-CoV-2 enters the 
cells. ACE2 is abundantly found in the lung alveolar epithelial cells, lung vascular 
endothelial cells, heart, kidneys, and pancreas [161]. However, controversial results have 
been found regarding the expression profile of the ACE2 protease enzyme and receptor. 
Some studies have suggested that it is more preferably expressed in the exocrine duct cells 
than in the islets, whereas other studies have shown that ACE2 is expressed in beta-cells; 
moreover, ACE2 was detected in the microvasculature of both the exocrine and endocrine 
pancreas. These discrepancies were clarified by Stellenbock et al., who examined the 
expression of ACE2 in pancreatic autopsy tissues from eleven patients that died of 
COVID-19. They found that the pancreata were infiltrated with CD45-positive immune 
cells and that mainly beta cells were infected by SARS-CoV-2 virus. They speculated that 
other receptors/entry-points may be involved in facilitating the uptake of SARS-CoV-2 
into beta-cells because the ACE2 positivity of beta cells was only detected in some the 
human subjects [162].  

Among other risk factors for COVID-19-related death, DM has been shown one of 
the main predictors of the SARS-CoV-2 infection-associated mortality rate. Therefore, we 
reviewed the most relevant pathobiochemical aspects, summarized the known molecular 
background of SARS-CoV-2-induced pathomechanical abnormalities, and dissected the 
current prognosis of COVID-19 patients in T2DM. 

10. The Potential Role of Multi-Omics and Single Cell-Based Technologies in the  
Current Research of T2DM 

In the last decade, the “multi-omics” approaches reached a breakthrough in 
understanding the pathomechanism and clinical complications of T2DM. Different next-
generation sequencing (NGS) and mass-spectrometry-based genomics and metagenomic 
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approaches have emerged and are used to identify possible disease-associated diagnostic 
or therapeutic targets from affected tissues and blood based on specific gene expression 
changes including those of diabetes (Table 4) [163–167]. The NGS analysis of 16S rRNA 
genes showed that comorbidity of T2DM with HIV led to a lower microbiome diversity, 
which was negatively impacted by smoking and normalized by metformin treatment 
[168]. In the study of Tong et al., the sequencing of 16S rRNA by NGS revealed that 
metformin treatment increased the proliferation of Blautia spp. in the gut in correlation 
with the normalization of hyperglycemia and hyperlipidemia [169]. An analysis of 40 
single-nucleotide polymorphisms (SNPs) in 40 genes of 503 T2DM patients vs. 580 healthy 
controls on a Sequenom platform identified SNPs in the CAT, FTO and UCP1 genes 
associated with the retinopathy and nephropathy complications of T2DM [170]. Although 
early GWAS studies identified approximately 75 genetic loci associated with the 
development of T2DM, recent multi-ancestry genetic studies found more than 500 risk 
loci, and the heritability of T2DM via these genes has been shown in only 10–15% of cases, 
so it is more likely that lifestyle and environmental factors have a significant additional 
effect that contributes to the manifestation of T2DM [15–17,171].  

Many epigenetic studies, including the investigation of DNA methylation patterns 
and accessible chromatin profiles in different tissues, have also contributed to our current 
knowledge of T2DM [172,173]. One of the most extensive epigenome-wide association 
studies (EWAS) revealed the CpGs methylation pattern of 52 genes in the blood of 
European T2DM subjects with the Illumina 450 K methylation array and identified five 
genes with altered CpG methylation patterns—ABCG1, LOXL2, TXNIP, SLC1A5 and 
SREBF1—that were significantly associated with the disease [174]. Using “Assay for 
Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq 
method), Ackermann et al. determined the human pancreatic alpha or beta cell-specific 
open chromatin landscape and found that alpha or beta cell-specific ATAC-seq peaks 
overlapped with known binding motifs for various transcription factors, including alpha 
cell-specific ISL1 and MAFB or beta cell-specific SMAD2, as well as previously identified 
T2DM-risk-associated SNPs [175]. Greenwald and colleagues combined a high-
throughput chromosome conformation capture technique (Hi-C) assay-based high-
resolution map of islet chromatin loops with the ATAC-seq and publicly available 
chromatin immunoprecipitation sequencing (ChIP-seq) data-defined enhancers. They 
identified thousands of pancreatic islet-specific enhancer–target gene pairs. The T2DM-
risk-linked SNPs were significantly enriched at the active enhancers of the protein 
transport and secretion pathway-associated genes. In the case of the IGF2BP2 gene, the 
identified T2DM-specific SNP could attenuate both islet enhancer activity and IGF2BP2 
expression, and the islet-specific conditional deficiency of Igf2bp2 gene led to impaired 
glucose-induced insulin secretion in mice [176]. 

Recently, several research groups started to study the development and progression 
of T2DM in human patients by applying state-of-the-art single-cell RNA-sequencing 
(scRNA-seq) and single-sell ATAC-sequencing (scATAC-seq) methods focusing on the 
pathological changes in pancreatic islets. Lawlor and colleagues investigated the cellular 
heterogeneity in nondiabetic and T2DM human islet samples, and they were able to detect 
T2DM-specific gene expression signatures in alpha, beta, and delta cells using scRNA-seq 
that remained invisible in paired whole-islet analyses [177]. Additionally, scRNA-seq and 
complex computational tools revealed an altered regulatory network in the pancreas of 
T2DM patients with disease-related transcriptomic changes, showing increased PageRank 
centrality in 162 genes. After analyzing five centralities driving the regulatory changes in 
diabetes, they found six markers with increased levels (OTUD7B, PPRC1, ARRB2, 
C17orf96, NME2, and E2F1) and four markers with decreased centrality (FBXW7, CXCL8, 
FHL1, and CELF4) [178]. By applying scATAC-seq and deep learning approaches, Rai et 
al. found that T2DM-associated SNPs were significantly enriched in beta cell-specific and 
common islet-specific open chromatin but not in alpha or delta cell-specific open 
chromatin signatures [179]. Marques et al. performed a meta-analysis of the scRNA-seq 



Life 2022, 12, 1205 14 of 25 
 

data of human α- and β-cells of T2DM patients and identified disease-associated genes 
responsible for energy metabolism, immune homeostasis, autophagy, and especially 
nuclear factor erythroid 2-related factor 2 (NFE2L2) in β-cell maturation and dysfunction 
[180]. 

The manifestation of T2DM in Asian Indians is more frequent, even in the case of 
normal BMI, a situation known as the “thin fat” phenotype in which the peripheral fat is 
thin but the visceral fat accumulates [181]. Microarray data of T2DM-derived peripheral 
fat of Asian Indians were sued to highlight the top 20 differentially expressed genes 
(DEGs) and pathways associated with adiposopathy in T2DM [182]. Using the whole 
transcriptome RNAseq, the same group further investigated the peripheral subcutaneous 
adipose tissue of Asian Indians and found altered lipid, glucose, and protein metabolisms; 
adipogenesis defects; and inflammation associated with T2DM [183]. Using the AGENA 
MassARRAYiPLEX™ platform, Irgam et al. recently identified seven significant SNPs 
(s2241766-G (ADIPOQ), rs6494730-T (FEM1B), rs1799817-A, rs2059806-T (INSR), 
rs11745088-C (FST), rs9939609-A, and rs9940128-A (FTO)) associated with T2DM in a 
southern Asian Indian population of 500 cases [184]. 

Besides genomics studies, multiplex proteomic investigations have revealed markers 
associated with disease severity or complications in T2DM. Using the Milliplex Luminex 
assay, Barchetta et al. showed that blood levels of osteopontin and osteoprotegerin were 
significantly higher in 83 T2DM patients versus 71 healthy controls and that these proteins 
were positively correlated with higher systolic blood pressure [185]. Using the same 
multiplex Luminex technology, Colombo et al. showed that the elevated serum 
concentrations of kidney injury molecule 1 (KIM-1) and β2-microglobulin (B2M) were 
correlated with renal failure and a decreased glomerular filtration rate in T2DM [186]. The 
study of Heinzel also based on the Luminex quantitation of plasma biomarkers identified 
KIM-1 among 12 proteins of 17 measured markers that predicted declines in the 
glomerular filtration rate [187]. Although T2DM is not autoimmune-mediated, using 
single-cell imaging mass cytometry, Wu et al. showed increased percentages of HLA-DR+ 
macrophages and HLA-DR+ CD8+ T-cells in the islets of the pancreata of T2DM patients, 
thus suggesting their role in local inflammation [188]. Novel experimental models can also 
be used to understand better the pathomechanisms of different diabetic syndromes. Our 
group was to first to optimize a special three-dimensional organoid, the Real Architecture 
For 3D Tissue (RAFT™) culture system, for the ex vivo maintenance of functional murine 
pancreatic islets [189]. 

A lipidomics study of 250 T2DM patients and 639 non-cases showed that the plasma 
lipid profiles of elevated TAGs (triacylglycerols), DAGs (diacylglycerols), and PEs 
(phosphatidylethanolamines) with a high risk of T2DM and lipid constituents such as LPs 
(lysophospholipids), PC–PLs (phosphatidylcholine–plasmalogens), SMs 
(sphingomyelins), and CEs (cholesterol esters) were associated with lower risks of T2DM 
[190]. In a Finnish lipidomics study analyzing 277 plasma lipids with ultra-performance 
liquid chromatography coupled to time-of-flight mass spectrometry of 955 subjects with 
a 5-year follow-up also found increases in TAGs and DAGs and decreases in PC–PLs 
associated with risk of T2DM [191]. Taken together, the disbalance of fatty acids (FAs) 
may not only be considered as a consequence of altered metabolism; rather, FAs may be 
involved in the translocation of glucose transporters and influence insulin receptor 
binding as causative agents in the development of T2DM [192]. 
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Table 4. Recent multi-omics approaches that revealed T2DM-associated factors. 

Omics/Field Measures Results Assay Reference 

Genomics 
16S rRNA on 
microbiome 

analysis 

Smoking and/or HIV lowers microbiome 
diversity in T2DM 

NGS [168] 

Genomics 
16S rRNA on 
microbiome 

analysis 

Metformin helps to normalize microbiome 
with the support of Blautia spp. NGS [169] 

Genomics Analysis of 
SNPs 

SNPs in the CAT, FTO and UCP1 genes 
associated with retinopathy and 

nephropathy 

Sequenom 
platform 

[170] 

Genomics 
Genome 

sequencing 
Heritability of T2DM is approximately 10–

15% 
GWAS [15–17,171] 

Epigenomics 
CpGs 

methylation 
pattern 

CpG methylation of ABCG1, LOXL2, 
TXNIP, SLC1A5 and SREBF1 is associated 

with T2DM 

EWAS, Illumina 
450K methylation 

array 
[174] 

Epigenomics 

Alpha or beta 
cell-specific 

open chromatin 
landscape 

Alpha cell-specific ATAC-seq peaks: ISL1 
and MAFB; beta cell-specific: SMAD2 

ATAC-seq [175] 

Epigenomics 
Genomics 

Open chromatin 
regions/SNPs 

Thousands of pancreatic islet-specific 
enhancer–target gene pairs 

Hi-C, ATAC-seq, 
ChIP-seq [176] 

Transcriptomics Gene expression 
T2DM-specific gene expression signatures 

in alpha, beta and delta cells scRNA-seq [177] 

Transcriptomics 

Gene 
expression, 
regulatory 
networks 

Increased OTUD7B, PPRC1, ARRB2, 
C17orf96, NME2, and E2F1 or four 
markers with decreased PageRank 

centrality (FBXW7, CXCL8, FHL1, and 
CELF4) 

scRNA-seq [178] 

Epigenomics 
Genomics 

scRNA-seq and 
deep learning 

approaches 

T2DM-associated SNPs were significantly 
enriched in beta cell-specific and common 

islet-specific open chromatin 

scRNA-seq and 
deep learning 

approaches 
[179] 

Transcriptomics 

Gene 
expression, 

pathway 
analysis 

T2DM-associated genes responsible for 
energy metabolism, immune homeostasis, 

and autophagy 

Meta-analysis of 
scRNA-seq data 

[180] 

Transcriptomics 
Whole 

transcriptome 
analysis 

Top DEGs in peripheral fat of Asian 
Indians associated with T2DM: HOXB3, 
RSPO3, HOXA5, GREM1, ORMDL1, C7, 

TRIM23, CLDN11, ABCA10, ETV5, TRIM2, 
TP53INP1, ST6GAL1, THBS2, ERAP1, 
OGT, RARRES1, CTDSPL and TBCC  

Affymetrix 
GeneChip 

PrimeView 
Human Gene 

Expression Array 

[182] 

Transcriptomics 
Whole 

transcriptome 
analysis 

Altered lipid, glucose, and protein 
metabolism; adipogenesis defect; and 

inflammation in peripheral fat of Asian 
Indians associated with T2DM 

Bulk RNAseq [183] 

Genomics 
Analysis of 

SNPs 

s2241766-G (ADIPOQ), rs6494730-T 
(FEM1B), rs1799817-A, rs2059806-T 

(INSR), rs11745088-C (FST), rs9939609-A, 

AGENA  
MassARRAYiPLE

X™ platform 
[184] 
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and rs9940128-A (FTO) were associated 
with T2DM in southern Asian Indians 

Proteomics 
Protein 

concentrations 
Osteopontin and osteoprotegerin are 

elevated in T2DM 
Milliplex Luminex 

assay 
[185] 

Proteomics 
Protein 

concentrations 
High KIM-1 and β2-B2M are associated 

with renal failure 

Luminex 
Multiplex ELISA 
Luminex assay 

[186] 

Proteomics Protein 
concentration 

High KIM-1 is associated with low GFR Multiplex 
Luminex Panel 

[187] 

Proteomics Immune cell 
infiltration 

High HLA-DR+ macrophages and HLA-
DR+ CD8+ T-cells in the islets of pancreata 

of T2DM patients 

Single-cell 
imaging mass 

cytometry 
[188] 

Lipidomics 
Lipid 

composition 

High TAGs, DAGs, PEs: high risk for 
T2DM 

High LPs, PC–PLs, SMs, CEs: low risk for 
T2DM 

Mass 
spectrometry (MS) 

[190] 

Lipidomics 
Lipid 

composition 
High TAGs, DAGs and Low PC–PLs: high 

risk for T2DM 

Ultra-performance 
liquid 

chromatography 
and MS 

[191] 

Taken together, the above-discussed studies illustrate the relevance of multi-omics 
and single cell-based technologies in the study of T2DM pathomechanisms. However, 
many questions remain unanswered, including (i) which islet-specific enhancers/open 
chromatin regions are associated with the different therapeutic responsiveness levels, (ii) 
how non-pharmacological and pharmacological treatments can modulate the cellular 
heterogeneity in the pancreas, and (iii) which gene expression and epigenetic signatures 
or plasma biomarkers may be helpful to predict the therapeutic responsiveness in T2DM 
patients. The limitations of genome-based or transcriptome-based investigations, such as 
lack of functional tests, a lack of functional evaluation of metabolic traits, and protein 
circuits in cell-to-cell communication, should be considered. Proteomics and lipidomics 
approaches also share limitations with the aforementioned technologies, with questions 
of assay sensitivity, sample preparation, and throughput, among others. No single omics 
technology can identify and quantify the T2DM-related factors responsible for both 
disease heredity, manifestation, and severity or serve as a therapeutic target or 
prognostic/diagnostic marker. Rather, the combination of the presented technologies may 
accelerate the understanding of the molecular pathomechanism of T2DM and finally 
ameliorate patient health. Overall, individuals’ responsible lifestyle choices, lower calorie 
intakes, regular physical exercises, and SARS-CoV-2 vaccination may reduce the risk of 
the development or increased severity of existing T2DM. 
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