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Abstract

Delayed neural field models can be viewed as a dynamical system in an appropriate functional analytic 
setting. On two dimensional rectangular space domains, and for a special class of connectivity and delay 
functions, we describe the spectral properties of the linearized equation. We transform the characteristic 
integral equation for the delay differential equation (DDE) into a linear partial differential equation (PDE) 
with boundary conditions. We demonstrate that finding eigenvalues and eigenvectors of the DDE is equiv-
alent with obtaining nontrivial solutions of this boundary value problem (BVP). When the connectivity 
kernel consists of a single exponential, we construct a basis of the solutions of this BVP that forms a com-
plete set in L2. This gives a complete characterization of the spectrum and is used to construct a solution 
to the resolvent problem. As an application we give an example of a Hopf bifurcation and compute the first 
Lyapunov coefficient.
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1. Introduction

Neural field models are based on the seminal work of Wilson and Cowan [23,24] on the dy-
namical properties of two populations of excitatory and inhibitory neurons. Instead of taking 
individual spiking neurons, a neural field model is obtained by spatial and temporal averaging 
of the membrane potential across a population of neurons over a time interval. The interactions 
between neurons across synapses are modelled as a convolution over a so-called connectivity 
kernel and with a nonlinear activation function. In the work of Amari [1], this model is consol-
idated into a single integro-differential equation. Subsequently, Nunez [12] expanded this work 
by including the transmission delays of the signals between neurons. These neural fields prove to 
be useful to understand various neural activity in the cortex and other parts of the brain [4,2,3,20].

Delayed neural field models take the form of an integro-differential equation with space de-
pendent delays. By choosing the proper state space, they can be reformulated as an abstract 
delay differential equation [17,16], where many available functional analytic tools can be applied. 
When the neuronal populations are distributed over a one-dimensional domain and a special class 
of connectivity functions is considered, a quite complete description of the spectrum and resol-
vent problem of the linearized equation is known [5,17]. Recently, this model has been extended 
by including a diffusion term into the neural field, which models direct, electrical connections, 
[16]. We analyze the evolution of a delayed neural field equation corresponding to a single pop-
ulation of neurons on a two-dimensional spatial domain. For a summary of some extensions of 
neuronal activity models from one to two dimensions cf. [3] and references therein. Numerical 
methods developed for the efficient and accurate time simulation of neural fields on higher di-
mensional domains can be found in [7,10,13]. Moreover, numerical studies of the non-essential 
spectrum of abstract delay differential equations are also available, [21]. Analytic results in this 
framework, to the best of our knowledge, cannot be found in the literature. In [22], Visser et al. 
have characterized the spectrum for a neural field with transmission delays on a spherical domain 
and computed normal form coefficients of Hopf and double Hopf bifurcations.

In this paper we give an analytic description of the spectrum of the linearized problem on a 
rectangle. This is subsequently used to study the stability of the neural field at rest and to detect 
Hopf bifurcations. Specifically, we study a connectivity kernel which is a sum of N exponentials. 
This is relevant, as for N = 2 we recover the model by Amari of interacting excitatory and 
inhibitory neurons [1].

To compute the spectrum, we need to find solutions to characteristic equation, which is an 
integral equation for these neural fields. Due to our choice of the connectivity kernel and the 
transmission delays, it is possible to transform the integral equation into a linear partial differ-
ential equation (PDE). The first step towards finding a solutions to the PDE is to determine its 
characteristic polynomial. We define an equivalence class on the complex plane characterized by 
the roots of this polynomial. This makes it possible to give a partition of the exponential solutions 
of the PDE corresponding to these equivalence classes. Moreover, when we consider finite linear 
combinations of exponential solutions of the PDE, we can derive further conditions, identified as 
boundary conditions. However these boundary conditions give rise to an overdetermined system 
for N ≥ 2, which renders the problem of characterizing the spectrum intractable.

For a connectivity kernel with a single exponential on the other hand the boundary conditions 
are solvable. We thus obtain the eigenfunctions corresponding to the eigenvalues of the neural 
field. In this special case, the solution of the BVP can be given using the separation of variables, 
which leads to two Sturm-Liouville problems on one dimensional domains. The vector space 
of separable solutions form a complete basis in the space of square integrable functions on the 
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rectangle. Using this unique basis expansion, we give a complete characterization of the spectrum 
and resolvent in terms of the eigenvalues and eigenfunctions that are found by solving the PDE 
with its boundary equations. This is the main results of this paper.

The paper is organized as follows. In Section 2, we summarize the functional analytic setting 
from [17,16] that casts the integro-differential equation into an abstract DDE. It is shown in Sec-
tion 3 how to obtain an explicit representation of some eigenvectors of the linearized problem for 
a particular choice of connectivity function, expressed as a finite linear combination of exponen-
tial functions. This type of connectivity models a mixed population of interacting excitatory and 
inhibitory neurons. In Section 4 we give a complete description of the spectrum and resolvent 
problem when the connectivity is a single exponential. Finally, we show an example of a Hopf 
bifurcation in Section 5.

2. Problem statement and functional analytic setting

The general mathematical model for neural fields with space-dependent delays is as follows: 
Consider p populations consisting of neurons distributed over a bounded, connected domain 
� ⊂ Rd , d = 1, 2, 3. For each i, the variable Vi(t, r) denotes the membrane potential at time 
t , averaged over those neurons in the ith population positioned at r ∈ �. These potentials are 
assumed to evolve according to the following system of integro-differential equations

∂Vi

∂t
(t, r) = −αiVi(t, r) +

p∑
j=1

∫
�

Jij (r, r
′, t)Sj (Vj (t − τij (r, r

′), r ′)) dr ′, (1)

for i = 1, . . . , p. The intrinsic dynamics exhibits exponential decay to the baseline level 0, as 
αi > 0. The propagation delays τij (r, r ′) > 0 measure the time it takes for a signal sent by a 
type-j neuron located at position r ′ to reach a type-i neuron located at position r . The function 
Jij (r, r ′, t) represents the connection strength between population j at location r ′ and population 
i at location r at time t . The firing rate functions are Sj . For the definition and interpretation of 
these functions we refer to [19].

In this paper we analyze the evolution of a single population of neurons, p = 1, in a bounded 
two-dimensional domain � ⊂R2,

∂V

∂t
(t, r) = −αV (t, r) +

∫
�

J (r, r ′)S(V (t − τ(r, r ′), r ′))d r ′, α > 0. (2)

Note that we will only deal with autonomous systems. Hence, the connectivity does not depend 
on time. We assume that the following hypotheses are satisfied for the functions involved in the 
system, (as in [17]): the connectivity kernel J ∈ C(�̄ × �̄), the firing rate function S ∈ C∞(R)

and its kth Fréchet derivative is bounded for every k ∈ N0 and the delay function τ ∈ C(�̄ × �̄)

is non-negative.
From the assumption on the delay function τ , we may set

0 < τmax = sup
′ ¯ ¯

τ(r, r ′) < ∞.

(r,r )∈�×�
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We define the Banach spaces Y := C(�̄, R) and X := C ([−τmax,0];Y). For ϕ ∈ X, s ∈
[−τmax, 0] and for r ∈ � we write ϕ(s)(r) = ϕ(s, r), and its norm is given by

‖ϕ‖X = sup
s∈[−τmax ,0]

‖ϕ(s, ·)‖Y ,

where ‖ϕ(s, ·)‖Y = supr∈� |ϕ(s, r)|. From the assumption on the connectivity kernel, it follows 
that it is bounded in the following norm

‖J‖C = sup
(r,r ′)∈�̄×�̄

|J (r, r ′)|.

We use the traditional notation for the state of the system at time t

Vt (s) = V (t + s) ∈ C(�̄), s ∈ [−τmax,0], t ≥ 0.

Define the nonlinear operator G : X → Y by

G(ϕ)(r) :=
∫
�

J (r, r ′)S
(
ϕ(−τ(r, r ′), r ′)

)
dr ′. (3)

Then the neural field equation (2) can be written as a DDE as

∂V

∂t
(t) = −αV (t) + G(Vt ), (4)

where the solution is an element of C([−τmax, ∞); Y) ∩ C1([0, ∞); Y). Similarly, we have the 
state of the solution at time t defined as Vt(s)(x) = V (t + s, x), s ∈ [−τmax, 0], t ≥ 0, x ∈ �̄. It 
was shown in [17] that under the above assumptions on the connectivity, the firing rate function 
and delay, the operator G is well-defined and it satisfies a global Lipschitz condition.

Let DG(ϕ̂) ∈ L(X, Y) be the Fréchet derivative of G at the steady state ϕ̂ ∈ X, given as

DG(ϕ̂)(ϕ)(r) =
∫
�

J (r, r ′)S′(ϕ̂(−τ(r, r ′), r ′))ϕ(−τ(r, r ′), r ′) dr ′.

We assume that S(0) = 0, such that (2) admits the trivial equilibrium. Then the linearized prob-
lem around the ϕ̂ ≡ 0 equilibrium is

{
V̇ (t) = −αV (t) + DG(0)Vt , t ≥ 0

V (t) = ϕ(t), t ∈ [−τmax,0]. (5)

The solution of the linear problem defines a strongly continuous semigroup T on X, see for 
example chapter VI.6 of [6]. T is generated by A : D(A) ⊂ X → X, where

D(A) = {ϕ ∈ X : ϕ′ ∈ X and ϕ′(0) = −αϕ(0) + DG(0)ϕ}, Aϕ = ϕ′.
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We denote by ρ(A), σ(A) and σp(A) the resolvent set, the spectrum and the point spectrum of 
A, respectively.

The main goal of this paper is to analytically study the stability of the trivial equilibrium 
and any resulting stable patterns of the neural field where the trivial equilibrium is not stable. 
To determine the stability we need to fully characterise the spectrum σ(A). If σ(A) is strictly 
contained in the left half of the complex plane then general stability theory gives us that the trivial 
equilibrium is linearly stable, [8]. We are also interested in the parameters where the trivial 
equilibrium loses its stability. When we have a complex pair of eigenvalues on the imaginary 
axis, λ = ±ωi, there is a Hopf bifurcation. This gives rise to a limit cycle or periodic orbit in the 
neural field. This cycle is stable if the sign of the first Lyapunov coefficient l1 at this bifurcation 
is negative.

3. Spectral properties of the linearized equation

In this section, we study the spectral properties of the linearized equation (5) when the space 
domain is the rectangle �̄ = [−a, a] × [−b, b] and the connectivity kernel is a finite linear com-
bination of exponentials of the form

J (r, r ′) :=
N∑

i=1

ĉie
−ξi‖r−r ′‖1 ∀r, r ′ ∈ �̄, (6)

where ĉi , ξi ∈C, such that J is real-valued. Moreover, the delay function is

τ(r, r ′) := τ0 + ‖r − r ′‖1, ∀r, r ′ ∈ �̄, τ0 > 0. (7)

First we deal with the essential spectrum, σess(A), the part of the spectrum which is invariant 
under compact perturbations. We can leverage the fact that DG(0) is compact with Theorem 27 
of [16] to find σess(A) = {−α}.

The remaining point spectrum σp(A) = σ(A) \ σess(A) consists of eigenvalues with a finite-
dimensional eigenspace. Due to Proposition VI.6.7 of [6], eigenvectors ϕ ∈ X for delay equations 
have the form

ϕ(t)(r) = eztq(r), (8)

with the eigenvalue z ∈C and q ∈ Y a non-trivial solution of the characteristic equation

�(z)q := (z + α)q −
N∑

i=1

Ki(z)q = 0, (9)

with the linear operators Ki(z) : Y → Y given by

(Ki(z)q) (r) := ci(z)

∫
�

e−ki (z)‖r−r ′‖1q(r ′) dr ′, i = 1,2, . . . ,N, (10)

with ki(z) = z+ ξi and ci(z) = ĉiS
′(0)e−τ0z = 0. The integral equation �(z)q = 0 is a Fredholm 

integral equation of the second type acting on multivariate functions.
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3.1. From an integral equation to a partial differential equation

The main idea to solving �(z)q = 0 is to transform the integral equation to a PDE. Special 
exponential solutions q of the PDE that satisfy specific conditions on the boundary, are solutions 
of the characteristic equation (9). Following this direction we will show that for N ≥ 2 the prob-
lem of constructing closed form solutions q is intractable. However for N = 1 it is possible to 
construct explicit solutions q .

First we establish that the eigenvectors are smooth.

Proposition 3.1. For any z ∈ C \ {−α}, the solution q ∈ Y of �(z)q = 0 is q ∈ C∞(�̄).

Proof. The range of Ki(z) is contained in C1(�̄) for all i = 1, . . . , N and all z ∈ C. Hence, any 
solution of �(z)q = 0 is in C1(�̄). The result follows by induction. �

For the remaining part of this section we assume that q ∈ C∞(�̄), so all differential operators 
applied to q are well-defined.

Differentiating the kernel functions in the integral equation (9) in the distributional sense w.r.t. 
one of the spatial variables yields

∂2

∂x
e−ki (z)‖r−r ′‖1 =

[
k2
i (z) − 2ki(z)δ(x − x′)

]
e−ki (z)‖r−r ′‖1 , j = 1,2, i = 1, . . . ,N, (11)

with r = (x, y). This motivates the introduction of the differential operators

Li(z) =
(

k2
i (z) − ∂2

∂x2

)
◦
(

k2
i (z) − ∂2

∂y2

)
, i = 1, . . . ,N. (12)

Applying Li(z) to the integral operator Ki(z) defined in (10), we obtain

Li(z)Ki(z)q = 4ci(z)k
2
i (z)q ∀q ∈ Y, i = 1, . . . ,N. (13)

So, Li(z) acts like a left-inverse of Ki(z). Using this key property, we find that applying the oper-
ator L(z) =∏N

i=1 Li(z) to the characteristic equation (9), leads to the linear constant coefficient 
PDE

L(z)�(z)q = (z + α)

N∏
i=1

Li(z)q − 4
N∑

i=1

ci(z) k2
i (z)

N∏
j=1,
j =i

Lj (z)q = 0. (14)

We look for solutions of this PDE in the form

q(x, y) = eρxeνy, ρ, ν ∈C, (x, y) ∈ �. (15)

This leads to the characteristic polynomial equation Pz(ρ, ν) = 0, with Pz : C2 → C given by
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Pz(ρ, ν) = (z+α)

N∏
i=1

(k2
i (z)−ρ2)(k2

i (z)− ν2)− 4
N∑

i=1

ci(z) k2
i (z)

N∏
j=1,
j =i

(k2
j (z)−ρ2)(k2

j (z)− ν2).

(16)
The characteristic polynomial is symmetric under interchanging and negating ρ and ν, i.e., 
Pz(ρ, ν) = Pz(ν, ρ) = Pz(−ρ, ν).

The next proposition shows that there are only a few z ∈ C such that Pz(ρ, ν) = 0 has a 
nontrivial solution when ρ = ±ki(z) or ν = ±ki(z). We exclude these z as they cause difficulties 
in later theorems.

Definition 3.2. Define the set L ⊂C by

L := {z ∈C : ∃i, j ∈ {1, . . . ,N}, i = j such that z = −(ξi + ξj )/2 or z = −ξi}.

Proposition 3.3. Pz(ki(z), ν) = 0 and Pz(ρ, ki(z)) = 0 for all ρ, ν ∈ C and i ∈ {1, . . .N} if and 
only if z /∈ L.

Proof. For ρ, ν ∈ C and i ∈ {1, . . . , N} we have that

Pz(ρ, ki(z)) = −4ci(z) k2
i (z)

N∏
j=1,
j =i

(k2
j (z) − ρ2)(k2

j (z) − k2
i (z)),

Pz(ki(z), ν) = −4ci(z) k2
i (z)

N∏
j=1,
j =i

(k2
j (z) − k2

i (z))(k
2
j (z) − ν2).

(17)

Suppose (17) is nonzero, k2
i (z) − k2

j (z) = 0 and ki(z) = 0 for i, j ∈ {1, . . .N} where i = j . By 
the definition of k(z) = z + ξ, z /∈ L.

Conversely, for z /∈ L, either k2
i (z) − k2

j (z) = 0 and ki(z) = 0 for some i, j ∈ {1, . . .N} where 
i = j . This implies that (17) is nonzero. �

Consequently, for z /∈ L we have that Pz(ρ, ν) = 0 is equivalent to

Qz(ρ, ν) := (z + α) −
N∑

i=1

4ci(z) k2
i (z)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
= 0. (18)

We now want to use solutions of the PDE (14) to construct an eigenvector q which solves (9). 
Unfortunately the set of the roots N (Pz) := {(ρ, ν) ∈ C × C : Pz(ρ, ν) = 0} of the polynomial 
Pz is uncountable. So we restrict ourselves to finite linear combinations of exponential solutions. 
For these finite linear combinations we can construct an explicit condition for solving (9) that 
only uses values of q at the boundary of �̄. In the next theorem we drop the z-dependence of the 
operators Ki, Li for clarity.
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Theorem 3.4. Let z ∈ C \ {−α} such that z /∈ L. Let q be a finite linear combination of expo-
nential solutions of the PDE (14), i.e. q =∑

(ρ,ν)∈V q(ρ,ν), with V a finite subset of N (Pz) and 
q(ρ,ν)(x, y) = γ(ρ,ν)e

ρxeνy , where γ(ρ,ν) are some constants in C.
Then �(z)q = 0 if and only if

N∑
i=1

∑
(ρ,ν)∈V

(KiLi − LiKi)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
= 0. (19)

Proof. By definition, q is a solution of the PDE (14). From the definition of the operator Li , for 
z /∈ L we have that

Liq(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
= q(ρ,ν).

Hence we obtain that

�(z)q = (z + α)q −
N∑

i=1

Ki(z)q

= (z + α)q −
N∑

i=1

∑
(ρ,ν)∈V

KiLiq(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)

=
∑

(ρ,ν)∈V

(
(z + α) −

N∑
i=1

4ci(z) k2
i (z)

(k2
i (z) − ρ2)(k2

i (z) − ν2)

)
q(ρ,ν)

−
N∑

i=1

∑
(ρ,ν)∈V

(KiLi − LiKi)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)

= −
N∑

i=1

∑
(ρ,ν)∈V

(KiLi − LiKi)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
,

where we used that LiKiq = 4ci(z)k
2
i (z)q and (18). �

We can further evaluate the condition in (19) using integration by parts. The operator on the 
left hand side of (20) is a operator that acts on q and its normal derivatives at the boundary of �̄. 
Hence, we will refer to (19) as the boundary condition from this point forward.

For a general q ∈ C∞(�̄) the following holds for i = 1, 2, . . . , N

(Ki(z)Li(z) − Li(z)Ki(z)) q = −2ci(z)ki(z)Bi(z)q + ci(z)e
−ki (z)(a+b)Ci(z)q, (20)

where
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(Bi(z)q)(x, y) :=e−ki (z)(a+x)

((
ki(z) − ∂

∂x

)
q

)
(−a, y)

+ e−ki (z)(a−x)

((
ki(z) + ∂

∂x

)
q

)
(a, y)

+ e−ki (z)(b+y)

((
ki(z) − ∂

∂y

)
q

)
(x,−b)

+ e−ki (z)(b−y)

((
ki(z) + ∂

∂y

)
q

)
(x, b) (21)

and

(Ci(z)q)(x, y) :=e−ki (z)(x+y)

((
ki(z) − ∂

∂x

)(
ki(z) − ∂

∂y

)
q

)
(−a,−b)

+ e−ki (z)(x−y)

((
ki(z) − ∂

∂x

)(
ki(z) + ∂

∂y

)
q

)
(−a, b)

+ eki(z)(x−y)

((
ki(z) + ∂

∂x

)(
ki(z) − ∂

∂y

)
q

)
(a,−b)

+ eki(z)(x+y)

((
ki(z) + ∂

∂x

)(
ki(z) + ∂

∂y

)
q

)
(a, b). (22)

Finding eigenvectors with an arbitrary number of exponentials is still hard. However, we can 
show that if we have such an eigenvector, then a subset of at most 4N(N + 1) exponentials form 
also an eigenvector. To prove this, we first need the following equivalence relation.

Definition 3.5. For every z ∈ C, define the ∼z relation on C as follows: For ρ, ν ∈ C,

ρ ∼z ν if and only if Pz(ρ, ν) = 0 or ρ2 = ν2. (23)

Proposition 3.6. Let z /∈ L, then the relation ∼z defines an equivalence relation on C.

Proof. By definition ∼z is reflexive and by the symmetry of Pz, ∼z is also symmetric.
Let z /∈ L. From Proposition 3.3, we have that Pz(ρ, ν) = 0 if and only if Qz(ρ, ν) = 0. Using 

equation (18) we can deduce that

(ρ2 − ν2)Qz(ρ, ν) = (z + α)(ρ2 − ν2) − (ρ2 − ν2)

N∑
i=1

4ci(z) k2
i (z)

(k2
i (z) − ρ2)(k2

i (z) − ν2)

= (z + α)ρ2 −
N∑

i=1

4ci(z) k2
i (z)

(k2
i (z) − ρ2)

− (z + α)ν2 +
N∑

i=1

4ci(z) k2
i (z)

(k2
i (z) − ν2)

.

(24)

Let ρ1 ∼z ρ2, ρ2 ∼z ρ3. Due to equation (24)

(ρ2 − ρ2)Qz(ρ1, ρ3) = (ρ2 − ρ2)Qz(ρ1, ρ2) + (ρ2 − ρ2)Qz(ρ2, ρ3) = 0.
1 3 1 2 2 3
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We conclude that ρ1 ∼z ρ3 and hence ∼z is transitive. �

For every ν ∈ C, we can construct an equivalence class [ν]z = {ρ ∈ C|ρ ∼z ν}. Using this 
equivalence relation we can partition the null-space of Pz into the following Eν,z sets.

Definition 3.7. For every z, ν ∈C, define the set Eν,z ⊂ N (Pz) as

Eν,z := {(ρ1, ρ2) ∈N (Pz)|ρ1 ∼z ν ∼z ρ2}. (25)

Proposition 3.8 (Partition principle). Let z /∈ L and ν ∈ C. For all (ρ1, ν1) ∈ Eν,z and (ρ2, ν2) ∈
N (Pz) \ Eν,z, ρ2

1 = ρ2
2 and ν2

1 = ν2
2 .

Proof. Let (ρ1, ν1) ∈ Eν,z and (ρ2, ν2) ∈ N (Pz) \Eν,z. Suppose ρ2
1 = ρ2

2 , then ν ∼z ρ1 ∼z ρ2 ∼z

ν2 and hence by Proposition 3.6, (ρ2, ν2) ∈ Eν,z. A similar reasoning holds when ν2
1 = ν2

2 , so we 
have proven this statement by contradiction. �

This property makes us able to split the boundary condition (19) into multiple independent 
conditions corresponding to a single set Eν,z. Note that the above property does not hold for any 
non-empty, proper subset of Eν,z.

Proposition 3.9. Suppose z /∈ L and that q is a finite linear combination of exponential solutions 
as in Theorem 3.4, which solves �(z)q = 0. Then for all ν1 ∈ C for which there exists a ρ1 ∈ C
such that (ρ1, ν1) ∈ V , with V a finite subset of N (Pz),

N∑
i=1

∑
(ρ,ν)∈Eν1,z

Bi(z)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
= 0. (26)

Proof. Let (ρ1, ν1) ∈ V and q as in Theorem 3.4. Using (20)-(22) we find that for all (ρ, ν) ∈ V

and i = 1, . . . , N

(KiLi − LiKi)q(ρ,ν) = −2ci(z)ki(z)Bi(z)q(ρ,ν) + ci(z)e
−ki (z)(a+b)Ci(z)q(ρ,ν)

with
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(
Bi(z)q(ρ,ν)

)
(x, y) =γ(ρ,ν)

[
e−ki (z)(a+x)−ρa+νy(ρ − ki(z))

− e−ki (z)(a−x)+ρa+νy(ρ + ki(z))

+ e−ki (z)(b+y)+ρx−νb(ν − ki(z))

−e−ki (z)(b−y)+ρx+νb(ν + ki(z))
]
,

(
Ci(z)q(ρ,ν)

)
(x, y) =γ(ρ,ν)

[
e−ki (z)(x+y)−ρa−νb(ρ − ki(z))(ν − ki(z))

− e−ki (z)(x−y)−ρa+νb(ρ − ki(z))(ν + ki(z))

− eki(z)(x−y)+ρa−νb(ρ + ki(z))(ν − ki(z))

+eki(z)(x+y)+ρa+νb(ρ + ki(z))(ν + ki(z))
]
.

(27)

We note that Bi(z)q(ρ,ν) is a linear combination of exponentials e±ki(z)xeνy and eρxe±ki (z)y and 
that Ci(z)q(ρ,ν) of e±ki (z)xe±ki (z)y .

As z /∈ L, we get by Proposition 3.3 that for all (ρ, ν) ∈ V , ρ, ν = ±ki(z) for i ∈ {1, . . . , N}. 
Furthermore, as (ρ1, ν1) ∈ Eν1,z, by Proposition 3.8, for all (ρ2, ν2) ∈ V \ Eν1,z, ρ2

1 = ρ2
2 and 

ν2
1 = ν2

2 . Hence the elements of the set

{e±ki (z)xeν1y, eρ1xe±ki (z)y, e±ki (z)xeν2y, eρ2xe±ki (z)y, e±ki (z)xe±ki (z)y | i = 1, . . . ,N}

are linearly independent.
We conclude that the terms

N∑
i=1

∑
(ρ,ν)∈Eν1,z

Bi(z)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
,

N∑
i=1

∑
(ρ,ν)∈V \Eν1,z

Bi(z)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)
,

N∑
i=1

∑
(ρ,ν)∈V

Ci(z)q(ρ,ν)

(k2
i (z) − ρ2)(k2

i (z) − ν2)

are linearly independent. As q satisfies the boundary conditions (19), these should vanish. �
Generically, a polynomial of degree 2N has 2N distinct roots. As we show in the proposition 

below, this implies a generic representation of Eν,z.

Proposition 3.10. Let z /∈ L, ν ∈ C and suppose that the equivalence class [ν]z has 2(N + 1)

distinct elements ±ρ1, . . . , ±ρN+1. Then Eν,z = {(±ρi, ±ρj ) | i, j ∈ {1, . . . , N + 1}, i = j} and 
ρi = 0 for i ∈ {1, . . . , N + 1}.

Proof. For given ν ∈ C, Pz(ρ, ν) is a polynomial of order 2N in ρ. So if [ν]z has 2(N + 1)

distinct elements, then Pz(ρ, ν) = 0 must have 2N distinct solutions ρ = ±ρ1, . . . , ±ρN , which 
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are not equal to ±ν, so we can define ρN+1 := ν. Furthermore as ρi must be distinct from −ρi , 
this implies that ρi = 0 for i ∈ {1, . . . , N}. �

In this case, the sum of exponentials corresponding to Eν,z can equivalently be expressed as

qEν,z (x, y) =
N+1∑
i,j=1

[
dee
ij cosh(ρix) cosh(ρjy) + deo

ij cosh(ρix) sinh(ρjy)

+ doe
ij sinh(ρix) cosh(ρjy) + doo

ij sinh(ρix) sinh(ρjy)
]
,

(28)

where we require that dii = 0 for i = {1, . . . , N + 1}. The coefficients dee
ij , deo

ij , doe
ij , doo

ij form the 

matrices Dee, Deo, Doe, Doo ∈ C(N+1)×(N+1) with a zero diagonal. The superscripts e, o refer 
to coefficients of even and odd functions of x and y, respectively.

We define the matrices Se, So ∈ CN×(N+1) with elements

Se
ij (r, ν, z) := ki(z) cosh(ρj (ν, z)r) + ρj (ν, z) sinh(ρj (ν, z)r)

k2
i (z) − ρ2

j (ν, z)

So
ij (r, ν, z) := ki(z) sinh(ρj (ν, z)r) + ρj (ν, z) cosh(ρj (ν, z)r)

k2
i (z) − ρ2

j (ν, z)

(29)

for i ∈ {1, . . . , N}, j ∈ {1, . . . , N + 1}. The superscripts e, o refer to even and odd functions in 
ρj , respectively.

Proposition 3.11. Let z /∈ L, ν1 ∈ C and suppose that the equivalence class [ν1]z has 2(N + 1)

distinct elements. Then

N∑
l=1

∑
(ρ,ν)∈Eν1,z

Bl(z)q(ρ,ν)

(k2
l (z) − ρ2)(k2

l (z) − ν2)
= 0 (30)

implies that

N∑
l=1

∑
(ρ,ν)∈Eν1,z

Cl(z)q(ρ,ν)

(k2
l (z) − ρ2)(k2

l (z) − ν2)
= 0. (31)

Proof. For this proof we drop the dependency on z and ν1. We do some calculations beforehand 
using (21) and (22):

Bl cosh(ρx) sinh(νy) = −2e−kla cosh(klx) sinh(νy)(kl cosh(ρa) + ρ sinh(ρa))

− 2e−klb cosh(ρx) sinh(kly)(kl sinh(νb) + ν cosh(νb)),

Cl cosh(ρx) sinh(νy) = 4 cosh(klx) sinh(kly)(kl cosh(ρa)

+ ρ sinh(ρa))(kl sinh(νb) + ν cosh(νb)),
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Bl cosh(ρx) cosh(νy) = −2e−kla cosh(klx) cosh(νy)(kl cosh(ρa) + ρ sinh(ρa))

− 2e−klb cosh(ρx) cosh(kly)(kl cosh(νb) + ν sinh(νb)),

Cl cosh(ρx) cosh(νy) = 4 cosh(klx) cosh(kly)(kl cosh(ρa)

+ ρ sinh(ρa))(kl cosh(νb) + ν sinh(νb)),

Bl sinh(ρx) sinh(νy) = −2e−kla sinh(klx) sinh(νy)(kl sinh(ρa) + ρ cosh(ρa))

− 2e−klb sinh(ρx) sinh(kly)(kl sinh(νb) + ν cosh(νb)),

Cl sinh(ρx) sinh(νy) = 4 sinh(klx) sinh(kly)(kl sinh(ρa)

+ ρ cosh(ρa))(kl sinh(νb) + ν cosh(νb)),

Bl sinh(ρx) cosh(νy) = −2e−kla sinh(klx) cosh(νy)(kl sinh(ρa) + ρ cosh(ρa))

− 2e−klb sin(ρx) cosh(kly)(kl cosh(νb) + ν sinh(νb)),

Cl sinh(ρx) cosh(νy) = 4 sinh(klx) cosh(kly)(kl sinh(ρa)

+ ρ cosh(ρa))(kl cosh(νb) + ν sinh(νb)),

hold for l ∈ {1, . . . , N}. Now we expand (30) and (31) as

0 =
N∑

l=1

∑
(ρ,ν)∈Eν1,z

Blq(ρ,ν)

(k2
l (z) − ρ2)(k2

l (z) − ν2)

=
N∑

l=1

N+1∑
j=1

2e−kla
cosh(klx) cosh(ρjy)

k2
l − ρ2

j

(N+1∑
i=1

dee
ij

(kl cosh(ρia) + ρi sinh(ρia)

k2
l − ρ2

i

))

+
N∑

l=1

N+1∑
i=1

2e−klb
cosh(ρix) cosh(kly)

k2
l − ρ2

i

(N+1∑
j=1

dee
ij

(kl cosh(ρjb) + ρj sinh(ρjb)

k2
l − ρ2

j

))

+
N∑

l=1

N+1∑
j=1

2e−kla
cosh(klx) sinh(ρjy)

k2
l − ρ2

j

(N+1∑
i=1

deo
ij

(kl cosh(ρia) + ρi sinh(ρia)

k2
l − ρ2

i

))

+
N∑

l=1

N+1∑
i=1

2e−klb
cosh(ρix) sinh(kly)

k2
l − ρ2

i

(N+1∑
j=1

deo
ij

(kl sinh(ρjb) + ρj cosh(ρjb)

k2
l − ρ2

j

))

+
N∑

l=1

N+1∑
j=1

2e−kla
sinh(klx) cosh(ρjy)

k2
l − ρ2

j

(N+1∑
i=1

doe
ij

(kl sinh(ρia) + ρi cosh(ρia)

k2
l − ρ2

i

))

+
N∑

l=1

N+1∑
i=1

2e−klb
sinh(ρix) cosh(kly)

k2
l − ρ2

i

(N+1∑
j=1

doe
ij

(kl cosh(ρjb) + ρj sinh(ρjb)

k2
l − ρ2

j

))

+
N∑N+1∑

2e−kla
sinh(klx) sinh(ρjy)

k2
l − ρ2

j

(N+1∑
doo
ij

(kl sinh(ρia) + ρi cosh(ρia)

k2
l − ρ2

i

))

l=1 j=1 i=1
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+
N∑

l=1

N+1∑
i=1

2e−klb
sinh(ρix) sinh(kly)

k2
l − ρ2

i

(N+1∑
j=1

doo
ij

(kl sinh(ρjb) + ρj cosh(ρjb)

k2
l − ρ2

j

))

and

N∑
l=1

∑
(ρ,ν)∈Eν1,z

Clq(ρ,ν)

(k2
l (z) − ρ2)(k2

l (z) − ν2)

=
N∑

l=1

4 cosh(klx) cosh(kly)
(N+1∑

i,j=1

dee
ij

(kl cosh(ρia) + ρi sinh(ρia)

k2
l − ρ2

i

)

×
(kl cosh(ρjb) + ρj sinh(ρjb)

k2
l − ρ2

j

))

+
N∑

l=1

4 cosh(klx) sinh(kly)
(N+1∑

i,j=1

deo
ij

(kl cosh(ρia) + ρi sinh(ρia)

k2
l − ρ2

i

)

×
(kl sinh(ρjb) + ρj cosh(ρjb)

k2
l − ρ2

j

))

+
N∑

l=1

4 sinh(klx) cosh(kly)
(N+1∑

i,j=1

doe
ij

(kl sinh(ρia) + ρi cosh(ρia)

k2
l − ρ2

i

)

×
(kl cosh(ρjb) + ρj sinh(ρjb)

k2
l − ρ2

j

))

+
N∑

l=1

4 sinh(klx) sinh(kly)
(N+1∑

i,j=1

doo
ij

(kl sinh(ρia) + ρi cosh(ρia)

k2
l − ρ2

i

)

×
(kl sinh(ρjb) + ρj cosh(ρjb)

k2
l − ρ2

j

))
.

Since z /∈ L, we have by Proposition 3.3 that ρi = ±kl and kp = ±kl for i ∈ {1, . . . , N + 1} and 
p, l ∈ {1, . . . , N}, where p = l. Since [ν]z has 2(N + 1) elements we have by Proposition 3.10
that ρi = ±ρj = 0 for i, j ∈ {1, . . . , N + 1}, where i = j . Hence all the terms above of cosine 
hyperbolic and sine hyperbolic in x and y are linearly independent and hence all the sums on the 
right have to be zero to satisfy the conditions.

Using the matrices defined in (29), the necessary and sufficient conditions for which (30)
holds are

Se(a)Dee = Se(b)(Dee)T = Se(a)Deo = So(b)(Deo)T = O

So(a)Doe = Se(b)(Doe)T = So(a)Doo = So(b)(Doo)T = O,
(32)

where O is the N × (N + 1)-zero matrix. The necessary and sufficient conditions for which (31)
holds are
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Se(a)Dee(Se(b))T = Se(a)Deo(So(b))T = O

So(a)Doe(Se(b))T = So(a)Doo(So(b))T = O,
(33)

where O is the N × N -zero matrix. Hence we conclude that (30) implies (31). �
Corollary 3.12. Let z /∈ L, ν1 ∈ C and suppose that the equivalence class [ν1]z has 2(N + 1)

distinct elements. Then �(z)qEν1,z = 0 if and only if

N∑
l=1

∑
(ρ,ν)∈Eν1,z

Bl(z)q(ρ,ν)

(k2
l (z) − ρ2)(k2

l (z) − ν2)
= 0. (34)

We can conclude that finding eigenvectors comes down to finding non-trivial solutions to the 
matrix equations (32). The problem is that for Dee to be non-zero, there are 2N(N +1) equations 
and N(N +1) unknowns in Dee and ν1 and z, in total N(N +1) +2 unknowns. When N = 1 then 
the number of equations and unknowns are the same. This special case will be treated separately 
in the next section. When N ≥ 2 then the number of conditions is larger than the number of 
unknowns. However, we can reduce the amount of equations to some extent. To illustrate this, 
we consider N = 2 and distinguish two cases: rank(Dee) = 1 and rank(Dee) ≥ 2.

When rank(Dee) = 1, it means that we can write Dee = da(db)T , where da, db ∈ C3 are 
non-trivial solutions of Se(a)da = 0, Se(b)db = 0. To satisfy the condition that Dee has a zero 
diagonal, one of da or db has to have two zero elements. Without loss of generality, suppose that 
da = (1 0 0)T . Then Se(a)da = 0 implies that Se

11(a) = 0 and Se
21(a) = 0, or equivalently,

k1(z) cosh(ρ1a) + ρ1 sinh(ρ1a) = 0,

k2(z) cosh(ρ1a) + ρ1 sinh(ρ1a) = 0.
(35)

Subtracting these equations and using that k1(z) = k2(z), we get that cosh(ρ1a) = 0. Substituting 
this back into (35) implies that ρ1 sinh(ρ1a) = 0, which is not possible simultaneously with 
cosh(ρ1a) = 0. Hence rank(Dee) must be at least 2.

Due to the Sylvester’s rank inequality, rank(Se(a)) + rank(Dee) ≤ 3 and rank(Se(b)) +
rank(Dee) ≤ 3. Hence rank(Dee) ≥ 2 implies that rank(Se(a)), rank(Se(b)) ≤ 1. In this case 
it is then possible to construct an explicit solution for Dee, so the condition rank(Se(a)), 
rank(Se(b)) ≤ 1 is also sufficient.

Requiring that rank(Se(a)) = 1, i.e., the two rows of Se(a) are linearly dependent, gives the 
following conditions

η1S
e
11(a) + η2S

e
12(a) = 0

η1S
e
21(a) + η2S

e
22(a) = 0

η1S
e
31(a) + η2S

e
32(a) = 0

η2
1 + η2

2 = 1.

Under the same assumption on Se(b), for each of the matrices Se(a), Se(b) there are 4 conditions 
and we have in total 6 unknowns, ν1, z and the η1, η2 constants for each matrix. Hence this system 
is overdetermined and therefore has no generic solution.
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However, when a = b the matrices Se(a) and Se(b) are the same and this means 4 conditions 
and 4 unknowns. Therefore, with a Newton method we can find ν1, z such that rank(Se(a)) = 1
and from that we can explicitly find a non-trivial solution Dee of the form

Dee =
⎛
⎝ 0 −Se

13 Se
12

Se
13 0 −Se

11−Se
12 Se

11 0

⎞
⎠ .

This works similarly for rank(So(a)) = 1 and Doo. Obtaining however a non-trivial Deo or Doe

still requires 8 conditions to be satisfied and it is thus non-generic.
In conclusion, there are only generic eigenvectors which are a (finite) sum of exponentials if 

a = b. Otherwise, generic eigenvectors for a = b (and maybe also some for a = b) are solutions 
to (9) which are not a sum of exponentials. In general, there is no guarantee that solutions of 
these integral equations can be expressed analytically.

4. Single exponential connectivity

In this section, we consider the case when the connectivity kernel in (6) is a single exponential, 
i.e., N = 1. In contrast to N ≥ 2, in this case we can find a complete characterisation of the 
spectrum. Using the results of Section 3, we formulate the boundary value problem and give 
an analytic representation of the solution. After having described the spectrum of the linearized 
neural field equation, we solve the resolvent problem for this special case and using these results, 
we give an example of a Hopf bifurcation in the next section. For notational simplicity, we drop 
the subscripts of the operators.

As shown in Section 3, we can transform the integral equation (9) into a PDE using the fact 
that L(z)K(z)q = 4c(z)k2(z)q . In the next theorem we state that, for N = 1 the characteristic 
integral equation of the DDE is equivalent to a PDE with an additional (boundary) condition.

Theorem 4.1. Let q ∈ Y such that qxxyy = qyyxx ∈ C(�) and let z ∈ C such that z = −α and 
k(z) = 0. Then we have the following equivalence

�(z)q = 0 ⇔ {L(z)�(z)q = 0 and K(z)L(z)q = L(z)K(z)q} . (36)

Moreover, for any g ∈ Y we get that

�(z)q = Kg ⇔
{
L(z)�(z)q = 4c(z)k2(z)g and K(z)L(z)q = L(z)K(z)q

}
. (37)

Proof. Let q, g ∈ Y such that qxxyy = qyyxx ∈ C(�) and let z ∈ C \ {−α}, such that k(z) = 0. 
The smoothness condition on q implies that

L(z)q =
(

k2(z) − ∂2

∂x2

)
◦
(

k2(z) − ∂2

∂y2

)
q (38)

is well defined. Using g ≡ 0 in (37) gives (36), so we only prove (37). For the remaining part of 
this proof we will drop the dependency on z for clarity.
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First we apply the operator L and KL to (�q − Kg)

L(�q − Kg) = (z + α)Lq − LKq − LKg

= (z + α)Lq − 4ck2q − 4ck2g,

KL(�q − Kg) = (z + α)KLq − 4ck2Kq − 4ck2Kg

= (z + α)KLq + 4ck2�q − 4ck2(z + α)q − 4ck2Kg

= (z + α)(KL − LK)q + 4ck2(�q − Kg).

Suppose that �q = Kg. Then from the equations above we get that

L�q = (z + α)Lq − 4ck2q = 4ck2g

and that (KL − LK)q = 0.
Conversely, suppose that L�q = 4ck2g and that (KL − LK)q = 0. Then

0 = KL(�q − Kg) = 4ck2(�q − Kg),

and hence �q = Kg as k = 0. �
Note that, for the set of q where K(z)L(z)q = L(z)K(z)q = 4c(z)k2(z)q holds, K(z) has a 

two-sided inverse 1
4c(z)k2(z)

L(z). Using (20), we can write (K(z)L(z) − L(z)K(z))q in terms of 
derivatives of q at the boundary of �. In the next lemma we can see that, under some conditions, 
we can interpret the right-hand side of (36) as a boundary value problem with a Robin-type 
boundary condition.

Lemma 4.2. Let q ∈ Y such that qxxyy = qyyxx ∈ C(�). Then

(
k(z) + ∂

∂n

)
q(x, y) = 0 ∀(x, y) ∈ ∂� (39)

implies that (K(z)L(z) − L(z)K(z))q = 0, where ∂
∂n

is the outward normal derivative to the 
boundary of �.

If k(z) = 0 and q(x, y) = φ(x)ψ(y), where φ ∈ C2([−a, a]), ψ ∈ C2([−b, b]) and φ(x) =
c̄e±k(z)x , ψ(y) = c̄e±k(z)y for all c̄ ∈ C, then (K(z)L(z) − L(z)K(z))q = 0 also implies (39).

Proof. From (20), we can write K(z)L(z) − L(z)K(z) in terms of the operators B(z) and C(z)

as

(K(z)L(z) − L(z)K(z))q = −2c(z)k(z)B(z)q + c(z)e−k(z)(a+b)C(z)q = 0. (40)

The first statement then immediately follows from the definition of B(z) and C(z) in (21) and 
(22), respectively.

Conversely, assume that q(x, y) = φ(x)ψ(y), with φ and ψ as in the second statement of the 
lemma. Then we can write B(z)q and C(z)q as
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(B(z)q)(x, y) =ψ(y)e−k(z)(a+x)

((
k(z) − ∂

∂x

)
φ

)
(−a)

+ ψ(y)e−k(z)(a−x)

((
k(z) + ∂

∂x

)
φ

)
(a)

+ φ(x)e−k(z)(b+y)

((
k(z) − ∂

∂y

)
ψ

)
(−b)

+ φ(x)e−k(z)(b−y)

((
k(z) + ∂

∂y

)
ψ

)
(b)

and

(C(z)q)(x, y) =e−k(z)x

((
k(z) − ∂

∂x

)
φ

)
(−a) e−k(z)(y)

((
k(z) − ∂

∂y

)
ψ

)
(−b)

+ e−k(z)x

((
k(z) − ∂

∂x

)
φ

)
(−a) ek(z)y

((
k(z) + ∂

∂y

)
ψ

)
(b)

+ ek(z)x

((
k(z) + ∂

∂x

)
φ

)
(a) e−k(z)y

((
k(z) − ∂

∂y

)
ψ

)
(−b)

+ ek(z)x

((
k(z) + ∂

∂x

)
φ

)
(a) ek(z)y

((
k(z) + ∂

∂y

)
ψ

)
(b).

Using the fact that k(z) = 0 and φ(x) = c̄e±k(z)x, ψ(y) = c̄e±k(z)y for all c̄ ∈ C, we can reason 
by linear independence that each term of B(z)q should vanish and hence (39) holds. �

For N = 1, we can simplify (14), L(z)�(z)q = 0, as

L(z)q = 4c(z)k2(z)

z + α
q. (41)

So, z is an eigenvalue of the original DDE (4), when 4c(z)k2(z)
z+α

is an eigenvalue of L(z) with an 
eigenfunctions q that satisfies the boundary condition K(z)L(z)q = L(z)K(z)q .

4.1. Eigenvalues and eigenvectors

We can use Corollary 3.12 and the matrix equations of (32) to find some eigenvalues with 
eigenvectors which are a sum of exponentials. But first we take a look at the set of resonances L.

From the definition of L in Proposition 3.3 we see that z ∈ L reduces to k(z) = 0 for N = 1. 
When k(z) = 0, i.e. z = −ξ , any solution q to �(z)q = 0 is constant, as

(z + α)q(r) = c(z)

∫
�

q(r ′)dr ′.

Hence z = −ξ is an eigenvalue if and only if

ξ − α + 4ab c(−ξ) = 0.
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We can now characterize the eigenvalues z, i.e., those z values for which �(z)q = 0 has a 
non-trivial solution.

Theorem 4.3. Let z ∈ C \ {−α} such that k(z) = 0 and let ν, ρ ∈ C such that Pz(ρ, ν) = 0 with 
ρ, ν = 0, ρ2 = ν2, where

Pz(ρ, ν) = −(z + α)(k2(z) − ρ2)(k2(z) − ν2) + 4c(z)k2(z). (42)

If k(z) cosh(ρa) + ρ sinh(ρa) = k(z) cosh(νb) + ν sinh(νb) = 0, then z is an eigenvalue with 
the eigenvector q(x, y) = cosh(ρx) cosh(νy).

If k(z) sinh(ρa) + ρ cosh(ρa) = k(z) cosh(νb) + ν sinh(νb) = 0, then z is an eigenvalue with 
the eigenvector q(x, y) = sinh(ρx) cosh(νy).

If k(z) cosh(ρa) + ρ sinh(ρa) = k(z) sinh(νb) + ν cosh(νb) = 0, then z is an eigenvalue with 
the eigenvector q(x, y) = cosh(ρx) sinh(νy).

If k(z) sinh(ρa) + ρ cosh(ρa) = k(z) sinh(νb) + ν cosh(νb) = 0, then z is an eigenvalue with 
the eigenvector q(x, y) = sinh(ρx) sinh(νy).

Proof. Let ν, ρ ∈ C such that Pz(ρ, ν) = 0 with ρ, ν = 0, ρ2 = ν2, then [ν]z = {±ρ, ±ν} has 
4 distinct elements, hence we can apply Corollary 3.12. More specifically the matrix equations 
(32) hold. Without loss of generality, we set Deo, Doe, Doo = O , leaving only Dee as a variable 
satisfying Se(a)Dee = Se(b)(Dee)T = O . For N = 1, Dee has the following structure

Dee =
(

0 d12
d21 0

)
.

Hence the equations in Se(a)Dee = Se(b)(Dee)T = O decouple, so we can solve for d12 and d21
independently. Without loss of generality we can set d21 = 0, which gives the following set of 
equations

(k(z) cosh(ρa) + ρ sinh(ρa))d12 = (k(z) cosh(νb) + ν sinh(νb))d12 = 0.

Set d12 to an arbitrary non-zero complex value, leaving the remaining conditions in the theorem. 
From (28), we get that the eigenvector q in this case has the form q(x, y) = cosh(ρx) cosh(νy).

Choosing a different matrix from Deo, Doe, Doo to be nonzero, gives the remaining conditions 
in the theorem. �

The two equations in the theorem above, together with the condition Pz(ρ, ν) = 0 form a set 
of three equations with three unknowns z, ρ, ν, which can be solved generically. So for N = 1, 
we can indeed find generic eigenvectors which are exponentials.

Note also that inserting q(x, y) = cosh(ρx) cosh(ρy) into the right-hand side of (36) gives ex-
actly Pz(ρ, ν) = 0 for the PDE and k(z) cosh(ρa) +ρ sinh(ρa) = k(z) cosh(νb) +ρ sinh(νb) = 0
for the boundary condition.

We claim that with this theorem we have characterized all the eigenvalues. We will prove this 
by showing that we can construct a resolvent for all other values z. We do this by first constructing 
a basis of the eigenfunctions of the operator L(z) that satisfy the boundary conditions.
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4.2. Sturm-Liouville problems arising from neural field equations

Solving the characteristic equation �(z)q = 0 is equivalent to finding the solution of the 
boundary value problem (41) and (39). Throughout this section we omit the z-dependence of k
and c for clarity. We seek solutions of the PDE (41) in the separated variable form

q(x, y) = φ(x)ψ(y), (x, y) ∈ �. (43)

These separable solutions can be described as solutions to two coupled Sturm-Liouville problems 
(SLP) with Robin type boundary conditions. Using the properties of SLPs, we can show that 
separable solutions of �(z)q = 0 form a basis.

Lemma 4.4. Let φ ∈ C2([−a, a]), ψ ∈ C2([−b, b]) and q(x, y) = φ(x)ψ(y), (x, y) ∈ �. Then 
�(z)q = 0 implies that ⎧⎪⎨

⎪⎩
φ′′(x) − ρ2φ(x) = 0, x ∈ [−a, a]
kφ(−a) − φ′(−a) = 0

kφ(a) + φ′(a) = 0

(44)

and ⎧⎪⎨
⎪⎩

ψ ′′(y) − ν2ψ(y) = 0, y ∈ [−b, b]
kψ(−b) − ψ ′(−b) = 0

kψ(b) + ψ ′(b) = 0,

(45)

where ν2 = k2 − 4ck2

(z+α)(k2−ρ2)
.

Proof. Suppose �(z)q = 0 with q as in (43). Then by Theorem 4.1 this is equivalent to 
L(z)�(z) = 0 and K(z)L(z)q = L(z)K(z)q .

Inserting (43) into (41), we obtain

φ′′(x)ψ ′′(y) − k2(φ′′(x)ψ(y) + φ(x)ψ ′′(y)) +
(
k4 − 4ck2

z + α

)
φ(x)ψ(y) = 0.

Dividing by φ(x)ψ(y) and denoting φ′′/φ = f (x) and ψ ′′/ψ = g(y),

f (x)
(
g(y) − k2

)
= k2g(y) − k4 + 4ck2

z + α
,

or equivalently,

f (x) = k2 + 4ck2

(z + α)(g(y) − k2)
.

Letting ρ2 ∈C be the common constant value, we obtain the first equation in (44) and (45) where 
ν2 = k2 − 4ck2

(z+α)(k2−ρ2)
. The boundary conditions in (44) and (45) are a direct consequence of 

Lemma 4.2. �
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Let us introduce the coordinate transformation x̃ = π
2a

x into the SLP (44) and obtain

( π

2a

)2
φ′′(x̃) − ρ2φ(x̃) = 0, x̃ ∈ [−π/2,π/2] . (46)

Equivalently, the SLP is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ′′(x̃) + λφ(x̃) = 0, x̃ ∈ [−π
2 , π

2

]
, λ = − ( 2a

π
ρ
)2

,

�1(φ) := kφ (−π/2) − π
2a

φ′ (−π/2) = 0,

�2(φ) := kφ (π/2) + π
2a

φ′ (π/2) = 0.

(47)

First, we check separately the case when λ = 0 is an eigenvalue. Here there are two cases, 
either k = k(z) = 0, then the problem reduces to the homogeneous Neumann boundary condi-
tions and the eigenfunction corresponding to the zero eigenvalue is φ(x̃) = 1, or k(z) = − 1

a
, then 

φ(x̃) = x̃ is a solution.
We study the SLP (47) by first rewriting it to a first order system as

Y ′(x̃) = (P − λW)Y (x̃), Y =
(

φ

φ′
)

, x̃ ∈ [−π/2,π/2],

with

P =
(

0 1
0 0

)
, W =

(
0 0
1 0

)
.

The boundary conditions can be reformulated as

AY(−π/2) + BY(π/2) = 0, with A =
(

k −π/2a

0 0

)
, B =

(
0 0
k π/2a

)
. (48)

Let �(· ; x0, λ) be the matrix solution of the initial value problem

�′ = (P − λW)�, �(x0;x0, λ) = I, x0 ∈ [−π/2,π/2], λ ∈C,

with I the identity matrix, and define the following transcendental function, also called charac-
teristic function for the SLP

χ(λ) = det (A + B�(π/2;−π/2, λ)) , λ ∈C. (49)

Let us recall the following lemma that shows that the zeros of χ are precisely the eigenvalues of 
the SLP.

Lemma 4.5 (Lemma 3.2.2, [26]). A complex number λ is an eigenvalue of the BVP (47) if and 
only if χ(λ) = 0. Furthermore, the geometric multiplicity of the eigenvalue λ is equal to the 
number of linearly independent vector solutions C = Y(−π/2) of the linear algebra system

[A + B�(π/2;−π/2, λ)]C = 0.
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Fig. 1. Some roots of the characteristic function χ(μ) in (51), when k = 1.4 − 1.4i and a = π .

To compute � choose the branch μ = √
λ, λ = 0 (principal square root), and obtain

�(x̃;x0, λ) =
(

cos(μ(x̃ − x0))
1
μ

sin(μ(x̃ − x0))

−μ sin(μ(x̃ − x0)) cos(μ(x̃ − x0))

)
. (50)

Hence the characteristic function is

χ(μ) = k
π

a
cos(πμ) +

(
k2 1

μ
−
( π

2a

)2
μ

)
sin(πμ) = 0, μ = √

λ. (51)

Since χ(−μ) = χ(μ), if μ ∈ C is a root of the entire function χ , then so is −μ. According to 
Lemma 4.5, the eigenvalues of the SLP (47) are exactly the roots of the equation (51). Note that 
this equation has infinite but countable number of roots, which are all simple and have no finite 
accumulation point in C. A few roots of the SLP (44) are plotted in Fig. 1 for k = 1.4 − 1.4i and 
a = π .

4.2.1. Eigenvalues and completeness of exponentials
In this section we describe the location of the eigenvalues of the SLP in the complex plane 

and an interesting consequence which results from this distribution of the eigenvalues, i.e., the 
sets of exponential functions {e±ρnx} and {e±νny} used to construct the solutions of the corre-
sponding Sturm-Liouville problems (44) and (45) are complete in C([−a, a]) and C([−b, b]), 
respectively. There is an extensive literature on the completeness of sets of complex exponential 
functions over finite intervals, see e.g., [14,15,25] and the references therein. In Section 4.2.2, 
we will construct the eigenfunctions corresponding to the eigenvalues of the SLP using these ex-
ponentials. Although, we were not successful in proving the completeness of the eigenfunctions 
in the corresponding Banach space of continuous functions Y , but only in the larger space of 
square integrable functions, we were able to give a complete characterization of the spectrum of 
the DDE in Section 4.3.
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Let us introduce some notations. The set of zeros of a function f is denoted by

Z(f ) = {μ | f (μ) = 0} (52)

and the number of zeros of f by nrZ(f ). In general, the cardinality of a set will be denoted by 
nr(·).

Using the coordinate transformation introduced in (46), we will show that the set of complex 
exponentials {eiμnx̃ | μn ∈ Z(χ)} is complete in C ([−π/2,π/2]), where χ is the characteristic 
function (51). Since χ(−μ) = χ(μ), if we denote the roots of χ for which Reμn > 0 by μn, 
then μ−n = −μn are also roots of χ , hence the sequence {μn}∞n=−∞ is called symmetric.

In the following theorem, we summarize two important results from [25] that we will use to 
prove the completeness of sets of exponentials.

Theorem 4.6. Let {μn}∞n=−∞ be a sequence of complex numbers.

(1) If

sup
n

|Reμn − n| < 1

4
and sup

n
| Imμn| < ∞, (53)

then the system {eiμnx}∞n=−∞ is complete in C(I), for each closed subinterval I of (−π, π).
(2) The completeness of the system {eiμnx} in C(I) is unaffected if some μn is replaced by an 

other (different from all) number ([25], Theorem 7, Chapter 3).

The conditions in (53) show that all μn lie “near” the real axis. Our next two lemmas show 
that almost all roots of χ satisfy these conditions. Rewrite first χ(μ) = 0 in (51) as

F(μ) = tan(πμ) − 2hμ

μ2 − h2 = 0, h = h(z) = 2a

π
k(z). (54)

Note that, as F(−μ) = −F(μ), if μ solves (54), then so does −μ.

Lemma 4.7. Consider the set Z(χ) = {μn}, with χ given in (51). Then

sup
n

| Imμn| < ∞. (55)

Proof. First, note that the set Z(χ) cannot have finite accumulation points. If all eigenvalues μn

are real, then (55) holds.
If the assertion is not true, then there exists a subsequence {μnk

} such that |ynk
| → ∞, where 

μnk
= xnk

+ iynk
. If we insert this into (54), we obtain

tan(π(xnk
+ iynk

)) = sin(2πxnk
) + i sinh (2πynk

)

cos(2πxxk
) + cosh(2πynk

)
= 2h(xnk

+ iynk
)

(xnk
+ iynk

)2 − h2 .

Taking the limit |ynk
| → ∞, we obtain that the left hand side converges to i and the right hand 

side to 0, which leads to a contradiction. �
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Lemma 4.8. For the roots of the characteristic equation χ(μ) = 0 in (51) the followings hold:

(a) all roots with large enough modulus have the form

μn = n + δn

n
, where δn = O(1), (56)

(b) nr ({μ ∈Z(χ) : |Reμ| ≤ N}) = 2N + 2.

Proof. We prove part (a) first and use the form (54) of the characteristic equation. Observe that

lim|μ|→∞
2hμ

μ2 − h2 = 0 for all h ∈ C. (57)

Let 0 < r0 < 1
2 be arbitrary. The roots with large modulus have large real values due to 

Lemma 4.7, hence set μ = n + z, with |z| ≤ r0. The limit above implies that

∣∣∣∣ 2hμ

μ2 − h2

∣∣∣∣≤ 2|h||n + z|
|n + z|2 − |h|2 ≤ β

n
,

with β := max
n>N

2|h|(n + r0)n

(n − r0)2 − |h|2 and N := [|h| + r0] + 1.

(58)

Let

ε := min|z|≤r0

∣∣∣∣ tan z

z

∣∣∣∣ . (59)

As tan(πμ) = tan(π(n + z)) = tan(πz), we have that

| tan(πμ)| = | tan(πz)| ≥ ε|z|.

Moreover, if we set |z| = ρ
n

, with ρ := 2β
ε

, then

| tan(πμ)| ≥ ε|z| = 2β

n
>

β

n
≥
∣∣∣∣ 2hμ

μ2 − h2

∣∣∣∣ . (60)

Therefore, by Rouché’s theorem, F , or equivalently χ , has exactly one zero in the disc

Dn = {|μ − n| ≤ ρ

n
} (61)

if n > N and ρ
n

< r0. Note that ε, N, β, ρ are well defined, positive finite numbers. The roots of 
χ have then the form μn = n + δn

n
which completes the proof of part (a) of the lemma.

To prove part (b), we study the zeros of F , or equivalently, the solutions of

tan(πμ) = 2hμ

2 2 =: fh(μ). (62)

μ − h
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When h = 0, then k = 0 in (51) and the roots of χ are μn = n, where n ∈Z. Note that in this case 
the SLP reduces to the Neumann problem and we know that the system {einx}n∈Z is complete in 
C ([−π/2,π/2]).

Consider h = 0 and let μ = x + iy. Using the trigonometric relation

|tan(π(x + iy))|2 = cosh(2πy) − cos(2πx)

cosh(2πy) + cos(2πx)
,

we have that, for y = 0,

min
x∈R

|tan(π(x + iy))|2 = cosh(2πy) − 1

cosh(2πy) + 1
> 0. (63)

Moreover, if x = ±(n + 1/4), then |tan(π(x + iy))|2 = 1 for all y ∈R. The limit

lim|μ|→∞fh(μ) = 0, ∀h ∈ C

suggests to take for given h = 0 a closed curve around the origin, such that |fh(·)|2 is small on 
this curve and it is far from the poles of fh. Hence, define a square around the origin as

�h,n =
{
±
(

n + 1

4

)
+ iy, y ∈

[
−n − 1

4
, n + 1

4

]}
∪
{
x ± i

(
n + 1

4

)
, x ∈

[
−n − 1

4
, n + 1

4

]}

Then

lim
n→∞ max

μ∈�h,n

|fh(μ)|2 = 0 and lim
n→∞ min

μ∈�h,n

| tan(πμ)|2 = 1. (64)

Therefore, there exists N ∈ N such that the poles of fh, that is ±h, are contained in the interior 
of �h,N and |h − μ| > 1 for all μ ∈ �h,N , and N is large enough such that

|fh(μ)|2 <
1

2
< | tan(πμ)|2 for all μ ∈ �h,N . (65)

Then we can apply Rouché’s theorem, which says that in the interior of �h,N

nr (Z(tan(π ·))) − nr (P(tan(π ·))) = nr (Z(F )) − nr (P(F )) ,

where nr (P(·)) counts the number of poles of the corresponding functions. The left hand side 
equals 1 and on the right hand side

nr (P(F )) = nr (P(tan(π ·))) + nr (P(fh)) = 2N + 2, (66)

since ±h are in the interior of �h,N . Hence, nr (Z(F )) = 2N + 3. Since χ has the same zeros 
as F , except μ = 0, we can conclude that nr (Z(χ)) = 2N + 2 in the interior of �h,N , which 
completes part (b) of the lemma. �

The main result of this section is the following theorem.
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Theorem 4.9 (Completeness theorem). Let Z(χ) = {μn}∞n=−∞, where χ is the characteristic 
function in (51). Then the set {eiμnx̃}∞n=−∞ is complete in C([−π/2, π/2]).

Proof. From Lemma 4.8 it follows that there exists an N ∈N such that

sup
|n|>N

|Reμn − n| < 1

4
. (67)

Moreover, since nr{μ ∈ Z(χ) : | Reμ| ≤ N} = 2N + 2, let us replace 2N + 1 of these roots by 
n in the exponentials, that is by {einx̃}Nn=−N . The new set of exponentials will now satisfy the 
condition on the real part of the eigenvalues in (53). This, in combination with (55), implies that 
this set is complete in each closed subinterval of (−π, π). According to part (2) of Theorem 4.6, 
if we replace the set {einx̃}Nn=−N by the corresponding finite set {eiμnx̃}, then the completeness 
will be unaffected. �

This way we have shown that the set {e±ρnx} is complete in C([−a, a]) and analogously, we 
can show that the set {e±νmy} is complete in C([−b, b]). Then {e±ρnxe±νmy} forms a complete 
set in C(�̄).

4.2.2. Completeness of the eigenfunctions
In [11], the solution of SLP problems are discussed in a more general framework. Based 

on these results, we construct the eigenfunctions corresponding to the eigenvalues of the SLP 
and state their completeness in the space of square integrable functions. As a consequence, the 
eigenfunctions of the operator L(z), which are the separable solutions of the BVP (36), form 
a complete basis in L2(�). In Section 4.3 we show that this is sufficient to give a complete 
characterization of the spectrum of the DDE and to solve the resolvent problem in Section 4.3.

Following the ideas and results in [11], we can construct the following solutions of the differ-
ential equation in (47)

φ1(μ, x̃) = − π

2a
cos

(
μ(x̃ + π

2
)
)

− k
1

μ
sin

(
μ(x̃ + π

2
)
)

(68)

φ2(μ, x̃) = π

2a
cos

(
μ(x̃ + π

2
)
)

− k
1

μ
sin

(
μ(x̃ − π

2
)
)

. (69)

Moreover, since

�1(φ1) = �2(φ2) = 0, �1(φ2) = −�2(φ1) = χ(μ),

if μ is a root of the characteristic function (51), then φ1 and φ2 solve the SLP (47) and they are 
called eigenfunctions corresponding to the eigenvalue λ, with μ = √

λ.

Theorem 4.10 (Theorem 1.3.2., [11]). The system of eigenfunctions and generalized eigenfunc-
tions of the BVP (47) is complete in the space L2 ((−π/2,π/2)) and constitutes there a Riesz 
basis.
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Since all roots of the characteristic function χ(μ) are simple, we do not have generalized 
eigenfunctions for this problem. The linear span of the eigenfunctions constructed from the so-
lutions φ1 and φ2 coincide. It is therefore sufficient to consider the eigenfunctions derived from 
φ1 hence, we will omit the subscript.

If Z(χ) = {μn}, with μn = √
λn, then the corresponding eigenfunctions will be denoted as

φn(x̃) :=φ(μn, x̃) = − π

2a
cos

(
μn(x̃ + π

2
)
)

− k
1

μn

sin
(
μn(x̃ + π

2
)
)

=f̃ (μn, a) cos(μnx̃) + g̃(μn, a) sin(μnx̃), x̃ ∈ [−π/2,π/2],
(70)

where

f̃ (μ, a) = − π

2a
cos(μ

π

2
) − k

μ
sin(μ

π

2
), g̃(μ, a) = π

2a
sin(μ

π

2
) − k

μ
cos(μ

π

2
)

and the following identity holds

2μf̃ (μ,a)g̃(μ,a) = χ(μ).

From here, it follows that if μ = 0 is a root of the characteristic function, then either f̃ (μ, a) = 0
or g̃(μ, a) = 0. From (56) it follows that the roots of f̃ are those roots of χ that have the form 
μ2n−1 = 2n − 1 + δ2n−1

2n−1 and the corresponding eigenfunctions we call odd eigenfunctions and 
they have the form

φ2n−1(x̃) = g̃(μ2n−1, a) sin(μ2n−1x̃), n = 1,2, . . . . (71)

Similarly, the roots of g̃ have the form μ2n = 2n + δ2n

2n
and the corresponding eigenfunctions are 

called even eigenfunctions

φ2n(x̃) = f̃ (μ2n, a) cos(μ2nx̃), n = 0,1,2, . . . . (72)

Summarizing, Theorem 4.10 implies that the set of even and odd eigenfunctions {φ2n−1(x̃),

φ2n(x̃)}∞n=1 is complete in L2((−π/2, π/2)).
In the original coordinate system the eigenfunctions are

φn(x) = − π

2a
cosh (ρn(x + a)) − k

π

2a

1

ρn

sinh (ρn(x + a))

= − π

2a
(f (ρn, a) cosh(ρnx) + g(ρn, a) sinh(ρnx)) , x ∈ [−a, a],

(73)

where

f (ρ, a) = cosh(ρa) + k

ρ
sinh(ρa), g(ρ, a) = sinh(ρa) + k

ρ
cosh(ρa)

and the following holds
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2ρf (ρ, a)g(ρ, a) = 2a

π
χ(ρ) = 2k cosh(2aρ) +

(
k2

ρ
+ ρ

)
sinh(2aρ).

Using the same argument as before, if ρ is a root of χ(ρ), then either f or g vanish there. Note 
that, these are precisely the conditions we obtained earlier in Theorem 4.3. We can conclude that 
the system {φ2n−1(x), φ2n(x)}∞n=1 is complete in L2([−a, a]), with

φ2n−1(x) = g(ρ2n−1, a) sinh(ρ2n−1x), φ2n(x) = f (ρ2n, a) cosh(ρ2nx). (74)

Furthermore, the following relations hold

f̃ (μ2n, a) = − π

2a
f (ρ2n, a), g̃(μ2n+1, a) = i

π

2a
g(ρ2n+1, a).

Analogous results hold for the eigenvalues and corresponding eigenfunctions of the SLP (45). 
Returning to the original problem of solving the BVP (41) and (39) by separating the variables, 
we can summarize as follows. Consider the bilinear mapping

L2([−a, a]) × L2([−b, b]) → L2 ([−a, a] × [−b, b]) = L2(�̄)

(φ,ψ) �→ φψ.

The set of linear combinations of functions of the form φ(x)ψ(y) is dense in L2
(
�̄
)

since 
L2([−a, a]) and L2([−b, b]) are separable (it contains a countable, dense subset). Using that 
the eigenfunctions {φm} and {ψn} are complete in L2([−a, a]) and L2([−b, b]), respectively, we 
can conclude that the product of the eigenfunctions {φn(x)ψm(y)} is complete in L2

(
�̄
)
. Note 

that if ρ and ν are the eigenvalues of the SLP (44) and (45), respectively, then the correspond-
ing boundary conditions in the SLP are precisely the conditions in Theorem 4.3. Consequently, 
{φmψn} give a unique basis expansion in L2(�̄), where φmψn satisfies the boundary condition

(K(z)L(z) − L(z)K(z))φmψn = 0

and L(z)φmψn = (k2(z) − ρ2
m)(k2(z) − ν2

n)φmψn, where k2(z) = ρ2
m and k2(z) = ν2

n .

4.3. Characterisation of the spectrum and resolvent set of the DDE

We are now able to fully characterize the spectrum and resolvent sets of our neural field model 
for N = 1.

Theorem 4.11. Let z ∈ C \ {−α}, such that k(z) = 0. Moreover, let {φmψn}m,n∈N form a basis of 
L2(�), such that L(z)φmψn = (k2(z) − ρ2

m)(k2(z) − ν2
n)φmψn, where k2(z) = ρ2

m and k2(z) =
ν2
n , and (K(z)L(z) − L(z)K(z))φmψn = 0.

If there exist m, n ∈ N for which Pz(ρm, νn) = 0, then �(z)φmψn = 0 and z ∈ σp(A) and 
φmψn is an eigenvector.

Otherwise, when Pz(ρm, νn) = 0 for all m, n ∈N , then z ∈ ρ(A).
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Proof. Let z ∈ C \ {−α}, such that k(z) = 0 and let φmψn as in the theorem statement. Suppose 
there exist m, n ∈N for which Pz(ρm, νn) = 0. Then

L(z)�(z)φmψn = (z + α)L(z)φmψn − 4c(z)k2(z)φmψn = Pz(ρm, νn)φmψn = 0.

Hence by Theorem 4.1, �(z)φmψn = 0.
On the other hand, suppose now that Pz(ρm, νn) = 0 for all m, n ∈ N . In order to prove that 

z ∈ ρ(A) it is sufficient to show that �(z)q = 0 has a unique solution q ≡ 0, as z /∈ σess(A) =
{−α}.

Let q ∈ Y such that �(z)q = 0. As � is a bounded domain we have that q ∈ L2(�) and hence 
it has a unique basis expansion

q(x, y) =
∑
m,n

ξm,nφm(x)ψn(y). (75)

For the following argument we consider �(z) to be an operator from L2(�) to L2(�). In this 
sense it has a bounded operator norm, as the kernel J is L2-integrable. Therefore, we can inter-
change �(z) with the infinite sum. Using the properties of φmψn we obtain that

�(z)φmψn = (z + α)φmψn − K(z)φmψn

= (z + α)φmψn − K(z)L(z)φmψn

(k2(z) − ρ2
m)(k2(z) − ν2

n)

= (z + α)φmψn − L(z)K(z)φmψn

(k2(z) − ρ2
m)(k2(z) − ν2

n)

= (z + α)φmψn − 4c(z)k2(z)

(k2(z) − ρ2
m)(k2(z) − ν2

n)
φmψn

= Qz(ρm, νn)φmψn.

Combining this with the sum (75), gives

�(z)q =
∑
m,n

ξm,n�(z)φmψn =
∑
m,n

ξm,nQz(ρm, νn)φmψn = 0.

From here we can conclude that ξm,nQz(ρm, νn) = 0 for all m, n ∈N and

Qz(ρm, νn) = Pz(ρm, νn)

(k2(z) − ρ2
m)(k2(z) − ν2

n)
= 0.

Hence ξm,n = 0 for all m, n ∈N and therefore, q(x, y) = 0 ∀(x, y) ∈ �̄. �
Note that the eigenvectors found are exactly those in Theorem 4.3.
For z ∈ ρ(A) we can construct a solution for the resolvent problem, which we need in the next 

section.
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Proposition 4.12. Let z ∈ ρ(A) such that k(z) = 0 and let g ∈ Y . There exists a unique q ∈ Y

that solves

�(z)q = g, (76)

and is given by

q(x, y) = g(x, y)

z + α
+ 4c(z)k2(z)

z + α

∑
m,n

ξn,m

Pz(ρn, νm)
φn(x)ψm(y), (77)

where φnψm are as in Theorem 4.11.

Proof. Let z ∈ ρ(A) such that k(z) = 0 and let g ∈ Y . Furthermore let {φmψn}m,n∈N form a 
basis of L2(�) such that L(z)φmψn = (k2(z) − ρ2

m)(k2(z) − ν2
n)φmψn, where k2(z) = ρ2

m and 
k2(z) = ν2

n , and (K(z)L(z) − L(z)K(z))φmψn = 0.
First let us rewrite q as

q(x, y) = p(x, y) + g(x, y)

z + α
.

Then �(z)q = g is equivalent to

�(z)p = K(z)g. (78)

This implies that p = 1
z+α

K(z)(p + g). Hence p is in the range of K(z), which implies that it 
satisfies the smoothness conditions of Theorem 4.1. By this theorem, (78) is equivalent to

�(z)p = K(z)g ⇔
{
L(z)�(z)p = 4c(z)k2(z)g and K(z)L(z)p = L(z)K(z)p

}
. (79)

Similar to the previous theorem, we write a unique basis expansion of g as

g(x, y) =
∑
m,n

ξm,nφm(x)ψn(y). (80)

By Theorem 4.11 we get that for all m, n ∈ N , Pz(ρm, νn) = 0. Furthermore, by Lemma 4.8
we have that |ρm|, |νn| → ∞, when m, n → ∞. Hence 1/|Pz(ρn, νm)| → 0 when m → ∞ or 
n → ∞. Then using the properties of φmψn we find that

p(x, y) = 4c(z)k2(z)
∑
m,n

ξn,m

Pz(ρn, νm)
φn(x)ψm(y) (81)

solves L(z)�(z)p = 4c(z)k2(z)g.
Hence the resolvent becomes

(�−1g)(x, y) = g(x, y)

z + α
+ 4c(z)k2(z)

z + α

∑ ξn,m

Pz(ρn, νm)
φn(x)ψm(y). � (82)
m,n
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Fig. 2. Spectrum of the linearized system at a Hopf bifurcation for ĉ = −3.27, α = 1, τ0 = 1, ξ = 2, γ = 4, a = b = 1.

5. An example for Hopf bifurcation

Oscillations are important features of nervous tissue that can be studied with neural field 
models. Hence, Hopf bifurcations play an important role in the analysis. When the space is one-
dimensional, Hopf bifurcations were studied in [17,16] and along with other types of bifurcations 
also in [5,18,19]. On two-dimensional domains, numerical experiments were conducted in [7,13]. 
In this section we study an example of Hopf bifurcation in the two-dimensional case based on 
our analytical results.

Assume that N = 1, hence the connectivity function has the form

J (r, r ′) = ĉe−ξ‖r−r ′‖1 ∀r, r ′ ∈ �̄, (83)

where ĉ, ξ ∈C such that J is real valued. The firing rate function is given by

S(u) = 1

1 + e−γ u
− 1

2
∀u ∈ R, (84)

where γ is the steepness of the sigmoidal and the delay function is as in (7).
Set α = 1, τ0 = 1 and the parameters in (83) and (84) as ξ = 2 and γ = 4, respectively. 

The bifurcation parameter in this example is ĉ. When ĉ < 0, this type of connectivity models a 
population with inhibitory neurons. There is a Hopf bifurcation at ĉ ≈ −3.27 with eigenvalues 
λ ≈ ±1.34i, see Fig. 2, and corresponding eigenvector

ϕλ(t)(r) = e1.34it cosh((−0.17 + 1.15i)x) cosh((−0.17 + 1.15i)y),

t ∈ [−τmax,0], r = (x, y) ∈ �̄.

In [16], a procedure is derived using the sun-star calculus to compute the Lyapunov coefficient 
for a Hopf bifurcation. For this we need the higher order Fréchet derivatives of G (see [17]):

DnG(ϕ̂)(ϕ1, · · · , ϕn)(r) =
∫
�

J (r, r ′)S(n)(ϕ̂(−τ(r, r ′), r ′))
n∏

i=1

ϕi(−τ(r, r ′), r ′)dr ′,

for ϕ1, . . . , ϕn ∈ X and r ∈ �̄. Due to our choice of S, S′′(0) = 0 and therefore, D2G(0) vanishes. 
This reduces the computation of the Lyapunov coefficient to the following equality
469



L. Spek, K. Dijkstra, S.A. van Gils, M. Polner Journal of Differential Equations 317 (2022) 439–473
Fig. 3. The real (orange) and imaginary part (blue) of c1 at the Hopf bifurcation for ĉ = −3.27 at λ = ±1.34i and with 
nx = ny = 3, ε = 0.01, nz = 32. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

2g21 = 〈ϕ∗
λ,D3G(0)(ϕλ,ϕλ, ϕ̄λ)〉 (85)

The first Lyapunov coefficient is given by (see [9])

l1 = Re c1

Im λ
.

Using the Dunford integral representation, see [16], we can rewrite (85)

1

2πi

∮
∂Cλ

�−1(z)D3G(0)(ϕλ,ϕλ, ϕ̄λ)dz = 2c1ϕλ(0), (86)

where ∂Cλ is a closed contour containing λ and no other eigenvalues.
We use (86) as an identity for c1. To compute the contour integral in (86) we take for Cλ a 

small circle of radius ε around λ, z = λ + εe2πiθ for 0 ≤ θ < 1 and perform a change of variables 
to obtain

1∫
0

εe2πiθ�−1(λ + εe2πiθ )D3G(0)(ϕλ,ϕλ, ϕ̄λ)dθ = 2c1ϕλ(0).

We then compute the integral numerically by using an equidistant grid on [0, 1) of nz points, 
where we use that z is periodic in θ .

To compute the resolvent we approximate (77) by truncating the infinite sum. For each grid 
point θ of above, we compute nx basis functions φm(x) and ny basis functions ψn(y). So we 
end up with nxny basis functions φm(x)ψn(y). We use the Gramm-Schmidt procedure to get 
an orthonormal set with respect to the L2 inner product. This enables us to find the coefficients 
ξm,n by standard orthogonal projection. We find that using nx = ny = 3 gives a good enough 
approximation to determine the sign of l1.
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Fig. 4. Time evolution of the system at a given position in space when ĉ = −4 (left) and when ĉ = −0.5 (right).

Fig. 5. Time evolution of the system during half of a time period when ĉ = −4.

Finally, we need to compute the scalar c1 and find that

c1 = 1

2ϕλ(0)

1∫
0

εe2πiθ�−1(λ + εe2πiθ )D3G(0)(ϕλ,ϕλ, ϕ̄λ)dθ. (87)

This right hand side is, however, still a function of x, y instead of a scalar, so naturally, this 
should be a constant function. We can use this fact to check our calculations. Using the values 
for the Hopf bifurcation above and ε = 0.01, nz = 32, we see in Fig. 3 that this is indeed the 
case. This results in a Lyapunov coefficient of l1 ≈ −0.786. The negative sign of l1 indicates a 
supercritical Hopf bifurcation.

Some numerical time simulations were performed in Fig. 4 and Fig. 5 to illustrate the dynamic 
behaviour of the solution of the neural field model for parameter values before and beyond Hopf 
bifurcation.
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6. Conclusions and discussion

We studied a neural field model with transmission delays and a connectivity kernel that is a 
linear combination of exponentials. Motivated by applications in neuroscience, we used a pla-
nar spatial domain, in particular a rectangle. This however, made the analysis more challenging 
compared to the one-dimensional case [16] or [18]. The main difference lies in the fact that 
for the interval we could rewrite the characteristic equation as an ordinary differential equation, 
whereas it leads to a partial differential equation for the rectangle. Solutions to a linear ordinary 
differential equation of order N are completely described by a linear combination of N exponen-
tial functions. Solutions to linear partial differential equations however don’t have closed form 
description in general.

We investigated in detail a model with a connectivity kernel that is a single exponential. To 
study the dynamics of the linearized equation, we completely characterised the spectrum and con-
structed eigenvectors as solutions of the characteristic integral equation. We employed the fact 
that the integral equation is equivalent to a partial differential equation with a Robin-type bound-
ary condition. This PDE can be separated into two differential equations of Sturm-Liouville type. 
We constructed a basis of solutions to these differential equations that is complete in L2. These 
basis functions allowed us to determine whether z ∈ C belongs to the spectrum.

It is quite rare that one can completely characterise the spectrum of an operator acting on 
multivariate functions, such as partial differential or integral operators. It is sometimes possible 
to find some eigenvalues, but here we proved that we found them all. We investigated a numerical 
example of a population of inhibitory neurons. Using the developed theory, a supercritical Hopf 
bifurcation was detected.

The classical example of an excitatory and inhibitory population of neurons can be modelled
using a connectivity kernel of two exponentials. In the special case when the rectangle is a square, 
we found eigenvalues and eigenfunctions, but we cannot conjecture that there are no more.

There are some extensions to the above model that can be considered. We could consider 2 
distinct populations of excitatory and inhibitory cells, like [24]. Is this case J (r, r′) would be 
a 2 × 2 matrix within each entry a single exponential. However, the difficulty determining the 
spectrum is dependent on the amount of distinct exponentials in J , so this case would be as 
difficult as taking N = 4.

We could also consider taking a d ≥ 3 dimensional spatial domain, for example [−1, 1]d . For 
N = 1, the spectrum should also be fully solvable. Equivalents of theorems in Section 4 still 
hold, where the characteristic polynomial P is now a polynomial in d variables, the eigenvectors 
are products of exponentials in each of the d spatial directions and for each spatial direction there 
is a corresponding boundary condition.
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