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Abstract The management of COVID-19 appears to
be a long-term challenge, even in countries that have
managed to suppress the epidemic after their initial
outbreak. In this paper, we propose a model predic-
tive approach for the constrained control of a nonlinear
compartmental model that captures the key dynamical
properties of COVID-19. The control design uses the
discrete-time version of the epidemic model, and it is
able to handle complex, possibly time-dependent con-
straints, logical relations between model variables and
multiple predefined discrete levels of interventions. A
state observer is also constructed for the computation of
non-measured variables from the number of hospital-
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ized patients. Five control scenarios with different cost
functions and constraints are studied through numeri-
cal simulations, including an output feedback configu-
ration with uncertain parameters. It is visible from the
results that, depending on the cost function associated
with different policy aims, the obtained controls cor-
respond to mitigation and suppression strategies, and
the constructed control inputs are similar to real-life
government responses. The results also clearly show
the key importance of early intervention, the continu-
ous tracking of the susceptible population and that of
future work in determining the true costs of restrictive
control measures and their quantitative effects.

Keywords COVID-19 · Epidemic model · Disease
control · Differential equations · Control theory ·
Model predictive control · Temporal logic

1 Introduction

OnDecember 31, 2019, China alerted theWorldHealth
Organization (WHO) on a cluster of pneumonia cases
of unknown origin in Wuhan, China. On January 7,
2020, the causative pathogen of the outbreak was iden-
tified as a novel coronavirus, later named as SARS-
CoV-2, and the disease it causes as COVID-19. SARS-
CoV-2 infections quickly spread: the first case outside
China was identified in Thailand, on 14 January, fol-
lowed by reported cases from a number of countries
[6,56].
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In Europe, the first cases were confirmed on January
24, 2020, in France (where, later in April, COVID-19
was retrospectively confirmed for a patient hospitalized
in late December 2019) [13,50], and on January 27, in
Germany, Bavaria, leading to a local outbreak [7]. The
first epidemic in Europe started in the Lombardy region
of Italy with the first detection on February 20, 2020
[46]. Control measures started in mid-March in most
of the European countries, including social distancing
measures that reflect strong effort to suppress, or at least
to slow down the spreading of COVID-19. Because of
the differences in timing and stringency of the applied
measures, the peak daily incidence varied substantially
among countries, and recently a resurgence of cases has
been observed [17]. By the end of July 2020, around
seventeen million cases and seven hundred thousand
deaths have been reported worldwide, with significant
spreading in the Americas, Eastern Mediterranean and
Southeast Asia [57].

In the absence of vaccine and effective treatment, the
non-pharmaceutical intervention strategies can roughly
be divided into two main categories. Mitigation does
not aim to completely stop the transmission of the virus,
only to slow down to keep the number of infected peo-
ple below the capacity of the healthcare system. Swe-
den is an example of such strategy. On the other hand,
suppression aims to reduce the incidence to a very low
level by strict social distancing and then keep that num-
ber low by localized and targeted measures, such as
efficient surveillance, testing, tracing and quick isola-
tion of cases. The first outbreak was suppressed inmost
European and East Asian countries, Australia and New
Zealand. Recently, following a relaxation of such mea-
sures, a resurgence has been observed in the Western
Balkans [17].

Mathematical models have been commonly used
in epidemiology to evaluate disease control strategies.
However, disease control in this context usually refers
to a single intervention measure that is sufficient to
reduce the reproduction number below one, leading to
the eradication of the disease. Themost commonly used
measures are vaccination and drug treatment [19], or, in
the case of vector borne diseases, culling ofmosquitoes
and other arthropods that transmit the pathogen into
other living organisms. The current COVID-19 situa-
tion is unprecedented in the sense that governments are
constantly tuning their control measures, trying to find
balance between public health concerns and the costs of
social distancing measures to the society and the econ-

omy. Thus, using feedback, which is a standard tool in
control theory, is necessary to dynamically manage our
response to the pandemic and tailor policies to stabilize
the situation.

In a control theory framework, dynamical systems
are considered as operators mapping from an input
signal (function) space to an output space [48]. We
distinguish between manipulable inputs which can be
set (often between certain limits) by the user and dis-
turbance inputs from the environment that cannot be
directly influenced. The outputs are either directlymea-
sured quantities or they are computed from measure-
ments. The control goals are usually prescribed using
the outputs, e.g., they have to track a reference trajec-
tory or just stay between predefined limits. Such goals
are often equippedwith additional constraints and opti-
mality criteria. Possible examples for the former are
(physical) bounds on the inputs and/or on the state vari-
ables, and minimal control cost or operation time for
the latter. Therefore, a complex control problem can be
most often expressed in the form of constrained opti-
mization.

Even the simplest epidemic models are nonlinear
which makes the corresponding control problems chal-
lenging due to complex dynamical behavior, possible
singularities and the state-dependent nature of fun-
damental properties like reachability or observability
[30]. Parameter and input uncertainties, or the lack of
measurements of sufficient quality often add further
difficulties to the problem [42,44].

There is a wide literature on the model-based tar-
geted manipulation of diseases either within the host
or across an entire population [1,4,27,41,49,53]. Non-
linear model predictive control (NMPC) is introduced
in [47] as a potential tool for epidemic management.
In [8] NMPC is used for the optimal allocation of
vaccination resources between different risk groups
and regions. A robust model predictive approach for
stochastic epidemic models is proposed in [54], where
quarantine policy design is shown as a possible con-
trol input. Detailed control-related model analysis and
vaccination input design are proposed in [12] which
tracks a prescribed output given in terms of susceptible
and infected people. A quantitative model is presented
in [52] for the COVID-19 outbreak in Wuhan, China,
taking into consideration the effect of different inter-
ventions. In [22] an eight-compartment ODE model is
presented for describing and analyzing the COVID-19
epidemic in Italy, where the authors show different sce-
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narios for the implementation of countermeasures. The
samemodel structure is used in [32] adapted to the data
from Germany. A model predictive control approach is
proposed, and it is shown that the number of fatali-
ties can be significantly reduced even when the model
and some measurements are uncertain. Vast majority
of the available control approaches assume a control
input with continuous range which is clearly useful for
strategic planning, but not straightforward to put into
practice if there are distinct levels of intervention. A
notable exception is [37], where starting and stopping
strict social distancing is a binary control input applied
in a nonlinear model predictive framework and tested
through simulations on nominal and uncertain models
of the COVID-19 pandemic in Brazil.

Most advanced feedback control methods need the
whole state information for computing the input, but it
is not realistic to assume that the number of individ-
uals in each compartment can be continuously mea-
sured (especially latent, asymptomatic or even mildly
symptomatic people). Therefore, a state estimator is
needed in practice, which is known to be non-trivial to
design for nonlinear systems, and most often its sta-
bility has to be proved on a case by case basis [30]. A
general observer class with convergence proof is pro-
posed for low-dimensional continuous time epidemic
models in [29]. An implicit observer design approach
for specially discretized SEIR models with global con-
vergence proof is described in [28].

Temporal logic provides a powerful framework for
the modeling, analysis and control of discrete time
dynamical systems, which is a correct-by-construction
approach [5]. Using signal temporal logic, complex
specifications and constraints can be given for the
required dynamical behavior of a model in a com-
pressed form. A particularly successful application of
this computation framework is model predictive con-
trol,where the requirements can be automatically trans-
lated to a mixed integer programming problem taking
into consideration the system dynamics as constraints
[18].Most often, linear dynamicalmodels are preferred
for control design with temporal logic, since those can
be put into the framework of mixed integer linear pro-
gramming.However, there exist really powerful solvers
capable of efficiently handle nonlinear models as well
[33].

Based on the above, the aim of this paper is
to propose an optimization-based control approach
for compartmental epidemic models constructed for

the COVID-19 outbreak, which is able to take into
account complex, possibly time-dependent specifica-
tions including bounds, and even logical relations
between model variables, and multiple predefined dis-
crete levels of interventions. Another important goal is
to study the possibilities of output feedback design by
applying a dynamic state observer. As a case study, we
parameterize our model to Hungary, but it can be easily
generalized to other countries as well.

2 Transmission dynamics model

2.1 Model description

We construct a compartmental model to describe the
transmission dynamics of the infection, incorporating
specific characteristics of COVID-19. Our population
N is divided into the following classes, tracking the
disease status of individuals: by S we denote the sus-
ceptibles, i.e., those who can be infected by the dis-
ease. Latent (L) are those who have already contracted
the disease but do not show symptoms and are not
infectious yet. Since transmission may occur in the
two days before the onset of symptoms [2], we con-
sider a pre-symptomatic infectious compartment P .
Since a large fraction of infected show only mild or
no symptoms, after the incubation period, we differ-
entiate infected individuals into asymptomatic (A) and
symptomatic infected (I ) compartments. Those in A
will always recover, while the more severe cases in I
may require hospitalization, in which case they move
to compartment H , from where they may eventually
recover (R) or die (D). We note that most transmis-
sion occurs within a few days after symptom onset,
and the compartment I reflects this period of effective
infectivity, rather than clinical status or PCR positivity,
which may continue for weeks, yet we remove them
from I and place them in R as they do not participate
in chains of transmission anymore. The transition dia-
gram of our model is depicted in Fig. 1. Several studies
[3,14,39,40,45,55] have proposed somewhat similar
models for of COVID-19.

The compartmentalmodelwithout any control terms
reads as

S′(t) = −β [P(t) + I (t) + δA(t)] S(t)/N , (1)

L ′(t) = β [P(t) + I (t) + δA(t)] S(t)/N − αL(t),

(2)
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Fig. 1 Transition diagram.
Circles represent
compartments, and arrows
represent transitions
between these
compartments S L P
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P ′(t) = αL(t) − pP(t), (3)

I ′(t) = qpP(t) − ρI I (t), (4)

A′(t) = (1 − q)pP(t) − ρA A(t), (5)

H ′(t) = ρIηI (t) − hH(t), (6)

R′(t) = ρI (1 − η)I (t) + ρA A(t) + (1 − μ)hH(t),

(7)

D′(t) = μhH(t). (8)

2.2 Model parameters

From the infectivity profile of COVID-19 [2], we can
see that most transmissions occur between 3 days prior
to and 4 days after symptom onset, with the pre-
symptomatic infection fraction 43.7%. It is a good
approximation to set the pre-symptomatic period p−1

as three days, and the symptomatic infectious period
ρ−1
I as four days, with the same infectiousness β

during this period. The estimated mean incubation
period (which is the latent and pre-symptomatic period
together) of the coronavirus disease is 5.5 days [35];
thus, the latent period α−1 is 2.5 days. Studies have
shown similar durations of viral shedding between
symptomatic and asymptomatic cases [59], so we set
ρ−1
A as four days as well. For the probability of devel-

oping symptoms, and the relative infectiousness of
asymptomatic individuals, we use the CDC best esti-
mate q = 0.6 and δ = 0.75 [9]. The average stay in
hospital is assumed to be 10 days, in accordance with
the seven days median reported in [15]. The in-hospital
death ratio (μ) in the USA is 0.145 [10]. The best esti-
mate for the infection fatality rate (IFR) is 0.0065 [9];
thus, the hospitalization probability η of symptomatic
cases can be inferred from the relation IFR = qημ as
η ≈ 0.076.

The basic reproduction number, expressing the aver-
age number of new infections generated by a single
infected individual in a fully susceptible population, is
given as

R0 = β

(
1

p
+ q

ρI
+ δ(1 − q)

ρA

)
. (9)

This formula can be derived as follows. Introducing a
single infected individual into a susceptible population,
then S(t)/N ≈ 1. A newly infected individual, after
passing through the latent phase, spends p−1 time in the
pre-symptomatic compartment, while infecting others
with rate β. Then transits to the symptomatic infected
compartment with probability q, where it spends ρ−1

I
time infecting others again with rate β. Asymptomatic
infection occurs with probability 1 − q, in which case
the individual infects with reduced rate δβ, for time
ρ−1
A on average. Summing up these terms, we obtain

(9). We assume that hospitalized individuals are prop-
erly isolated and do not cause significant numbers of
infections.

Many studies have investigated R0 for different
countries; here, we use R0 = 2.2 estimated from
the Hungarian data [45]. From relation (9), given that
all other parameters are determined, we can calculate
β = 1/3.We use Hungary’s population size for N . The
parameter values are summarized in Table 1.

3 The transmission dynamics model as a control
system

To design a controller for the epidemic process, the
first step is to define the manipulable parameters (con-
trol inputs) and identify the measured outputs. The
latter comprises all relevant state-dependent variables
that are available for measurement. In the absence of
vaccination, one needs to rely on a variety of non-
pharmaceutical measures, which are aiming to prevent
the transmission of the virus. In our model, the control
input, denoted by u, reflects the effect of the measures
implemented to reduce the transmission rate. This vari-
able is introduced in the model as a scaling factor of β,
i.e., β is replaced by β(1−u) in Eqs. (1) and (2) which
are therefore modified to
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Table 1 Parameters and values applied in the simulations

Parameter Interpretation Value References

R0 Basic reproduction number 2.2 [45]

α−1 Latent period 2.5 (days) [35]

p−1 Pre-symptomatic infectious period 3 (days) [2]

β Transmission rate 1/3 Calculated

δ Relative transmissibility of asymptomatic 0.75 [9]

q Prob. of developing symptoms 0.6 [9]

ρ−1
I , ρ−1

A Infectious period 4 (days) [2]

η Hospitalization probability of symptomatic cases 0.076 [9]

h−1 Average length of hospitalization 10 (days) [15]

μ Probability of fatal outcome, given hospitalization 0.145 [10]

N Population size (Hungary) 9,800,000 [34]

S′(t) = −β(1 − u(t)) [P(t) + I (t) + δA(t)] S(t)/N ,

(10)

L ′(t) = β(1 − u(t))[P(t) + I (t)

+ δA(t)]S(t)/N − αL(t), (11)

where 0 ≤ u(t) ≤ umax < 1, ∀t ≥ 0. It is clear
from the above equations that u(t) = 0 corresponds to
unmitigated disease spread without any restriction, and
u(t) = umax represents the strictest possible interven-
tion level.

Analogously to R0, the time-dependent effective
control reproduction number, denoted by Rc(t), can
be given by

Rc(t) = β (1 − u(t))
S(t)

N

(
1

p
+ q

ρI
+ δ(1 − q)

ρA

)
.

(12)

An analysis of eleven European countries [21] revealed
that the reproduction number (3.6 on average) dropped
to 0.66 after the strictest lockdowns; hence, we can
assume umax = 0.82.

3.1 Realization of the control input by specific control
measures

Public health authorities are implementing awide range
of measures in response to the COVID-19 outbreak;
see Table 2. There exist recent works about the quan-
titative effect of different measures, usually in terms
of the reduction of infection probabilities in different
locations, e.g., in [51,58]. These can be used to match
input value ranges and various possible restrictions.

Table 2 Typical measures applied in various countries

Banned visits to healthcare institutions and
long-term care facilities

Suspension of flights, international travel restrictions

University and school closures

Shortened opening time of shops

Stay-at-home measures

Restriction of gatherings, cancel public events

Suspend public transportation

Test, trace, isolate

Closing non-essential businesses

Emergency notification

Public information and awareness campaign

Mask wearing requirements

TheOxford COVID-19Government Response Tracker
[24] is a tool that systematically collects information on
several different common policy responses on 17 indi-
cators such as school closures and travel restrictions.
Such indicators can be composed into indices, such
as the government response stringency index. Having
data from more than 160 countries, one can rigorously
track the evolving policy responses around the world
and compare various countries. We have plotted the
stringency index of selected European countries (that
are similar to Hungary in population size) in Fig. 2.
Later, we will see that the government responses of
countries are very similar to constructed control inputs
optimizing interventions with different cost functions
and constraints.
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Fig. 2 Stringency index of
control measures in some
countries of similar
population sizes (Hungary,
Czech Republic, Sweden,
Belgium, Portugal). The
data are taken from [24],
and shifted in time to match
the day of the 10th
confirmed case in each
country
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Non-pharmaceutical measures aim to reduce the
number of contacts between individuals or reduce the
probability of transmission when contact is made. The
transmission rate can be considered as

β = daily number of contacts

×transmission probability.

Social distancingmeasures, such as school closures and
banning of gatherings, reduce the average number of
daily contacts made by an individual, while improved
hygiene and mask wearing reduce the transmission
probability. In our control system, we realize any com-
bination of measures by changing β to β(1−u), where
the control input u represents the overall effect of mea-
sures in reducing transmission. For example, if the
number of contacts is reduced to half by social dis-
tancing measures, then β(1 − u) = 0.5β thus u = 0.5
If both the contact number and the transmission proba-
bility are reduced to half by a combination ofmeasures,
then the transmission rate is reduced to its quarter, cor-
responding to β(1 − u) = 0.25β, meaning that our
control input is u = 0.75.

3.2 Discretization

The predictive control algorithm proposed in the next
section requires a discrete-time dynamical model given
in the general form xk+1 = F(xk, uk). Therefore, the
epidemic model (1) has to be discretized: function F

has to be constructed s.t. xk ≈ x(k · Ts) for any piece-
wise constant input u(t) = uk , t ∈ [k ·Ts, (k+1) ·Ts),
where Ts is the sampling time and xk is a state vec-
tor. From the different possible discretization meth-
ods, we found that the simple forward Euler method is
suitable for our purposes. It provides sufficient accu-
racy and preserves the structure of the continuous time
model. We used a sampling time Ts = 0.5 days to
get the discrete time model for control synthesis. It
is important to note that the discrete time model is
used for control input design, but the actual trajecto-
ries of the system between the sampling instants are
computed by an appropriate ODE solver using a stan-
dard explicit Runge–Kutta (4,5) method. In Sect. 5 a
dynamic observer is designed for the epidemic model,
which also requires a discrete time model. To increase
the accuracy, that model is generated by a smaller
(Ts = 0.1 days) sampling time.

4 Constrained state feedback control for
mitigation

4.1 Some relevant concepts from predictive control
theory

In the first control scenarios, the entire state vector is
assumed to be known. This assumption is not realistic,
but the corresponding simulation results will show the
physical limitations for controlling the epidemic pro-
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cess in the ideal situationwhen full information is avail-
able. In Scenario 6, this assumption will be relaxed and
only the number of hospitalized COVID-19 patients
(state H in the model) and the number of deceased
(state D in the model) will be considered available.

In all scenarios, we design a feedback controller, i.e.,
the control input is periodically updated based on the
actual measurements.

To formulate the control problem, the next step is to
define the performance specifications that have to be
satisfied by the controller and the controlled (closed-
loop) system. The most criteria we expect from a con-
scious epidemic management can naturally be formu-
lated by cost functions to beminimized (e.g., healthcare
costs, or the harmful effects of restrictions on economy
and society) and constraints to be satisfied (e.g., upper
bounds for the number of hospitalized people and/or
on the number of deaths). Model predictive control
(MPC)methodology is therefore a promising approach
for solving this problem. In the MPC framework, the
control synthesis is transformed into a constrained opti-
mization task solved in every discrete time step, when
the control input has to be updated. Since the synthesis
procedure boils down to a standard optimization prob-
lem, theoretically a wide set of possible cost functions
and complicated constraints can be handled.

Formally, in case of discrete-time models and full
state measurement, the main steps of the MPC algo-
rithm can be summarized as follows:

1. A suitable control horizon M ∈ N+ is chosen; the
time counter k is set to 0.

2. At time k · Ts , state xk is measured. MPC is based
on the prediction of the future states, therefore the
following notation is introduced: the (k + i)th state
predicted from themeasurement made at time k will
be denoted by xk+i |k . By definition, xk|k = xk .

3. By applying the state update equation xk+1 =
F(xk, uk), the M predicted future states xk =
{xk+1|k ,. . .,xk+M|k} can be expressed as a func-
tion of the (yet unknown) future control actions
uk = {uk|k, . . ., uk+M−1|k}. Using this formulation,
an optimization problem can be defined:

min
uk

J (uk, xk) (13a)

w.r.t. xk+i+1|k = F(xk+i |k, uk+i |k) (13b)

Gx (xk) ≤ hx , Gu(uk) ≤ hu (13c)

The objective function J and constraints (13c) are
constructed to encode all design specifications to
be satisfied by the controller and the closed-loop
system. To solve (13), an appropriate numerical
solver has to be used. The result is the optimal input
sequence u∗

k = {u∗
k|k, . . ., u∗

k+N−1|k}.
4. The first element of u∗

k is applied to the process, i.e.,
uk := u∗

k|k . This control input is kept constant for Ts
time period. Then, k is incremented, i.e., k := k+1,
and the iteration continues at step 2.

We add the following important remarks to theMPC
algorithm described above:

(a) In the description of the MPC above, we implic-
itly assumed that the system model is perfect:
the model used for prediction is the same as that
describes the true system behavior. In practical
situations, this rarely holds: there are modeling
uncertainties that may corrupt the prediction and
thus the control input obtained. It is known that
an appropriate feedback can significantly reduce
the effect of uncertainties in itself [30,48]. More-
over, there exist advancedmethods for robust con-
trol synthesis and the robustness analysis of the
closed loop. In the next section, no uncertainty is
assumed for the model.

(b) The numerical complexity of the optimization
problem depends on the structure of the cost
functions and the constraints. Since the model
is nonlinear, (13) becomes a nonlinear optimiza-
tion problem. In the first control scenarios, we
are going to investigate, quadratic cost function
and linear constraints are used. Later, to formulate
more complicated requirements, temporal logic
constraints are also introduced, which turn the
optimization task into a mixed integer nonlinear
programming (MINLP) problem.

(c) The time horizon over which we intend to con-
trol the epidemic process is 180 days. We assume
that the external conditions do not significantly
change during this time period. Therefore, the
behavior of the model beyond 180 days is not
taken into consideration. (If further control is
needed, new computations must be performed
after 180 days.) Since the endpoint is fixed, the
MPC is solved over shrinking horizon, i.e., M is
time dependent and defined by Mk = 180 − k.

(d) If the entire state vector cannot be measured, the
standard procedure is to augment the controller
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with a dynamical observer providing estimation
for the true state. If the system is nonlinear, there
is no general procedure for estimator design. This
task can therefore be challenging: different exist-
ing methods have to be combined and adapted to
the specific system model. In Sect. 5 we present
a possible state estimator for the epidemic model
above and show how it can be applied together
with the MPC control.

(e) Although in the algorithm above the control input
changes in every Ts time period, this is not neces-
sary: the frequency of control update can be easily
decreased by simple constraints on u.

4.2 Control scenarios

This section presents three control scenarios defined
for the epidemic model. Each scenario addresses a dif-
ferent public health goal, and presents different con-
trol strategy. In all cases, full state measurement is
assumed and all simulations start from the same ini-
tial condition: S0 = N − L0, L0 = 40, P0 = I0 =
A0 = H0 = D0 = R0 = 0, where N is the pop-
ulation of Hungary according to Table 1. We assume
that the epidemic remains undetected until the num-
ber of hospitalized patients exceeds a small threshold
Hthr . Technically, this means that the simulation runs
open loop until this threshold is reached, the controller
is switched on only thereafter. In the case studies we
examined, Hthr = 10 was used. As mentioned before,
the sampling time is Ts = 0.5 days, but in each sce-
nario the control input is updated only weekly, i.e., in
every 14th time instant. The simulations were run on
a Dell Vostro 5471 computer with i7-8550U (4 cores,
1.8–4.0 GHz) processor and 8GB RAM under MAT-
LAB R2019b using the BARON 19.3.24 solver [31]
andYALMIPversionR20200116 [36]. The code for the
translation of specifications containing temporal logic
expressions to optimization problems was based on the
BluSTL toolbox [16].

4.2.1 Scenario 1: Mitigation and suppression with
continuous control input

In this scenario, the control input is allowed to take
arbitrary (continuous) values between 0 and an a priori
defined umax. The cost function and constraints used in
the MPC design are defined as follows:

J =
M∑
i=0

u2k+i |k + wH HMk + wDDMk + wεε,

Hk+i+1|k ≤ H + ε, 0 ≤ ε, 0 ≤ uk+i |k
≤ umax, ∀i = 0 . . . M − 1.

(14)

So,wewould like tominimize the direct harmful effects
of the restrictions (measured in a 2-norm), and keep
the number of hospitalized patients under a predefined
upper bound not to overload the healthcare system.
The weighting factor wD penalizing the number of
deceased at the end of the horizon can be used to bal-
ance between mitigation and suppression, the two typ-
ical goals of COVID-19 management [20]. In the first
case, wD = wH = 0, so the focus is only on the
direct cost of the control measures. The controller is
expected to avoid strict measures and thus only miti-
gates the effects of the epidemic to the extent that the
hospitalization remains below the given bound. In the
second case, wD 	 0, wH 	 0 are set such that the
corresponding terms in the cost function are compara-
ble with

∑M
i=0 u

2
k+i |k , so the controller tries to suppress

the epidemic even if the control actions are expensive
(i.e., they have harmful effects). The upper bound H
represents the limit of the healthcare capacity. Param-
eters wε and ε are the ingredients of the soft constraint
formulation. Soft constraint is applied to avoid the pos-
sible numerical infeasibility that can occur in the vicin-
ity of H by the slight difference between the simulated
continuous and the predicted discrete trajectories.

First themitigation scenario is investigated. For this,
simulations have been performed with the following
parameter values: H = 10,000, umax = 0.82. The
results obtained are shown in Fig. 3. At the beginning of
the control period the control input is small. This shows
that less strict measures are sufficient during this time.
As the epidemic progresses the control input slowly
increases, but only until the 98th day, when it reaches
a higher but still moderate value that is significantly
smaller than the allowedmaximum umax.After the 98th
day, the epidemic can be successfully mitigated. At the
end of the control period (from day 154) the controller
eases the restrictions (the control input decreases) since
the control specifications have to be fulfilled only up
to the 180th day, and this can be achieved even if the
measures are relaxed (the control cost is decreased) in
the last fewweeks. If the constraints have to be satisfied
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Fig. 3 Simulation results of
Scenario 1.a (Mitigation):
state trajectories (top) and
control inputs with the
corresponding effective
reproduction number Rc
(bottom)
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on a longer time period, the control horizon has to be
increased. From this result, the following conclusion
can be drawn: first, if we can intervene in time, there
is no need to immediately implement strict measures,
and second, the epidemic can be mitigated by applying
only moderate restrictions. The total cost of the control
strategy is J ∗

1m = 42.86.
It is important to notice the increase of the state vari-

ables at the end of the horizon. Since finite time control
policy is computed, it is not surprising that close to the
end of the control period, the controller decreases the
control input to minimize the cost. As a response, the
state variables start to increase, but this does not cause
feasibility problem as long as the constraints are not
violated till the end of the horizon. This so-called turn-
pike behavior shows that easing the measures would
result in an epidemic peak. With strict constraint on the
healthcare capacity, this could be satisfactorily avoided
only if a suitable herd immunity is reached by the end of
the control horizon. It has been documented in several
papers, e.g., [26,32] that in case of COVID-19 pan-
demic, to reach herd immunity without overwhelming
the healthcare system would take years. Consequently,

defining a good terminal constraint for this relatively
small time period is not possible. What can be done
is to directly constrain the increase of the states at the
final (M andM−1-th) time instants [32].We are going
to show an example for this in Scenario 3.

Using the mitigation setup we have analyzed the
maximal delay that the system can tolerate before
implementing anymeasure. Fromacontrol perspective,
this means that the system runs open loop (i.e., uncon-
trolled) in the time interval [0, d · Ts], where d ∈ N+
and then the controller is turned on. We seek the maxi-
mal d, for which the MPC optimization problem has a
feasible solution. For the maximal tolerable delay, we
have obtained 74 days (i.e., d = 144). For larger values
ofd, theMPCoptimization has no feasible solution. (To
detect infeasibility, a hard upper bound has been intro-
duced for the soft constraint violation. Specifically, in
this scenario, ε ≤ 0.01 has been used.) The simulation
results are plotted in Fig. 5. Considering the control
input, it can be seen that as expected, the larger the
delay the stricter the measures that have to be applied.
The maximal control input is 0.82, which corresponds
to total lockdown.
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Fig. 4 Simulation results of
Scenario 1.b (Suppression):
state trajectories (top) and
control inputs with the
corresponding effective
reproduction number Rc
(bottom)
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The controller for epidemic suppression has been
designed by the following weights in the cost func-
tion: wD = 0.0267 and wH = 0.0033. The simulation
results are plotted in Fig. 4. It is visible that the out-
break can be successfully suppressed for the price of
a strict and early lockdown, followed by a slow grad-
ual easing of the measures. However, a second wave
of the epidemic appears at the end of the horizon as it
has been observed in several countries, for example,
the curves in Fig. 4 show a striking resemblance to the
true epidemic curve of Hungary . The total cost of the
control strategy is J ∗

1s = 101.8 from which the cost of
the control input is

∑
k u

2
k = 89.27.

4.2.2 Scenario 2: The effect of control input
quantization

By definition, the control input u reflects the effect
of different measures implemented by the government
in the society. Since there is a finite number of mea-
sures that can be applied (Table 1), a control input
with truly continuous range cannot be realized in prac-
tice. Motivated by this, we assume now that the control
input is quantized and can take only 4 different values.

Each value corresponds to a specific measure as fol-
lows: u(1) = 0, u(2) = 0.19, u(3) = 0.41, u(4) = 0.6.
Here, as an example, u(2) may correspond to school
closures, u(3) to stay-at-home orders, and u(4) can
be interpreted as a combination of the two. To force
uk ∈ {u(1), u(2), u(3), u(4)} for all k, an additional con-
straint is added to the MPC synthesis:

�(u = u(1) ∨ u = u(2) ∨ u = u(1) ∨ u = u(4)), (15)

where � is a temporal logic operator called “always”
and is defined as follows: if φ is an arbitrary logical
expression, then

�[a,b]φ is true at time t

⇔ ∀t ′ ∈ [t + a, t + b] the formula φ is true.
(16)

Using this definition, constraint (15) prescribes that one
of the four equations u = u(i), i ∈ {1, 2, 3, 4} has
always to be true. (More details on temporal logic oper-
ators can be found, e.g., in [18]). We remark that the
discrete inputs alone do not necessitate the application
of temporal logic (see, e.g., [37]). However, this nota-

123



Nonlinear model predictive control with logic constraints 1975

Fig. 5 Simulation results of
Scenario 1.a with delayed
intervention. Simulation
results obtained at the
maximal tolerable input
delay (d = 74 days)
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tion is intuitive, and using the temporal logic frame-
work it is straightforward to add more complex (pos-
sibly time-varying) constraints as it will be shown by
the next scenario.

To analyze the effect of input quantization, we have
performed the mitigation scenario defined in the pre-
vious section with the additional constraint (15). The
results are plotted in Fig. 6. It can be seen that the pri-
mary control goal, i.e., the mitigation of the epidemic
is achieved and the input and state constraints are satis-
fied. It is also important to mention that the quantized
control input is similar to the continuous one obtained
in Scenario 1, which means that the optimal control
strategy is very similar in the two cases. On the other
hand, the quantization allows less freedom to the con-
troller, so the total cost is now higher: J ∗

2 = 45.88.

4.2.3 Scenario 3: Refined constraint for healthcare
capacity

In this scenario we allow, but only once and only for
a limited time period, that the number of hospitalized
patients (H ) exceeds the limit H . This scenario repre-
sents the casewhen there is an extra, but possibly costly

reserve in the healthcare system that can be activated
if necessary, or resources are reallocated to COVID-19
from other areas of healthcare. Formally, we introduce

two new parameters: Tr and H , such that H < H and
the MPC design is completed with the following con-
straint:

�(H ≤ H) U
(
�[0, Tr ](H ≤ H) ∧ �[Tr , N ](H ≤ H)

)
(17)

where the temporal logic operator U (called “until”) is
defined as follows:

ϕU[a,b]ψ is true at time t

⇔ ∃t ′ ∈ [t + a, t + b] st. ψ is true ∧ (18)

∀t ′′ ∈ [t, t ′] ϕ is true (19)

In expression (17), H denotes a new upper bound
that is never to be violated and Tr is the maximal time
period for which H > H is allowed. The numerical
simulation for this scenario was performed with the

following parameter values: H = 15,000 and Tr = 21
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Fig. 6 Simulation results of
Scenario 2 (Control input
quantization): state
trajectories (top) and control
inputs with the
corresponding effective
reproduction number Rc
(bottom)
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days. The results obtained by performing a mitigation
scenario are depicted in Figs. 7 and 8, respectively.
Compared to the results of Scenario 1, it can be seen that
the shapes of the control inputs are similar. The main
difference is that the controller in Scenario 3 applies
smaller control actions over almost the entire horizon.
The control input is larger only for a short period after
Tr is elapsed. This is necessary to stop the increase of
the constrained state variables, which would result in
the violation of the constraints and the loss of feasibil-
ity. Since the control input is smaller at most times than
in Scenario 1, the total cost of the control is smaller:
J ∗
1m = 42.86 in Scenario 1 and J ∗

3 = 41.43 in Sce-
nario 3.

Similar to the other scenarios investigated so far,
the state variables start to increase at the end of the
control horizon. To avoid this behavior, we introduce
the following simple terminal constraint:

Hk+M|k + 1 ≤ Hk+M−1|k (20)

i.e., the number of hospitalized individuals must
decrease in the last step. This constraint prevents H and

the other states from increasing: strict control measures
are applied till the very end of the horizon. Though
the characteristic of the state variation has been sig-
nificantly improved, nothing can be guaranteed for
the process behavior beyond the control horizon. A
later outbreak can be avoided only if the implemen-
tation of the carefully planned, strict control policy is
continued.

5 State estimator design and output feedback
control

In this section, the assumption of full state measure-
ment is dropped, and aligned with the common prac-
tice, only the number of the deceased (D) and the
number of the hospitalized individuals (H ) are mon-
itored. There are examples in the COVID-19 liter-
ature, where the global dynamics and the epidemic
curve was reconstructed from the data of hospitalized
or deceased individuals [23,43]. In order to use the
state feedback MPC controller, a dynamical observer
is designed to estimate the remaining non-measured
states.
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Fig. 7 Simulation results of
Scenario 3 (Temporal
increase of healthcare
capacity): state trajectories
(top) and control inputs
(bottom) obtained with

Tr = 21 and H = 15,000.
H is above 10,000 between
days 79 and 100 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
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Fig. 8 Simulation results of
Scenario 3 (Temporal
increase of healthcare
capacity): state trajectories
(top) and control inputs
(bottom) obtained with

Tr = 21 and H = 15,000.
In this simulation, a terminal
constraint for the number of
hospitalized individuals has
also been introduced. H is
above 10,000 between days
76 and 97
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5.1 LPV observer design for the epidemic model

To design the estimator, the states are normalized
first and the dynamical model is divided into three
parts. According to the three subsystems, the state
vector is partitioned as follows: s := S/N , x̄ =
[L , P, I, A, H ]/N and r = R/N . Focusing on x , we
notice that the corresponding dynamical equations can
be rewritten in linear parameter-varying (LPV) form:

x̄k+1 = (I + Ts A0 + ρkTs A1)x̄k
.= A(ρk)x̄k

where ρk = skvk with vk = 1 − uk is the scheduling
variable and

A0 =

⎡
⎢⎢⎢⎢⎣

−α 0 0 0 0
α −p 0 0 0
0 qp −ρI 0 0
0 (1 − q)p 0 −ρA 0
0 0 ρIη 0 −h

⎤
⎥⎥⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣
0 β β δβ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦ (21)

follow from (1). By introducingC = [0 0 0 0 1], a mea-
surement equation is added to the model: yH = Cx̄ ,
where yH = x̄5 = H/N . Assume ρ is bounded, i.e.,
ρ ∈ [ρ, ρ] and ρ, ρ are a priori known. If we assume
that up to half of the population gets infected, then s ∈
[0.5, 1] holds. This together with the input constraint
u ∈ [0, 0.7] gives the bound for ρ: ρ ∈ [0.15, 1].
Using these bounds, a parameter-varying observer can
be designed, but in order to use it, the scheduling vari-
able (ρ) has to be known at each time instant. Since in
our case sk is not available for measurement, we can
only approximate it by using its difference equation, as
follows:

ŝk+1 = ŝk − Ts ŝkvk [0 − β − β − βδ 0] ˆ̄x (22)

By scheduling the model with ρ̂ = ŝv, we face the
problem of observer design for LPV systems with inac-
curately measured scheduling variables. This problem
is well identified in control literature and one possi-
ble solution is proposed in [11,25,38]. The papers dis-
cuss different variants, namely differently improved
versions of the same approach introduced first in [38].

The method constructs a parameter-varying observer,
scheduled by ρ̂ such that the boundedness of the esti-
mation error is guaranteed as long as ρ − ρ̂ is bounded.

Before applying this method, it is important to
check the observability properties of the LPV model.
The quickest analysis is to compute the observability
matrix at different frozen (fixed) parameter values. This
is a necessary condition for the parameter-dependent
observability. Taking 10 equidistant points ρ1 . . . ρ10
on the interval [0.15, 1], we have found that the linear
time-invariant (LTI) models (A(ρi ),C) are all observ-
able: the corresponding observabilitymatrices have full
rank. However, it is important to note that these matri-
ces are badly conditioned, they are close to singular, so
the model is only weakly observable. This may chal-
lenge the observer design process and has effect on the
achievable performance of the state estimation. It is
also important to keep in mind that while the prop-
erties of the LPV model can give information on the
properties of the nonlinear system, the two systems are
not the same: the epidemic model is embedded in the
LPV structure, so the latter describes a much broader
dynamical behavior.

Starting from the LPV model, the state estimator is
defined in the following form:

ˆ̄xk+1 = A(ρ̂) ˆ̄xk + L(ρ̂)(yH − ŷH ) (23)

where ŷH = Cx̂ . This results in the following error
dynamics:

ek+1 = x̄k+1 − ˆ̄xk+1 = (A(ρ̂) − L(ρ̂)C)ek + γk
(24)

where γk = (A(ρk) − A(ρ̂k))x̄k . By fixing the feed-
back gain L(ρ̂) in parameter affine form L0 + ρ̂L1, the
coefficient matrices L0 and L1 can be determined by
finding positive definite Pi and general Gi , Fi matrices
for i ∈ {1, 2} that satisfy the following linear matrix
inequalities (LMI):

[
Pi AT

i Gi − CTFT
i

Gi Ai − FiC GT
i + Gi − Pj

]
� 0, i, j ∈ {1, 2},

A1 = A(ρ), A2 = A(ρ).

(25)

Then with L̄i = G−1
i Fi , the observer gains are com-

puted as follows: L1 = 1/(ρ − ρ)(L̄2 − L̄1), L0 =
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L̄1 −ρL1. It is shown in [38], that the dynamics of the
estimation error (24) is input-to-state stable (ISS) with
respect to input γk . This implies that ek → 0 as k → ∞
if γk = 0 (i.e., ρk = ρ̂k) and also that ek is bounded for
all k ifρk−ρ̂k is bounded.Note that the observer design
procedure considers the scheduling parameter indepen-
dent of the state prediction. Formally this is true, as ρk
depends on sk which is not element of x̄k . Thinking
in this way, the design is correct and the properties of
the LPV observer can be independently analyzed: for
example, a bound for the ISS gain can be computed for
(24) by using [38]. On the other hand, in our specific
setup the dynamic equation (22) couples ρ̂ and x̄ . This
makes the analysis of the observer more challenging.
We therefore make the further analysis via simulations
by interconnecting the observer, the dynamics of ŝ and
the nonlinear system model.

In the possession of ŝ and x̂ , the remaining state
variable r can be obtained by iterating its state update
equation:

ẑk+1 = zk + Ts[0 0 ρI (1 − η) ρA (1 − μ)h] ˆ̄xk

Note, r̂ is thus constructed by integrating the linear
combination of the other states. We cannot prove any-
thing for the boundedness of z − ẑ, but this is not a
serious issue as r does not influence the behavior of the
other states and it is used only in a control objective
of Scenario 4. Since a lower limit for the number of
infected patients is not a strict value, some deviation
from the prescribed limit is not critical. Simulations
will, however, reveal that z − ẑ is actually small over
the control horizon, so ẑk is a suitably precise estimate
for zk . It is also important to mention that measure-
ment D is not used in the observer. Since D does not
influence the other state variables, measuring it is not
relevant to the observer design (but it is very useful to
precisely evaluate the cost function). It has to be admit-
ted that the assumption of precisely knowing the model
parameters is not completely realistic. Therefore, track-
ing the number of hospitalized people only may not be
enough in practice to compute the population in other
compartments with the required precision. To address
this problem, the effect of parameter uncertainty for a
controller–observer configuration is examined later in
Sect. 5.4.

5.2 Numerical results obtained by the LPV observer

By solving (25), the following observer gains have been
obtained:

L0 =

⎡
⎢⎢⎢⎢⎣

13.4913
14.1086.
8.3603
5.5759
1.0058

⎤
⎥⎥⎥⎥⎦ , L1 =

⎡
⎢⎢⎢⎢⎣

1.3190
0.0767

− 0.0009
− 0.0019
0.0001

⎤
⎥⎥⎥⎥⎦ . (26)

However, due to the weak observability, the error
dynamics is close to the boundary of stability, thematri-
ces P1, P2 characterizing the Lyapunov function are
numerically ill-conditioned: there are several orders of
magnitude difference between their eigenvalues. Fur-
ther analysis is thus necessary to reveal the performance
properties of the observer, e.g., to compute an upper
bound for the magnitude of the estimation error. Papers
[11,25] refine the algorithm above and derive such a
performance metric. In this paper, we cannot go into
the details of this analysis procedure, we examine the
observer only in numerical simulations and place the
focus on its application in closed-loop control.

Figure 9 presents the simulation results obtained by
running the system open loop with the control input
depicted in the same figure. The initial state was the
same as we chosen above, i.e., L0 = 40, S = N − L ,
and the other states are 0. In the simulation, the nor-
malized states were estimated, but they were rescaled
to plot the results. It can be seen that noticeable, but still
not significant estimation error can be detected only in
variables S and R and only in the neighborhood of
the peak of the epidemic. This is not relevant, however,
since the estimator is intended to be used togetherwith a
controller, which mitigates or suppresses the epidemic
peak.

5.3 Scenario 4: Output feedback control

In this section, we examine how the state observer
works together with the MPC controller. For this, we
repeat the simulationofScenario 1 (Sect. 4.2.1)with the
following modification: the precise state measurement
xk is replaced by the estimated value x̂k . The simulation
results are plotted in Fig. 10. The control input and state
trajectories obtained in the two scenarios can hardly
be distinguished. Since the epidemic peak, where the
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Fig. 9 True (colored solid
line) and estimated states
(dashed black line) (top
figure) and estimation error
(middle figure) obtained by
the state observer. The
control input applied during
the simulation is plotted in
the bottom figure. (Color
figure online)
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estimation error would be noticeable, is mitigated, the
state estimation is almost perfect over the entire hori-
zon. Consequently, using x̂k in the control input com-
putation has only negligible effect on the closed-loop
behavior. Compared to Scenario 1, the control costs
are almost equal in the two scenarios: J ∗

1 = 42.86,
J ∗
4 = 42.98. We can conclude that the lack of direct

measurement of S is not crucial from the point of view
of state measurement if the observer is used in closed-
loop control.

5.4 Scenario 5: Effect of parameter uncertainty

We have assumed so far that the dynamical model of
the epidemic is precisely known, that is the model (1)–
(8) with parameters in Table 1 accurately describes
the dynamical behavior of the epidemic process. This
is hardly the case in a real situation. Therefore, the
possible parameter uncertainties have to be taken into
account during the control design process. This leads
to a robust synthesis, which is beyond the scope of this

paper. On the other hand, to study the applicability of
the proposed control method, it is important to examine
how it works in the presence ofmodelmismatch. In this
subsection, we show several simulations with the out-
put feedback scenario presented above with the follow-
ing settings: themodel structure used for prediction and
state observation is the same, but certain parameters of
the controlled system are different in each experiment.
We assume that four parameters, namely α, q, δ, η are
uncertain, they take values from the following intervals:

α ∈ [1/3, 1/2], δ ∈ [0.7, 0.8], q ∈ [0.5, 0.7],
η ∈ [0.069, 0.083], (27)

The upper and lower bounds of the parameter domains
have been determined using the references in Table 1.
Further, we assume that the other model parameters
are more precisely known, and therefore their nominal
values were used in the simulations. We remark that
possible uncertainty in β can be handled, since due to
the model structure, designing for larger β gives a fea-
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Fig. 10 Simulation results
of Scenario 4 (Output
feedback control): state
trajectories (top) and control
inputs with the
corresponding effective
reproduction number Rc
(bottom). The true and
estimated state trajectories
are plotted by colored solid
and black dashed lines,
respectively. (Color figure
online)
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sible controller for smaller values as well. To analyze
the robustness, 16 simulations defined by the possible
combinations of the min–max values of the uncertain
parameters have been performed. Table 3 collects the
parameters of the experimentswith the results obtained.
The detailed simulation results obtained for cases 7 and
15 are plotted in Figs. 11 and 12, respectively.

It can be seen that the controller worked acceptably
well with uncertain models, although the cost varied
visibly for the different cases. Regarding the constraint
on the healthcare capacity, it is only violated in half of
the simulations and the transgression of the limit is not
critical. On the other hand, there is a room for perfor-
mance improvement, and thus improving the robust-
ness of the controller is an important task in the future.

6 Discussion

The model-based control of the spread of the COVID-
19 epidemicwas proposed in this paper. The dynamical
model is given in the form of a set of nonlinear ODEs
containing eight compartments. The model parameters

were determined from the literature and the epidemic
data recorded in Hungary between March and May
2020. The assumed manipulable control input with
strict upper and lower bounds is the time-varying trans-
mission rate affected by different restrictive measures
planned and implemented by the authorities to slow
down disease spread.

A model predictive control approach was proposed
which uses the discrete-time version of the dynamical
model and is able to take into consideration complex
specifications and constraints containing even integer
variables and logical relations in the form of tempo-
ral logic expressions. The control goals are then auto-
matically translated to a MINLP problem, capable of
handling the nonlinear system dynamics. To address
the realistic situation when not all state variables are
observed continuously, a state observer is proposed
using the theory of LPV systems, assuming that only
the number of hospitalized and deceased patients are
known on a daily basis. In the numerical simulations,
we found that the number of people in the other 6 com-
partments can be computed with sufficient precision
using the observer if the model parameters are known,
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Table 3 Model parameters of the experiments performed for uncertainty analysis

Case number α−1 δ q η Cost maxH

0 3.00 0.70 0.50 0.69 33.54 9305

1 3.00 0.70 0.50 0.83 35.33 9608

2 3.00 0.70 0.70 0.69 41.22 10,290

3 3.00 0.70 0.70 0.83 43.79 10,504

4 3.00 0.80 0.50 0.69 36.86 9738

5 3.00 0.80 0.50 0.83 38.96 9939

6 3.00 0.80 0.70 0.69 43.38 10,781

7 3.00 0.80 0.70 0.83 46.30 10,893

8 2.00 0.70 0.50 0.69 37.37 9336

9 2.00 0.70 0.50 0.83 39.65 9545

10 2.00 0.70 0.70 0.69 46.03 10,242

11 2.00 0.70 0.70 0.83 49.20 10,765

12 2.00 0.80 0.50 0.69 40.24 9691

13 2.00 0.80 0.50 0.83 44.64 9834

14 2.00 0.80 0.70 0.69 48.28 10,651

15 2.00 0.80 0.70 0.83 51.70 11,105

Fig. 11 Simulation results
of Scenario 5 (Output
feedback control) with
model uncertainties. State
trajectories (top) and control
inputs with the
corresponding effective
reproduction number Rc
(bottom) in case 7 of Table 3
The true and estimated state
trajectories are plotted by
colored solid and black
dashed lines, respectively.
(Color figure online)
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Fig. 12 Simulation results
of Scenario 5 (Output
feedback control) with
model uncertainties. State
trajectories (top) and control
inputs with the
corresponding effective
reproduction number Rc
(bottom) in case 15 of
Table 3. The true and
estimated state trajectories
are plotted by colored solid
and black dashed lines,
respectively. (Color figure
online)
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although the model itself is numerically only weakly
observable due to the possible different orders of mag-
nitudes of the susceptible and the infected population.
This underlines the importance of regularly tracking the
susceptible population (which is a scheduling param-
eter in the state observer), since the online estimation
of the other states could be significantly improved by
that. In practice, this can be achieved by large scale
serological surveys.

Five control scenarios were shown and analyzed
with different goals and assumptions. The scenarios
cover the well-known cases of mitigation, when the
direct cost of the intervention (control) is minimized
with a constraint on healthcare capacity, and also sup-
pression, where the cost is assigned to infection, hos-
pitalization and fatalities. It is worthwhile to note that
there is a striking resemblance between the constructed
control inputs and real-life government responses,mea-
sured by a stringency index, both for mitigation and
suppression strategies. We have also monitored the
time-varying effective reproduction number Rt , which
became a very popular measure of the current epidemic
situation during theCOVID-19 pandemic. For suppres-

sion, we see that very strict measures (lockdown) are
necessary initially, and they can be slowly relaxed later.
This corresponds to a sharp drop in Rt to levels way
below one. On the other hand, for mitigation, the strin-
gency of the control is increased much more slowly,
and maximized at a moderate level, while Rt is being
kept around the critical value 1 for a long time period.

We emphasize that the proposed flexible approach
is able to directly handle predefined discrete levels
of restrictions. The output feedback design case (i.e.,
the combination of the controller and observer) was
also examined through several simulations assuming
uncertainties in selected parameters. It is justified by
the computational results that an early intervention is
of key importance in satisfying the control goals and
constraints. The feasibility analysis corresponding to
the model predictive control problem is also useful to
assess the practical (physical, biological) limits of the
planned interventions and identify late actions. Future
work will be focused on the sensitivity and further
robustness analysis of the approach and on the spec-
ification of even more realistic goals and constraints.
Among the latter, assigning individual costs to different
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types of restrictions (Table 2) and putting the optimal
selection between them into the framework of optimal
control may add further value to the research.
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