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a b s t r a c t 

Immunity following natural infection or immunization may wane, increasing susceptibility to infection 

with time since infection or vaccination. Symptoms, and concomitantly infectiousness, depend on resid- 

ual immunity. We quantify these phenomena in a model population composed of individuals whose sus- 

ceptibility, infectiousness, and symptoms all vary with immune status. We also model age, which affects 

contact, vaccination and possibly waning rates. The resurgences of pertussis that have been observed 

wherever effective vaccination programs have reduced typical disease among young children follow from 

these processes. As one example, we compare simulations with the experience of Sweden following re- 

sumption of pertussis vaccination after the hiatus from 1979 to 1996, reproducing the observations lead- 

ing health authorities to introduce booster doses among school-aged children and adolescents in 2007 

and 2014, respectively. Because pertussis comprises a spectrum of symptoms, only the most severe of 

which are medically attended, accurate models are needed to design optimal vaccination programs where 

surveillance is less effective. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

o  

n  

m  

c  

w  

p  

c

t

s

g

i  

e

 

o  

M  

d  

t  

i  

G  

h

0

. Introduction 

Hosts may have immunological memory following vaccination

r recovery from infection that protects from subsequent disease if

ot infection. If T- or B- cell populations decay, as they do against

ost bacterial and some viral pathogens, immunity declines, but

an be boosted by re-vaccination or subsequent infection. Hosts

ith insufficient immunity to protect them from disease may ex-

erience moderate or mild symptoms and be concomitantly less
� Authors contributed equally. None has competing interests. The findings and 

onclusions in this report do not necessarily represent official positions of the Cen- 

ers for Disease Control and Prevention, National Science Foundation, or other in- 

titutions with which the authors are affiliated. Simulation code will be posted to 

ithub upon acceptance. 
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nfectious than fully susceptible hosts who experience typical dis-

ase Mims et al. (2001) . 

Mathematical models have been used to study the effects

f vaccination Anderson and May (1982) , age Anderson and

ay (1985) , and waning of immunity Mossong et al. (1999) on the

ynamics and persistence of infectious diseases. The importance of

he boosting of immunity corresponding to sub-clinical infection

n individuals whose immunity has waned has also been identified

lass and Grenfell (2003) . Boosting of immunity by re-exposure

rolongs the period of protection, but may also maintain oscilla-

ions in the prevalence of disease Lavine et al. (2011) . 

Several theoretical papers have been devoted to understand-

ng the dynamical consequences of immune system boosting. Their

uthors use various mathematical approaches: ordinary differen-

ial equations Dafilis et al. (2012) , partial differential equations

arbarossa and Röst (2015) , delay differential equations Barbarossa

t al., 2017 , and renewal equations Diekmann et al. (2018) . Biolog-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Schematic of the PDE system given in Eq. (2) - Eq. (4) for one age group. S 1 , S 2 , S 3 , S 4 , and S 5 (blue shaded boxes) represent susceptible individuals who are immuno- 

logically naive, have some immunity, are moderately immune, were recently vaccinated, and are fully immune, respectively. I 1 , I 2 , I 3 , and I 4 (red shaded boxes) represent 

infected individuals with typically severe symptoms who are maximally infectious, moderate symptoms and reduced infectiousness, mild symptoms and even less infec- 

tiousness, and neither symptoms nor infectiousness, respectively (we set I 5 = 0 in the text for ease of notation). Recovery from disease leads to a fully immune state (orange 

dash-dotted line). As individuals age, susceptible ones with incomplete immunity, including naive ( S 1 ), some ( S 2 ), moderate ( S 3 ), and vaccine-induced ( S 4 ) immunity, can be 

infected (red solid line) and become infectious. After infection, they recover (dot-dashed orange lines) fully immune ( S 5 ). However, as individuals age, their immunity wanes 

(black wavy lines). The immunologically naive group ( S 1 ) can become immune ( S 4 ) through primary or re-vaccination (black solid line). Groups with some ( S 2 ), moderate 

( S 3 ), and vaccine-induced immunity ( S 4 ) can become fully immune ( S 5 ) through re-vaccination (green dotted lines) . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ical assumptions on the nature of boosting also influence disease

dynamics Heffernan and Keeling, 2009 ; Barbarossa et al., 2018 ;

Leung et al. (2018) . 

We are interested in quantifying the distribution of host popu-

lation immunity and effects of immunity-modified disease on the

spread and persistence of pathogens in host populations. Immune

system memory and response dynamics may change with age as

fewer naive T-cells remain to be programmed to respond to par-

ticular antigens Mims et al. (2001) . As the force of infection also

varies with age, symptom severity and infectiousness may vary too.

In addition, vaccination programs usually are age-specific. It is thus

necessary to consider the effects of host age in studies of the wan-

ing and boosting of immunity. 

Accordingly, we study a model that involves host age and im-

mune status, which determine symptoms and concomitant infec-

tiousness. Our model consists of a system of partial differential

equations that track susceptible, vaccinated and infected hosts over

time in defined age and immune classes. The model is applicable

to many diseases, including that caused by B. pertussis , which we

examine as a proof-of-principle application. 

Several age-structured models of pertussis transmission

dynamics have been proposed (e.g., Hethcote (1997, 1999) ;

Campbell et al. (2015) ). The authors of these and many subse-

quent articles use multiple epidemiological classes to account

for recovered and vaccinated individuals with different levels

of immunity and infected individuals experiencing more or less

severe symptoms. Our model has a simpler epidemiological struc-

ture (fewer compartments), yet is consistent with the underlying

immunological processes, and allows us to include various levels

of immunity, re-vaccination, and boosting by natural exposure.

Previous modelers also assumed that individuals differing in

immune status share the same susceptibility, and hence that the

force of infection is uniform within age groups. To better reflect

immunological knowledge, susceptibility depends on immune

status in our model. 
2  
Despite the existence of safe and effective vaccines, pertus-

is (whooping cough) continues to affect human populations

round the globe. After effective childhood vaccination programs

arkedly reduced typical disease among young children, outbreaks

ere observed among adolescents, generally of immunity-modified

isease. Explanations for these resurgences range from secular

hanges in mixing patterns and other social phenomena Águas et

l., 2006 ; Rohani et al. (2010) to deficiencies in immunity induced

y the acellular vaccines licensed decades ago Gambhir et al., 2015 .

An alternative is that effective routine vaccination programs,

nitially with the whole-cell vaccine, unmasked the waning of nat-

ral immunity that had been boosted by the exposure of older

hildren to infectious younger ones. People with mild symptoms

arely seek care, but – because symptom severity depends on im-

unity, a function of time since vaccination or most recent expo-

ure – by the time that adolescents were exposed, their immunity

as no longer able to protect them from clinical disease. 

We apply our model of the waning and boosting of immu-

ity to pertussis in Sweden after the 17-year hiatus in vaccination

uring which clinical trials of the current generation of acellular

accines were conducted Olin et al., 1997 ; Storsaeter et al., 1990 ;

rollfors et al. (1995) ; Gustafsson et al. (1996) . Because vaccina-

ion changes the epidemiology of disease, programs must be dy-

amic. We evaluate Swedish health authorities’ decisions about re-

accination and, coincidentally, test our explanation for the resur-

ence. 

. The model 

.1. Model formulation 

We track individual age, infection and immune status by mod-

ling ages 0–19 years in single year groups, 20–44 years in 5-

ear groups, 45–74 years in 10-year groups, 75+ years (a total of

9 age groups) in a single group, and several susceptible (S) and
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Table 1 

Variables and parameters used in the PDE system given in Eqs. (2) , (3) , and (4) . Immune status is classified as immunologically naive, 

somewhat immune, moderately immune, recently vaccinated, and completely immune. There are only four infectious classes as S 5 is 

completely immune. For the ODE system, similar variables are used for S in ( t ) and I jn ( t ) with i, j (1 ≤ i ≤ 5, 1 ≤ j ≤ 4) indexing immune 

status and n age groups. 

Variable description Symbol 

Fully susceptible (naive) S 1 ( a, t ) 

Susceptible with limited immunity S 2 ( a, t ) 

Susceptible with moderate immunity S 3 ( a, t ) 

Susceptible with vaccine-induced immunity S 4 ( a, t ) 

Complete immunity (resistant) S 5 ( a, t ) 

Infected with severe disease I 1 ( a, t ) 

Infected with moderate disease I 2 ( a, t ) 

Infected with mild disease I 3 ( a, t ) 

Infected, but asymptomatic I 4 ( a, t ) 

Total population of status j T j (a, t) = S j (a, t) + I j (a, t) , 1 ≤ j ≤ 4 

T 5 (a, t) = S 5 (a, t) 

Parameter description Symbol 

Susceptibility of individuals of immune status i , age a αi ( a ) 

Infectivity of individuals of immune status i , age a β i ( a ) 

Activity rate of age a A ( a ) 

Waning rate of individuals of immune status i ω i ( a ) 

Vaccination rate of individuals of immune status i , age group a ρ i ( a ) 

Recovery rate of infected individuals of immune status i , age a γ i ( a ) 

Birth rate of individuals aged a f ( a ) 

Natural mortality rate of individuals aged a μ( a ) 

Contacts between individuals aged a and θ c ( a, θ ) 

Proportion of the contacts between individuals aged a and those of immune status i , age θ c i ( a, θ ) 
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nfected (I) states. A schematic is provided in Fig. 1 for one age

roup. We distinguish 5 immune classes (fully susceptible, some-

hat immune, moderately immune, recently vaccinated, fully re-

istant to infection), and assume not only that individuals of higher

mmune status are less susceptible to infection than those of lower

tatus, but that that, if infected, higher status individuals will de-

elop milder symptoms and be correspondingly less infectious. Im-

unity develops after primary and re-vaccination (black solid and

reen dotted lines, respectively) and infection (orange dot dashed

ines), but wanes (black wavy lines). 

We use S i ( a, t ) and I i ( a, t ) to denote the density of susceptible

nd infected individuals aged a (0 ≤ a < ∞ ) with immune status

 (1 ≤ i ≤ 5) at time t . The total population of individuals of age a

nd immune status i is denoted by T i ( a, t ), the sum of S i ( a, t ) and

 i ( a, t ), 

 i (a, t) = S i (a, t) + I i (a, t) , 1 ≤ j ≤ 4 , and T 5 (a, t) = S 5 (a, t)

ere, for the S group, i = 1 , ., 5 , but for the I group, 1 ≤ i ≤ 4

ecause those in S 5 are fully immune ( Table 1 ). Immunity wanes

t rate ω i ( a ) for immune status i . Susceptible individuals who

re immunologically naive, S 1 ( a ), can be vaccinated (primary se-

ies typically consist of multiple doses) and acquire vaccine-

nduced immunity, S 4 ( a ). Individuals who are immunologically

aive, have some, moderate, and vaccine-induced immunity, S 1 ( a ),

 2 ( a ), S 3 ( a ) and S 4 ( a ), respectively, can receive booster vaccine

oses, by which they acquire complete immunity, S 5 ( a ), at rate

i ( a ) (1 ≤ i ≤ 4, respectively). The groups of susceptible individ-

als, S i ( a, t ), (1 ≤ i ≤ 4), are assumed to have susceptibility αi ( a )

nd contact rate A ( a ) at age a . Individuals can be infected at rate

j ( a ) by infectious individuals from immunity class j (1 ≤ j ≤ 4).

e use a mixing function c ( a, θ ) to represent how the contacts of

n individual aged a are distributed among individuals of age θ .

ence, 
 ∞ 

0 

c(a, θ ) dθ = 1 , for any a ≥ 0 , 

nd 

 θ2 

θ
c(a, θ ) dθ, for θ2 > θ1 ≥ 0 , 
1 
xpresses the proportion of the contacts of an individual aged a

ith individuals between ages θ1 and θ2 . To further describe how

any of these contacts are with individuals of immune class j

1 ≤ j ≤ 4) and age θ , we introduce c j ( a, θ , t ) as follows: 

 j (a, θ, t) := 

T j (θ, t) 

5 ∑ 

j=1 

T j (θ, t) 

c(a, θ ) . (1) 

nfected individuals I i ( a, t ) recover from disease at rate γ i ( a ). 

We assume that members of the population aged a have death

ate μ( a ), and have offspring (entering class S 1 (0, t )) at birth rate

 ( a ). Therefore, we consider the system of equations 

∂S i (a, t) 

∂t 
+ 

∂S i (a, t) 

∂a ︸ ︷︷ ︸ 
Susceptible classes: 1 ≤i ≤4 

= − αi (a ) A (a ) S i (a, t) λ(a, t) ︸ ︷︷ ︸ 
loss of susceptibility due to infection 

−μ(a ) S i (a, t) ︸ ︷︷ ︸ 
natural death 

+ ω i +1 (a ) S i +1 (a, t) ︸ ︷︷ ︸ 
waning into class 

− ω i (a ) S i (a, t) ︸ ︷︷ ︸ 
waning out of class 

+ ψ i ρ1 (a ) S 1 (a, t) ︸ ︷︷ ︸ 
immunity acquired by vaccination 

− ρi (a ) S i (a, t) ︸ ︷︷ ︸ 
loss of susceptibility by vaccination 

(2) 

∂S 5 (a, t) 

∂t 
+ 

∂S 5 (a, t) 

∂a ︸ ︷︷ ︸ 
Completely immune class ( i = 5 ) 
= −μ(a ) S 5 (a, t) ︸ ︷︷ ︸ 

natural death 

− ω 5 (a ) S 5 (a, t) ︸ ︷︷ ︸ 
waning out of class 

+ 

4 ∑ 

j=1 

γ j (a ) I j (a, t) 

︸ ︷︷ ︸ 
immunity acquired by infection 

+ 

4 ∑ 

j=2 

ρ j (a ) S j (a, t) 

︸ ︷︷ ︸ 
immunity acquired by booster dose 

(3) 
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∂ I i (a, t) 

∂t 
+ 

∂ I i (a, t) 

∂a ︸ ︷︷ ︸ 
Infected classes: 1 ≤i ≤4 

= αi (a ) A (a ) S i (a, t) λ(a, t) ︸ ︷︷ ︸ 
entering infected class due to infection 

− μ(a ) I i (a, t) ︸ ︷︷ ︸ 
natural death 

−γi (a ) I i (a, t) ︸ ︷︷ ︸ 
recovery 

(4)

λ(a, t) = 

4 ∑ 

j=1 

∫ ∞ 

0 

c j (a, θ, t) β j (θ ) I j (θ, t) 

T j (θ, t) 
dθ, (5)

with the following boundary conditions: 

I i (0 , t) = 0 , for 1 ≤ i ≤ 4 , 

S 1 (0 , t) = 

5 ∑ 

j=1 

∫ ∞ 

0 

f (θ ) 
[
S j (θ, t) + I j (θ, t) 

]
dθ, 

S i (0 , t) = 0 , for 2 ≤ i ≤ 5 , 

and constraints 

ψ i = 

{
1 , if i = 4 , 

0 , otherwise , 
(6)

and 

ω 1 (a ) = 0 , (7)

where i and j refer to immune status. Here, the function ψ is in-

troduced for notational convenience, so that in Eq. (6) primary

vaccination only moves individuals from the fully susceptible class

to the recently vaccinated class. Eq. (7) reflects the fact that the

immunity of naive individuals cannot wane. 

2.2. Ordinary differential equation model 

To make system (2) - (4) more tractable, we discretize the partial

differential equations. Discretization requires us to assume propor-

tionate mixing (i.e., contacts of a person aged a are distributed

over those of all ages including their own in proportion to the

contacts (i.e., products of per capita contact rates and numbers) of

members of those age groups ( Hethcote, 20 0 0 )). We assume that

there are N such groups in the population defined by age inter-

vals [ a n −1 , a n ), where 0 = a 0 < a 1 < . . . < a N−1 < a N = ∞ , and that

each group has aging rate τ n , death rate μ(a ) = μn , and fertility

rate f (a ) = f n . Additionally, we assume that the transfer rates be-

tween susceptible and infected classes are given by αin , ω in , ρ in ,

β jm 

, and γ jm 

, where i ( j ) and n ( m ) denote the immunity status and

age group of the S ( I ) classes, respectively. Parameter definitions are

given in Table 2 . The discretization is outlined in Appendix A and

follows the steps described in Hethcote (20 0 0) . The ODE system is

as follows: 

S ′ 11 = 

5 ∑ 

j=1 

N ∑ 

m =1 

f m 

T jm 

− τ1 S 11 − �11 S 11 − μ1 S 11 + ω 21 S 21 − ρ11 S 11 , 

S ′ 21 = −τ1 S 21 − �21 S 21 − μ1 S 21 + ω 31 S 31 − ω 21 S 21 − ρ21 S 21 , 

S ′ 31 = −τ1 S 31 − �31 S 31 − μ1 S 31 + ω 41 S 41 − ω 31 S 31 − ρ31 S 31 , 

S ′ 41 = −τ1 S 41 − �41 S 41 − μ1 S 41 + ω 51 S 51 − ω 41 S 41 

+ ρ11 S 11 − ρ41 S 41 , 

S ′ 51 = −τ1 S 51 − μ1 S 51 − w 51 S 51 + 

4 ∑ 

j=1 

γ j1 I j1 + 

4 ∑ 

j=2 

ρ j1 S j1 , 

S ′ = τn −1 S i (n −1) − τn S in − �in S in − μn S in 
in 
+ ω i +1 ,n S i +1 ,n − ω in S in + ψ i ρ1 n S 1 n − ρin S in , 

 

′ 
5 n = τn −1 S 5(n −1) − τn S 5 n − μn S 5 n − w 5 n S 5 n 

+ 

4 ∑ 

j=1 

γ jn I jn + 

4 ∑ 

j=2 

ρ jn S jn , 

I ′ i 1 = −τ1 I i 1 + �i 1 S i 1 − μ1 I i 1 − γi 1 I i 1 , 

I ′ in = τn −1 I i (n −1) − τn I in + �in S in − μn I in − γin I in , 

1 ≤ i ≤ 4 , 2 ≤ n ≤ N (8)

here, τN = 0 , and �ik (t) = αik A k λik (t) , with 

ik (t) = 

4 ∑ 

j=1 

N ∑ 

m =1 

A m 

β jm 

I jm 

(t) 

N ∑ 

m =1 

A m 

P m 

, 1 ≤ i ≤ 5 , 1 ≤ k ≤ N. 

 derivation of the expression for λik ( t ) can be found in

ppendix A . 

The parameters used in system (8) are given in Table 2 . 

. Analytical results 

We begin by finding the steady states of our ODE model, system

8) . Then we consider the stability of the disease-free equilibrium

hrough calculation of the basic and control reproduction numbers,

 0 and R v . 

.1. Steady states 

Recall that the total population of age group i is given by P i =
 i + I i . Under our assumption of no disease-induced mortality, ob-

erve that 

dP 1 
dt 

= 

N ∑ 

m =1 

f m 

P m 

− (τ1 + μ1 ) P 1 , 

dP n 

dt 
= τ(n −1) P (n −1) − (τn + μn ) P n , 2 ≤ n ≤ N − 1 , 

dP N 
dt 

= τ(N−1) P (N−1) − μN P N . 

ollowing ( Hethcote, 20 0 0 ), we assume that 

N ∑ 

 =1 

f m 

P m 

= (τ1 + μ1 + q ) ̃  P 1 , 

here ˜ P 1 is the size of the first age group at steady state. Then,

iven that ˜ P 1 , P 1 are known, all P m 

, 2 ≤ m ≤ N can be solved.

nder these conditions, the growth rate q can be solved using the

ollowing equation 

 (q ) := 

f 1 
τ1 + μ1 + q 

+ 

f 2 τ1 

(τ2 + μ2 + q )(τ1 + μ1 + q ) 
+ · · ·

+ 

f N τ(N −1) τ(N −2) · · · τ2 τ1 

μN 

(
τ(N−1) + μ(N−1) + q 

)
· · · (τ2 + μ2 + q )(τ1 + μ1 + q ) 

= 1 . (9)

n addition, the basic reproduction number of the population is

iven by 

 pop = F (0) . 

Using this relationship, we find the disease-free equilibrium

DFE) 

S ∗1 m 

= P m 

, S ∗2 m 

= S ∗3 m 

= S ∗4 m 

= S ∗5 m 

= I ∗1 m 

= I ∗2 m 

= I ∗3 m 

= I ∗4 m 

= 0 , 

1 ≤ m ≤ N, 
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Table 2 

Parameter definitions for the PDE and ODE systems given in Eqs. (2) - (7) and Eq. (8) , respectively, and notations used in 

Section 2 . Subscripts i and j refer to immune status (1 ≤ i ≤ 5, 1 ≤ j ≤ 4) and m and n refer to age groups. For simulations, 

we assume that several parameters are age-independent; i.e., αin = αi , ω in = ω i , β jm = β j , and γ jm = γ j . We also ignore 

disease-induced mortality; i.e., γ jm = 0 . 

Parameter Definition 

f n fertility rate of individuals in age group n 

μn natural mortality rate of individuals in age group n 

τ n aging rate of individuals in age group n 

A n per capita contact rate of individuals in age group n 

P n population size of age group n 
˜ P 1 population size of the first age group at stable age distribution 

αin susceptibility of individuals from S in 
ω in rate of immunity waning of individuals from S in 
ρ in vaccination (primary and booster doses) rate of individuals from S in 
β jm infectivity of infected individuals from I jm 
γ jm recovery rate of infected individuals from I jm 

Notation Biological Interpretation 

�in = αin A n λ force of infection for immune state i and age group n 

�in S in incidence for immune state i and age group n ∑ 

i 

�in S in incidence for age group n ∑ 

n 

�in S in incidence for immune state i ∑ 

i 

∑ 

n 

�in S in incidence for immune state i and age group n 

d jm average lifetime of an infected I jm with immune status j and age m defined in Eq. (B.1) 

π jm survival probability of an infectious individual in group ( j, m ) to next age group defined in Eq. (11) 
˜ T jm total population in group ( j, m ) at the DFE 

q growth rate of the total population at stable age distribution 

R pop population reproduction number 

R 0 basic reproduction number 

R v control reproduction number 

w

 

t  

 

c

 

w  

o

i  

w  

f  

t

3

a  

r

c

π

w  

i  

s  

t

I

T

I

w

Q

 

g

Q

N  

h

λ

D

1

here the total population of each age group m is denoted by P m 

. 

The endemic equilibrium is found by solving the linear sys-

em, E m 

s m 

= v m 

, where s m 

= (S 1 m 

, . . . , S 5 m 

) T , v m 

= τ(m −1) s (m −1) +
(0 , 0 , 0 , 0 , ̃  i (m −1) ) 

T , ˜ i (m −1) = 

∑ 4 
j=1 

(
γ jm 

d jm 

τ(m −1) I j(m −1) 

)
, and the

oefficient matrix is 

E m 

= ⎛ 

⎜ ⎜ ⎝ 

r 1 m 

−ω 2 m 

0 0 0 

0 r 2 m 

−ω 3 m 

0 0 

0 0 r 3 m 

−ω 4 m 

0 

−ρ1 m 

0 0 r 41 −ω 5 m 

−�1 m 

−�2 m 

− ρ2 m 

−�3 m 

− ρ3 m 

−�4 m 

− ρ4 m 

r 5 m 

⎞ 

⎟ ⎟ ⎠ 

,

ith � jm 

= γ jm 

d jm 

� jm 

for 1 ≤ j ≤ 4 and 1 < m ≤ N . Derivation

f this linear system is found in Appendix B . Note that matrix E m 

s column strictly diagonally dominant thus invertible, whereupon

e can solve for s m 

= E −1 
m 

v m 

, where the elements of v m 

are known

rom step m − 1 . By the method of mathematical induction, we

hen obtain the steady state solutions for system (8) . 

.2. Reproduction numbers R v and R 0 

We first consider the control reproduction number R v . Let ˜ T jm 

nd 

˜ P m 

denote the population sizes corresponding to T jm 

and P m 

,

espectively, at the disease-free equilibrium. Now, let 

˜ 
 jm 

= 

A m ̃

 T jm 

N ∑ 

r=1 

A r ̃  P r 

, (10) 

jm 

= τm 

d jm 

, (11) 

here d jm 

, the average sojourn of an infected individual I jm 

with

mmune status j and age m , is given by Eq. (B.1) , and π jm 

is the

urvival probability of an infected individual from group ( j, m ) to
he next age group (m + 1) . Recall that 

 j1 = d j1 � j1 S j1 , I jm 

= d jm 

� jm 

S jm 

+ d jm 

τm −1 I j(m −1) . 

hen, iteratively, we find 

 jm 

= Q jm 

λ, (12) 

here λ is defined in Eq. (A.4) , and 

 jm 

= d jm 

α jm 

A m 

S jm 

+ d jm 

π j(m −1) α j(m −1) A m −1 S j(m −1) 

+ . . . + d jm 

π j(m −1) π j(m −2) · · ·π j(m −k ) α j(m −k ) A m −k S j(m −k )

+ · · · + d jm 

π j(m −1) π j(m −2) π j(m −3) · · ·π j1 α j1 A 1 S j1 , 

iving 

 jm 

= d jm 

m ∑ 

k =1 

( 

m −1 ∏ 

s = k 
π js 

) 

α jk A k S jk . (13) 

ote that 

k −1 ∏ 

s = k 
π js = 1 . Now, substituting Eq. (12) into Eq. (A.4) , we

ave 

= 

4 ∑ 

j=1 

N ∑ 

m =1 

A m 

β jm 

I jm 

5 ∑ 

j=1 

N ∑ 

r=1 

A jr T jr 

= 

4 ∑ 

j=1 

N ∑ 

m =1 

A m 

β jm 

Q jm 

λ

5 ∑ 

j=1 

N ∑ 

r=1 

A jr T jr 

. 

ividing by λ, we obtain 

 = 

4 ∑ 

j=1 

N ∑ 

m =1 

A m 

β jm 

Q jm 

5 ∑ 

j=1 

N ∑ 

r=1 

A jr T jr 

. 
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Fig. 2. Diagram showing the total number of secondary infections generated by an infectious person who became infected while in the ( j, k ) group. The horizontal progres- 

sions indicate that infectious people may age to the next group (infectious and alive) with probability π jk . 
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Denoting by Q 

0 
jm 

what we get by substituting λ = 0 into Q jm 

(meaning that the S compartments are at the disease-free equilib-

rium), we have 

Q 

0 
jm 

= d jm 

m ∑ 

k =1 

( 

m −1 ∏ 

s = k 
π js 

) 

α jk A k ̃
 T jk , 

where ˜ T jk denotes the susceptible individuals at the DFE. Now we

define 

R v = 

4 ∑ 

j=1 

N ∑ 

m =1 

A m 

β jm 

Q 

0 
jm 

5 ∑ 

j=1 

N ∑ 

r=1 

A r ̃  T jr 

= 

4 ∑ 

j=1 

N ∑ 

m =1 

˜ c jm 

˜ T jm 

β jm 

d jm 

m ∑ 

k =1 

( 

m −1 ∏ 

s = k 
π js 

) 

α jk A k ̃
 T jk 

= 

4 ∑ 

j=1 

N ∑ 

m =1 

m ∑ 

k =1 

α jk A k ̃  c jm 

β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ T jk 
˜ T jm 

. (14)

Interchanging the latter two sums, the above equation leads to our

expression for R v in Theorem 1 . 

Theorem 1. When proportionate mixing, given by (A.3) , is used in

system (8) , the control reproduction number R v (v for vaccination) is

given by 

R v = 

4 ∑ 

j=1 

N ∑ 

k =1 

N ∑ 

m = k 
α jk A k ̃  c jm 

β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ T jk 
˜ T jm 

. (15)

The fraction 

˜ T jk / ̃  T jm 

can be interpreted according to the trans-

mission term in the model. That is, ˜ T jk is the total number of sus-

ceptible individuals in group ( j, k ) at the disease-free equilibrium

who are capable of being infected, and 1 / ̃  T jm 

is the probability that

a contact is with the initially introduced infectious individual while

in group ( j, m ). 

Before we present the proof of Theorem 1 , we provide a bi-

ological interpretation of the expression for R v given in (15) . A

schematic diagram showing the total number of secondary in-

fections generated by an infectious person who became infected

while in group ( j, k ) is given in Fig. 2 . 

An infectious individual can infect susceptible individuals in

any of the 4 × N sub-groups, S jn with immune status 1 ≤ j ≤ 4

and age group 1 ≤ n ≤ N . For susceptible individuals in each of

these groups, their total contacts with all individuals in group ( j,
 ) are ˜ c jm 

. If an individual became infectious in group ( j, k ) with

 < m ≤ N , the average time spent in this group would be d jm 

.

he probabilities of this individual aging (alive and infectious) to

roup ( j, k + 1) is π jk and group ( j, m ) are 
∏ m −1 

s = k π js . Note that

n infectious person in group ( j, m ) has infectivity β jm 

. Now, the

otal number of susceptible individuals in group ( j, k ) at the DFE

s ˜ T jk , and the probability of any of the susceptible individuals in

roup ( j, k ) contacting this infectious individual in group ( j, m ) is

˜  jm 

/ ̃  T jm 

. Note also that αjk denotes the susceptibility of individuals

n group ( j, k ) and A k is the per capita contact rate of individuals in

ge group k . 

Thus, the number of new infections generated per susceptible

ndividual in group ( j, k ) by the infected person while in group ( j,

 ) is 

jk A k β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ c jm 

˜ T jm 

. 

nd, for an individual who became infectious in group ( j, k ), after

ging and surviving into group ( j, m ) ( k ≤ m ≤ N ) while still infec-

ious, the total number of new infections that s/he could possibly

enerate from susceptible individuals in group ( j, k ) is 

jk A k ̃  c jm 

β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ T jk 
˜ T jm 

. 

urthermore, the number of new infections generated from suscep-

ible individuals in group ( j, k ) by this infectious individual during

is/her infectious period is 

N ∑ 

 = k 
α jk ̃  c jm 

β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ T jk 
˜ T jm 

. 

herefore, for all susceptible individuals; i.e. , summation over all

 ≤ j ≤ 4 and 1 ≤ k ≤ N , the total number of new infections is R v 
s given in Eq. (15) . 

To prove Theorem 1 , we adopt the approach of Hethcote (20 0 0) .

hat is, a possible formula for R v can be obtained by deriving the

hreshold condition for the existence of an endemic equilibrium.

his expression for R v is then examined by considering the dom-

nate eigenvalue of the next generation matrix, as well as its bio-

ogical interpretation. See Appendix C for the proof of Theorem 1 . 

When no vaccination program is implemented; i.e. , ρin = 0

1 ≤ i ≤ 4, 1 ≤ n ≤ N ), the control reproduction number R v re-

uces to the basic reproduction number, R 0 , given by 

 0 = 

4 ∑ 

j=1 

N ∑ 

k =1 

N ∑ 

m = k 
α jk A k ̃  c jm 

β jm 

d jm 

( 

m −1 ∏ 

s = k 
π js 

) 

˜ T 0 
jk 

˜ T 0 
jm 
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c  

1  

1  

y  

p  
= 

N ∑ 

k =1 

N ∑ 

m = k 
α1 k A k ̃  c 1 m 

β1 m 

d 1 m 

( 

m −1 ∏ 

s = k 
π1 s 

) 

˜ T 0 
1 k 

˜ T 0 
1 m 

, 

here ˜ T 0 
jk 

= 0 for 1 < j ≤ 4 is the total number of susceptible indi-

iduals in group ( j, k ) when ρin = 0 (1 ≤ i ≤ 4, 1 ≤ n ≤ N ) because

nly immune class 1 is present at the DFE absent vaccination. 

. Numerical results 

To examine the effects of waning and boosting of immunity to

. pertussis on the vaccination program in Sweden, we parameter-

zed our model with observations on demographics Nations (2015) ,

accine uptake and efficacy Gustafsson et al. (2006) . We also re-

axed the assumption of proportionate mixing used in deriving the

DE from PDE model and in deriving expressions for the reproduc-

ion number 

.1. Simulation methods and parameterization 

Age distribution . Age is partitioned as follows: 0–19 years by sin-

le years, 20–44 years by 5-year groups, 45–74 years by 10-year

roups, and 75 years and older (an open interval whose width we

ake to be 25 years). Overall, there are 29 age groups. The aging

ate τ i of age group i is 

i = 

μi + q 

e (μi + q ) w i − 1 

, 

here μi is the natural mortality rate in age group i, q is rate of

hange of the total population, and w i is the interval width for age

roup i Hethcote (20 0 0) . The natural mortality μi and natality f i of

ge group i are computed from births, deaths, and population size

y age for Sweden during 2014 Nations (2015) . The rate of change

f the total population q is determined by solving Eqn. (10) set

qual to one. For Sweden, the rate of change of the total population

ignoring immigration) is q = −3 . 15 · 10 −3 year −1 . See Table D.1 for

he natality and mortality rates by age group and Fig. D.1 for the

bserved and calculated stable age distributions. 

Contact rate and activity . For our simulations, we use the mixing

atrix observed in a neighboring Nordic country. Parameter values

or the contact matrix c ( a, θ ) were determined from Finnish partic-

pants in the PolyMod study Mossong et al. (2008) as follows: The

ontacts that each participant recorded on an average day were

abulated by participant and contact ages using the groups mod-

led. Then these contacts were divided by the numbers of par-

icipants in each age group to obtain average daily rates of con-

act per participant. Summed over all contact age groups (repre-

ented by columns of the contact matrix), these are the activities

f each participant age group (represented by rows in the matrix).

ee Table D.1 for activities. Dividing the rates by their respective

ums yields the proportions of the contacts that members of each

ge group have with members of all age groups including their

wn, c ( a ). See Feng and Glasser (2018) for an example of these cal-

ulations. 

Immunization . We determined the proportions immunized from

he observed proportions vaccinated together with vaccine effi-

acy. We fitted gamma distributions to observed proportions vac-

inated by age (Tiia Lepp, personal communication). We combined

he doses that infants receive at 3, 5 and 12 months of age, to

hich we refer to as primary vaccination. Together with the ex-

ert opinion that this 3-dose series is 90% efficacious against mild

isease (Patrick Olin, Birger Trollfors, personal communication), we

stimate that 35% of infants and 55% of children aged 1 year were

mmunized against mild disease. Similarly, we estimate that the

mmunity of 11.1% of children aged 4 years, 62% of children aged

 years, 17% of children aged 6 years, and 0.3% of children aged

 years was boosted by re-vaccination. And that the immunity of
.9% of children aged 13 years, 65% of children aged 14 years, 18%

f children aged 15 years, and 0.1% of children aged 16 years was

gain boosted by re-vaccination. 

The immunization rates ( ρ) were calculated from the propor-

ions immunized and time intervals during which immunization

ccurred. For the interval of a year, for example, the rate is 

= 

x (τ + μ) 

1 − x 
, 

here 

r(immunized) = x = 

ρ

ρ + τ + μ
. 

ee Table D.2 for percents immunized and immunization rates by

ge group. 

Susceptibility and infectivity . We modeled susceptibility to infec-

ion as a linearly decreasing function of immune status, with those

n the fully susceptible class, S 1 , having the highest value ( α1 = 1 )

nd those in the completely immune class, S 5 , not being suscepti-

le ( α5 = 0 ). Similarly, the infectivity of infectious classes decreases

ith increasing status such that R 0 = 13 . 6 assuming proportionate

ixing. See Table D.3 for status-specific parameter values. 

Recovery and waning immunity . The recovery rate is determined

s the reciprocal of the average infectious period. Individuals hav-

ng some level of immunity by virtue of prior infection or vacci-

ation (i.e., those in I 2 − I 4 ) have shortened infectious periods. In-

ividuals in the completely immune class S 5 also lose their im-

unity more slowly than those in other immunity classes. See

able D.3 for the recovery rate and rates of waning immunity by

mmune status. 

.2. Simulation protocol 

All simulations were performed in Matlab 2016a. Initial popu-

ation sizes of each age group were set to the stable-age distri-

ution. While the numbers in each group change over time (the

wedish population would be shrinking absent immigration), the

roportions remain fixed absent disease-induced mortality. Accord-

ngly, we present some results as proportions rather than absolute

umbers. Simulations without vaccination begin with a single in-

ectious individual in the most infectious state ( I 1 ). After 10 0,0 0 0

ays ( ~ 275 years), oscillations have damped. Vaccination is intro-

uced to the population with endemic disease; i.e., initial condi-

ions for the introduction of vaccination are the proportion in each

ge and immune status after 10 0,0 0 0 days without vaccination. Af-

er another 10 0,0 0 0 days, a first booster dose is introduced to the

opulation with on-going primary vaccination; i.e., initial condi-

ions for the introduction of the first booster dose are the pro-

ortion in each age and immune status after 10 0,0 0 0 days with

accination. After another 10 0,0 0 0 days, a second booster dose is

ntroduced to the population with on-going primary and booster

accination of young children; i.e., initial conditions for the intro-

uction of the second booster dose are the proportion in each age

nd immune status after 10 0,0 0 0 days with primary vaccination

nd first booster dose. Note that 10 0,0 0 0 days was chosen to en-

ure that the system reached equilibrium before a new interven-

ion (e.g., primary vaccination, first booster dose, second booster

ose) is introduced. 

.3. Simulation results 

Natural infection occurs early in life. Absent vaccination, most

hildren experience infection by 5 years of age, and nearly all by

0 years ( Figs. D.2 and D.3 , A1-B1). Above 6 years of age, less than

0% of each group is fully susceptible (i.e., in S 1 ), and by age 10

ears, all proportions are less than 2%. Beyond 12 years of age, the

roportion fully susceptible slowly increases as immunity acquired
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by virtue of childhood infection wanes. Beyond 20 years, the pro-

portion exceeds 10% (not shown). 

Vaccination substantially reduces incidence. Primary vaccination

greatly reduces incidence ( Fig. 3 , blue line). Despite increased in-

cidence among 4–12 year-olds, the reduced incidence below age

four and above age 12 compensates, reducing incidence in the

population overall. Each booster dose further reduces incidence

( Fig. 3 , red and yellow lines), particularly in groups just above

their recommended ages. Both boosters also reduce incidence

among younger and older people because individuals who other-

wise would have infected them have been immunized. Despite the

incorporation of two booster doses in addition to primary vacci-

nation, incidence in the four and five-year-olds remains elevated

compared to pre-vaccination ( Fig. D.4 ). However, this increase is

primarily in the classes with mild or asymptomatic disease. 

Primary vaccination significantly decreases the proportion of the

population that is fully susceptible. The inclusion of a primary vac-

cination series, 2 doses during the first year of life, and third at

1 year (i.e., completed early during the second year), substantially

decreases the proportion of children ( < 10 years) that are fully

susceptible; i.e., in S 1 ( Fig. 4 , A1, red line), and upon infection

most infectious; i.e., in I 1 ( Fig. 4 , B1, red line). This decrease in

the fully susceptible class is mirrored by an increase in vaccine-

induced immunity; i.e., S 4 ( Fig. 4 , A1, pale blue line). However, as

vaccination replaces natural infection, the proportion of individuals

in the completely immune class decreases markedly; i.e., S 5 ( Fig. 4 ,

A1, dark blue line). This decline is largest for young children (4–

6 years), but persists even among older ages, and results in in-

creases in infectious classes whose members experience immunity-

moderated symptoms, and concomitantly decreased infectivity (i.e.,

I 2 − I 4 ), among children ( < 10 years) ( Fig. 4 , B). Despite a decline

in the completely immune class S 5 , the increase in vaccine-induced

and other partially immune classes (i.e., S 2 − S 4 ) more than com-

pensates, reducing the overall incidence of disease, as measured by

�S ik ( Fig. 3 ). Primary vaccination reduces the number of infectious

individuals in the population by 1.6%. 

A booster dose among young children increases immunity among

adolescents and results in mostly asymptomatic infections. When a

first booster dose among young children (4–8 years) is included,

nearly the entire population above age 5 is in the fully or one

of the partially immune states (i.e., S 2 − S 5 ). The majority of chil-

dren receive this booster dose at 5–6 years ( Fig. D.3 , A3). It sub-

stantially increases the proportion of older children in the com-

pletely immune class (i.e., S 5 ) compared with primary vaccination

alone ( Fig. 4 , A2, dark blue line), and shifts the burden of infec-

tions largely to the asymptomatic class I 4 ( Fig. 4 , B2). Below 4 and

above 15 years of age, the proportion in the fully immune class is

less than that with primary vaccination alone ( Fig. 4 , B2). Nonethe-

less, this booster further reduces incidence relative to primary vac-

cination alone ( Fig. 3 , red line) and leads to an additional 8.1% re-

duction in the total number of infections ( Fig. D.5 ). Although the

reduction is negligible above age 25 years ( Fig. 3 ), it is apparent

for the youngest age groups ( < 5 years). 

A second booster dose among adolescents increases their immu-

nity and that of young adults, and results in more asymptomatic in-

fections. The inclusion of a second booster dose among adolescents

(13–16 years), along with primary vaccination and a booster dose

among younger children, increases the proportion of the popula-

tion in the fully immune class (i.e., S 5 ) through age 25 compared to

primary vaccination plus a single booster ( Fig. 4 , A3). This booster

also leads to a strong relative increase in the proportion of in-

fections that are asymptomatic (and not infectious), particularly

among ages 15–25 years. Similar to a single booster dose compared

to primary vaccination alone, this increase in the proportion of in-

dividuals in S 5 at intermediate ages results in a decrease in those

who are completely immune at younger ( < 12 years) and older
 > 25 years) ages ( Fig. 4 , A3). Also apparent is a slight relative

ncrease in the most infectious class I 1 among children ages 2–12

ears ( Fig. 4 , B3). In all age groups, despite changes in the propor-

ion completely immune, incidence is reduced relative to primary

accination alone. Comparing the second booster to the first, the

eduction in incidence ( Fig. 3 ) is most apparent among individuals

ged 14–25 years, but also among young children ( < 6 years), and

here is a further 6.7% reduction in the total infectious population.

Ages of booster doses correspond with waning of immunity. The

iming and efficacy of primary vaccination and booster doses were

stimated from Swedish observations (described in Section 4.1 ).

ecisions about the ages at which booster doses should be in-

roduced were based on preschool data from enhanced pertus-

is surveillance Gustafsson et al. (2006) , nationwide data on anti-

iphtheria immunity in children, and what at the time was be-

ieved the optimal dosing interval for diphtheria/tetanus boost-

rs. The rate of immunity decay following infection or vaccination,

hich our model does not distinguish, was determined indepen-

ently from a cross-sectional serological survey Feng et al. (2015) ,

ongitudinal studies Teunis et al., 2002, 2016 , and clinical trials Olin

t al., 1997 . 

Following primary vaccination alone, simulations indicate a

arked decline in the partially immune classes at 5 years of age

 Fig. 4 , A1). Examination of all infections with and without pri-

ary vaccination ( Fig. 5 , C, crossing of blue and red lines) suggests

n increase around 5 years of age following primary vaccination.

f only infections with severe symptoms were observable, the in-

rease might not be apparent until around 7 years of age ( Fig. 5 , A,

rossing of blue and red lines). To prevent this observed increase,

 booster dose in slightly younger age groups, such as starting at

our years, might be recommended. 

Note that simulations indicate a switch from an increase in the

ompletely immune class to a decrease at approximately age 15

ears following implementation of the first booster dose ( Fig. 4 ,

2, dark blue line). This can also be seen in Fig. 5 , C. To prevent

his, a second booster dose in slightly younger age groups, such as

tarting at thirteen years, might be recommended. 

Proportionate mixing enhances the apparent effectiveness of vacci-

ation. While we assumed that mixing was proportionate to derive

nalytical expressions for the reproduction numbers, we used the

ixing actually observed in Finland for our simulations. Had we

ssumed proportionate mixing, the burden of infection in younger

ge groups would have been greater ( Fig. D.5 ). This affects the ap-

arent impact of vaccination, making it seem more effective and

ts effect to last longer than with actual mixing. This can be seen

y the age under which the infectious classes are larger with vac-

ination than without ( Fig. D.6 ). 

Reproduction numbers indicate that pertussis cannot be elimi-

ated. Using the next generation matrix approach ( van den Driess-

he and Watmough, 2002 ), we find these basic and control repro-

uction numbers: R 0 = 14.82 and R v = 12.41, 10.01, and 8.45 with

rimary vaccination alone, primary plus the first booster, and pri-

ary plus both boosters, respectively. Note that nonrandom mixing

ncreases reproduction numbers Feng et al. (2015) , so this estimate

f R 0 is greater than that assuming proportionate mixing, which

or the same parameter values is R 0 = 13 . 6 . 

. Discussion 

Following vaccination or recovery from infection, hosts may

e immune. Such immunity may be temporary or lifelong, and

accine-induced immunity may differ from that acquired naturally,

.g., not last as long. If immunity decays, as it does against most

acterial and some viral pathogens, it may be boosted by exposure

o infectious hosts or re-vaccination. Several vaccine doses may be

eeded to prevent disease following exposure to infectious hosts,
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Fig. 3. Relative change in incidence by age. Comparisons of incidence by age group under different vaccination strategies: Scenario 1 - primary relative to no vaccination 

(blue); Scenario 2 - primary vaccination plus a single booster dose relative to primary vaccination alone (red); and Scenario 3 - primary vaccination plus two booster doses 

relative to primary vaccination with one (orange). The large panel is a composite of the smaller ones, which are for individual S classes. Negative values on the y-axes 

indicate that vaccination strategies reduce incidence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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I  
.e., to achieve full or sterilizing immunity. The severity of clini-

al symptoms that infected hosts experience may depend on their

mmune status when exposed, a function of time since recovery,

accination, or most recent exposure, as well as infectious dose.

nd their infectiousness may depend on symptoms (e.g., coughing

or pathogens transmitted via aerosols) as well as the intensity and

uration of contact. 

To design effective vaccination programs against the pathogens

ausing such diseases, one must appreciate how the prevalence of

linical disease – the tip of a proverbial iceberg, especially when

urveillance is based on laboratory-confirmed infections – results

rom relations between host immunity, symptoms and infectivity.

uch an understanding is also needed to appreciate the impact

f vaccination, which changes the epidemiology of disease. Conse-
uently, vaccination programs must be dynamic. In such situations,

ccurate transmission modeling can be invaluable. We devised a

odel that is faithful to the processes by which immunity waxes

nd wanes. Our model population is stratified by age largely be-

ause transmission is age-dependent, as consequently are vaccina-

ion schedules. As a proof-of-principle application, we attempt to

eproduce the Swedish experience with pertussis. 

The history of pertussis in Sweden offers a unique opportu-

ity to explore the evolution of a vaccination program. Owing to

niversal healthcare, vaccination rates were high historically. How-

ver, in 1979, decreased efficacy of the whole-cell vaccine, together

ith some concerns about safety, led to the withdrawal of pertus-

is from the childhood vaccination schedule Romanus et al., 1987 .

n 1996, following clinical trials of several acellular candidates, vac-
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Fig. 4. Proportion of individuals shift between statuses. The relative change in proportion, normalized within age groups, is shown for (A) fully susceptible S 1 (red), low 

immunity S 2 (orange), medium immunity S 3 (yellow), vaccinated S 4 (light blue), and completely immune S 5 (blue) and for (B) severe symptoms and full infectivity I 1 (red), 

moderate symptoms and infectivity I 2 (orange), mild symptoms and low infectivity I 3 (yellow), and neither symptoms nor infectivity I 4 (light blue). (A1)-(B1) shows the 

difference between primary vaccination and no vaccination (Scenario 1 from Fig. 3 ). (A2)-(B2) shows the difference between primary vaccination with a single booster 

dose and primary vaccination alone (Scenario 2 from Fig. 3 ). (A3)-(B3) shows the difference between primary vaccination with both booster doses compared to primary 

vaccination with a single booster dose (Scenario 3 from Fig. 3 ). Colors from Brewer (2013) . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 5. Infectious population by symptomatic class. The proportion of infectious individuals with severe symptoms (A), severe and moderate symptoms (B) or any symptoms 

(C) under no vaccination (blue), primary vaccination alone (red), primary vaccination with the first booster dose (yellow) and primary vaccination with both booster doses 

(purple). Note that the y-axis is log scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ination was resumed Olin et al. (2003) . Consequently, the experi-

nce of a 17-year cohort informs understanding of infection and

he waning of natural immunity. Changes in incidence on resump-

ion of vaccination further inform understanding of patterns invari-

bly observed, but not necessarily as clearly as in Sweden, when-

ver pertussis is included in national vaccination programs. 

Compared with most earlier pertussis models, ours includes

ewer states ( Fig. 1 ). Between fully susceptible and immune,

e distinguish only three, the highest of which ( S 4 ) is attained

n completion of the primary vaccine series. If infected or re-

accinated, hosts become completely immune. Immune state when

nfected determines host symptoms, which range from typically

evere through moderate and mild to none. Generally, hosts seek

edical care for typical and, to a lesser extent moderate dis-

ase. And laboratory confirmation is rarely sought, even among

he youngest hosts for whom it could have therapeutic value (pre-

umptive treatment is recommended in Sweden). Insofar as those

ith moderate and mild symptoms are nonetheless infectious,

ransmission and disease are largely occult. Infants, for whom per-

ussis may be fatal, especially during their first six months, are of

pecial concern, as they may may have sufficiently intimate and

rolonged contacts with mildly symptomatic caregivers for infec-

ion. 

We formulate our model of waning and boosting as a sys-

em of partial differential equations (PDEs) with discrete immu-

ity classes, but continuous age and time. Because most informa-

ion is available for age ranges, we use the same approach as in

ethcote (20 0 0) to convert it into a system of ordinary differen-

ial equations (ODEs) with 29 age classes. This requires the above-

entioned assumption of proportionate mixing that we relax in

ubsequent simulations performed to evaluate the impact of vac-

ination. We derive the reproduction numbers and determine the

xistence and characteristics of the disease-free and endemic equi-

ibria. We provide intuitive explanations of model terms and all

nalytical results. Table 2 , for one example, provides biological in-

erpretations of various functions. Fig. 2 , for another, illustrates the

verage number of secondary infections due to a host who was in-

ected while in immune state j and age group k . 

We used other observations made in (e.g., age distributions of

accination, which we have courtesy of Tiia Lepp, Public Health

gency of Sweden) or appropriate for Sweden (e.g., the contact

ates and mixing matrices used in our analyses and simulations

ere derived from observations of Finnish participants in the Poly-

od study, which we have courtesy of John Edmunds, London

chool of Public Health and Tropical Medicine) for our simulations.

here observations were lacking, we used the opinions of Swedish

ubject-matter experts. 

We compared primary vaccination to none, the first booster to

rimary vaccination alone, and the second booster to primary vac-

ination plus the first by simulation. We found that primary and

e-vaccination shifted the age-distributions of immunity at steady-

tate ( Fig. 4 ), despite always reducing the total incidence. The in-

ant series reduced typical disease among pre-school children, but

e observed more mild and moderate disease among elementary

chool children ( Fig. 3 ). On simulating the booster administered

rom 4 to 7 years, we found much less immunity-modified dis-

ase among those children, but an increase among adolescents.

imilarly, on simulating the booster administered from 14 to 17

ears, we found a decrease in immunity-modified disease among

embers of this age group. Significantly, by virtue of the age-

istribution of the force of infection Feng et al., 2014 , the ado-

escent booster did not shift immunity-modified disease into the

eproductive years. 

To facilitate converting the PDE system with which we began

nto an ODE system and derive analytical expressions for the re-

roduction numbers, we assumed that the probability of contact-
ng a member of any group is proportional to the product of their

er capita contact rate and population. This assumption, called pro-

ortionate mixing, is random with respect to available contacts.

ut, as mentioned, we used the contact rates observed in a nearby

ordic country in our simulations. As heterogeneity and non-

andom mixing affect reproduction numbers Feng et al. (2015) ,

e compared simulations with proportionate and actual mixing,

n which there are preferential contacts between parents and chil-

ren as well as among contemporaries Glasser et al., (2012) . Be-

ause vaccination does not seem as effective or long lasting with

referential as proportional mixing, the resurgence of immunity-

odified disease seems to depend to some extent on non-random

ixing Rohani et al. (2010) . 

Of the several attempts to explain the changing epidemiology

f pertussis that accompanies successful routine vaccination pro-

rams, that by Lavine et al. (2011) is by far the most compelling.

o an otherwise conventional SIR model, they add an immune

tate between fully susceptible and recently recovered or vacci-

ated. Unlike others who have considered boosting, they argue –

ased on the sensitivity of primed B- and T-cells – that previously

nfected hosts are more likely to have their immunity boosted

han naive ones are to be infected. In our model, which includes

nly two more immune states, immune status is a function of

ime since previous exposure (infection, vaccination or boosting),

nd we assume that susceptibility and infectiousness both vary

nversely with immune state. The result is a much more general

odel suitable for diseases caused by pathogens against which im-

unity wanes. 

Public health officials learn about typical and to some extent

oderately severe pertussis, possibly only among some of those

or whom laboratory confirmation has therapeutic value. (Addi-

ionally, samples must be collected properly and shipped correctly

or accurate laboratory results.) With transmission models that are

aithful to the mechanisms underlying observed phenomena, how-

ver, they could consider the complete burden of disease. As far as

e can tell from our simulations, the number and ages of booster

oses are correct given the unusually effective primary series in

weden. The steady-state analyses reported here do not permit

valuation of the timing of booster introductions. But public health

fficials in Sweden and elsewhere could use our model to monitor

he information in Fig. 5 , introduce boosters as needed, and evalu-

te their impact. 

While our estimates of the control reproduction numbers sug-

est that pertussis cannot be eliminated, vaccination has substan-

ial impact. The infant series reduces infections the most. Con-

itional on it, the booster among young children has less im-

act. Similarly, the adolescent booster has even less. The infant

eries also mitigates the most severe disease, followed by succes-

ive boosters. However, insofar as the adolescent booster not only

educes circulation of B. pertussis , but ensures that young adults

re immune, it may prevent mildly symptomatic caregivers from

nfecting infants with tragic consequences. Finally, with regard to

ther hypothesized causes of the apparent resurgence of pertussis,

e note that – together with vaccination – the waning and boost-

ng of immunity is sufficient. We cannot disprove alternatives, but

o other mechanism is necessary. And parsimony is a virtue in sci-

nce. 
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Appendix A. Discretization 

We first consider the mixing function. The assumption of pro-

portionate mixing allows us to express c ( a, θ ) as 

c(a, θ ) = 

A (θ ) 
5 ∑ 

j=1 

T j (θ, t) 

∫ ∞ 

0 

A (θ ) 
5 ∑ 

j=1 

T j (θ, t) dθ

, (A.1)

where T j ( θ , t ) is the total population of individuals of age θ and

immune status j at time t . We assume that the population has

already reached its stable age distribution, i.e., T i (a, t) = T i (a ) e −qt ,

where q is a measure of the rate of change in the total population.

Thus, there is no time dependence in the expression for contacts,

c ( a, θ ). Thus, the proportion of the contacts between an individuals

aged a and individuals aged θ and immune status j , given by Eq. 1 ,

is 

c j (a, θ, t) = 

T j (θ, t) 

5 ∑ 

j=1 

T j (θ, t) 

c(a, θ ) = 

A (θ ) T j (θ, t) ∫ ∞ 

0 

A (θ ) 
5 ∑ 

j=1 

T j (θ, t) dθ

. 

This leads to the right hand side of Eq. (5) and first term on

the right hand side of Eqs. (2) and (4) , ∫ ∞ 

0 

c j (a, θ, t) β j (θ ) I j (θ, t) 

T j (θ, t) 
dθ

= 

∫ ∞ 

0 

A (θ ) T j (θ, t) ∫ ∞ 

0 

A ( ̂  θ ) 
5 ∑ 

j=1 

T j ( ̂  θ, t) d ̂  θ

β j (θ ) I j (θ, t) 

T j (θ, t) 
dθ

= 

∫ ∞ 

0 

A (θ ) β j (θ ) I j (θ, t) dθ

∫ ∞ 

0 

A ( ̂  θ ) 
5 ∑ 

j=1 

T j ( ̂  θ, t) d ̂  θ

, 

where 1 ≤ j ≤ 5 Thus, to discretize to N age groups, we have 

∫ ∞ 

0 

c j (a, θ, t) β j (θ ) I j (θ, t) 

T j (θ, t) 
dθ = 

∫ ∞ 

0 

A (θ ) β j (θ ) I j (θ, t) dθ

∫ ∞ 

0 

A ( ̂  θ ) 
5 ∑ 

j=1 

T j ( ̂  θ, t) d ̂  θ

= 

N ∑ 

m =1 

A m 

β jm 

I jm 

N ∑ 

m =1 

A m 

5 ∑ 

j=1 

T jm 

, 

where 1 ≤ m ≤ N refers to age group m ( e.g., T 12 denotes the total

population size in the first immune status (naive) and second age

group). Let P m 

denote the population size of age group m (regard-

less of immune status), 

P m 

= 

5 ∑ 

j=1 

T jm 

, T jm 

= S jm 

+ I jm 

, 1 ≤ j ≤ 5 , 1 ≤ m ≤ N. 
hen, we obtain the corresponding expression for λ( a ) in the dis-

rete case: 

ik (t) = 

4 ∑ 

j=1 

∑ N 
m =1 A m 

β jm 

I jm 

(t) ∑ N 
m =1 A m 

∑ 5 
j=1 T jm 

= 

∑ 4 
j=1 

∑ N 
m =1 A m 

β jm 

I jm 

(t) ∑ N 
m =1 A m 

P m 

, (A.2)

here i and k refer to immune status and age group, respectively.

ote that λik is time dependent as the I jm 

are time dependent. Re-

all that proportionate mixing assumes that the proportion of con-

acts of susceptible people in group ( i, k ) with people in group ( j,

 ), c ik,jm 

, depends only on the fraction of contacts by group ( j, m ).

hat is, 

 ik, jm 

= 

T jm 

5 ∑ 

j=1 

T jm 

A m 

5 ∑ 

j=1 

T jm 

N ∑ 

m 

5 ∑ 

j=1 

T jm 

= 

A m 

T jm 

N ∑ 

m =1 

A m 

P m 

, (A.3)

hich corresponds to the expression of c j ( a, θ ) in the discrete case

ecause ages a and θ are now age groups k and m , respectively.

sing the mixing function given in (A.3) , we again obtain the same

xpression as in Eq. (A.2) for the corresponding expression for

( a ) in the discrete case. Note from (A.2) that λik is in fact inde-

endent of i and k . Also, c ik,jm 

is independent of i and k . For ease

f notation, denote λik by λ and c ik,jm 

by c jm 

; i.e., let 

(t) := λik (t) , 1 ≤ i ≤ 5 , 1 ≤ k ≤ N (A.4)

nd 

 jm 

:= c ik, jm 

, 1 ≤ i ≤ 5 , 1 ≤ k ≤ N . 

ow, the incidence for group ( i, k ) is αik A k S ik λ = �ik S ik for all i and

 , and 

ik (t) = αik A k λ(t) 

s the force of infection. Although λ is independent of age class

nd immune status, it is time dependent as it is a function of the

nfectious classes I , which change with time. 

ppendix B. Endemic Equilibrium (derivation of linear system) 

Before determining the endemic equilibrium, we introduce

ome notation for convenience. Let 

 = 

5 ∑ 

j=1 

N ∑ 

n =1 

f n T jn = (τ1 + μ1 + q ) ̃  P 1 

enote the total birth rate for the population, and 

 jm 

= 

1 

τm 

+ μm 

+ γ jm 

(B.1)

enote the average lifetime of an infected individual I jm 

with im-

une status j and age m , and let 

 jm 

= � jm 

+ τm 

+ μm 

+ ω jm 

+ ρ jm 

, 

ith ω 1 m 

= 0 , �5 m 

= 0 , ρ5 m 

= 0 , 1 ≤ m ≤ N , and τN = 0 . Addition-

lly, let 

 m 

= 

4 ∑ 

j=1 

γ jm 

I jm 

, 1 ≤ m ≤ N (B.2)

here R m 

can be interpreted as the sum of all individuals recover-

ng at age m (who ultimately move to S 5 in Model (8) ). 

Seeking the steady states, we set the time derivatives zero. Then

e have the following relations for the first age group of suscepti-

le individuals: 

B = r 11 S 11 − ω 21 S 21 , 



R.-M. Carlsson, L.M. Childs and Z. Feng et al. / Journal of Theoretical Biology 497 (2020) 110265 13 

0

0

0

0

B  

I

I

T

R

N  

s  

E  

c

E

 

 

 

 

, 

w

i  

�  

h  

G  

c

 

a

s

a  

(

τ

τ

τ

τ

τ

I

a

R

A

 

a  

i  

[  

t  

t  

e

 

r

E

 

o  

w  

1  

f

F

w  

f

F

w

F

⎛
⎜⎝
w⎛
⎜⎜⎜⎜⎜⎜⎜⎝
H  

T⎛
⎜⎝
L

a

 = r 21 S 21 − ω 31 S 31 , 

 = r 31 S 31 − ω 41 S 41 , 

 = r 41 S 41 − ω 51 S 51 − ρ11 S 11 , 

 = r 51 S 51 −
4 ∑ 

j=2 

ρ j1 S j1 − R 1 . (B.3) 

efore solving for S in System (B.3) , we first consider R 1 . From the

 equations in System (8) , we have 

 j1 = d j1 � j1 S j1 , 1 ≤ j ≤ 4 . 

hus, for m = 1 in Eq. (B.2) , 

 1 = 

4 ∑ 

j=1 

γ j1 I j1 = 

4 ∑ 

j=1 

γ j1 d j1 � j1 S j1 . (B.4) 

ow, substituting Eq. (B.4) into System (B.3) , we can rewrite the

usceptible individuals in the first age group as the linear system

 1 s 1 = v 1 , where s 1 = (S 11 , . . . , S 51 ) 
T , v 1 = (B, 0 , 0 , 0 , 0) T , and the

oefficient matrix is 

 1 = 

⎛ 

⎜ ⎜ ⎝ 

r 11 −ω 21 0 0 0 

0 r 21 −ω 31 0 0 

0 0 r 31 −ω 41 0 

−ρ11 0 0 r 41 −ω 51 

−�11 −�21 − ρ21 −�31 − ρ31 −�41 − ρ41 r 51 

⎞
⎟⎟⎠

here � j1 = γ j1 d j1 � j1 for 1 ≤ j ≤ 4. Note that the matrix E 1 
s column strictly diagonally dominant (because d j 1 γ j 1 < 1, r j1 =

j1 + τ1 + μ1 + ω j1 + ρ j1 > � j1 d j1 γ j1 + ω j1 + ρ j1 , for 1 ≤ j ≤ 4),

ence invertible, giving rise to the unique solution s 1 = E −1 
1 

v 1 .
iven s 1 , using Eq. () it is possible to determine the infectious

omponents of the first age group i 1 = (I 11 , . . . , I 41 ) 
T . 

Now we consider the other age groups of susceptible individu-

ls, s m 

= (S 1 m 

, . . . , S 5 m 

) T , (1 < m ≤ N ), and assume that 

 (m −1) = 

(
S 1(m −1) , . . . , S 5(m −1) 

)T 
and 

i (m −1) = 

(
I 1(m −1) , . . . , I 4(m −1) 

)T 

re already calculated. For the susceptible compartments in System

8) , we have these steady-state equations, 

(m −1) S 1(m −1) = r 1 m 

S 1 m 

− ω 2 m 

S 2 m 

, 

(m −1) S 2(m −1) = r 2 m 

S 2 m 

− ω 3 m 

S 3 m 

, 

(m −1) S 3(m −1) = r 3 m 

S 3 m 

− ω 4 m 

S 4 m 

, 

(m −1) S 4(m −1) = r 4 m 

S 4 m 

− ω 5 m 

S 5 m 

− ρ1 m 

S 1 m 

, 

(m −1) S 5(m −1) = r 5 m 

S 5 m 

−
4 ∑ 

j=2 

ρ jm 

S jm 

− R m 

. 

To specify R m 

from the I -equation in System (8) , we first have 

 jm 

= d jm 

(
� jm 

S jm 

+ τ(m −1) I j(m −1) 

)
, 

nd thus 

 m 

= 

4 ∑ 

j=1 

γ jm 

I jm 

= 

4 ∑ 

j=1 

(
γ jm 

d jm 

� jm 

S jm 

+ γ jm 

d jm 

τm −1 I j(m −1) 

)
. 

ppendix C. Definition of R v 

We use the next generation matrix method van den Driessche

nd Watmough, 2002 to prove that the definition for R v (Eqn. (14) )

s valid. We restrict ourselves to the sub-model of infected people,

 I jm 

] T . We form two matrices, F and V , which determine new infec-

ions and transitions among infectious states, respectively. To form

hese matrices, we require the partial derivatives of the infected

quations from System (8) evaluated at the DFE. 
For 1 ≤ i ≤ 4 and 1 ≤ n ≤ N , differentiating λ in (A.4) with

espect to I in , we have 

∂λ

∂ I in 
= 

βin A n 

( 

N ∑ 

m =1 

5 ∑ 

j=1 

A m 

(S jm 

+ I jm 

) 

) 

−
( 

N ∑ 

m =1 

4 ∑ 

j=1 

β jm 

A m 

I jm 

) 

A n 

( 

N ∑ 

m =1 

5 ∑ 

j=1 

A m 

(S jm 

+ I jm 

) 

) 2 
. 

valuating at the DFE, we further get 

∂λ

∂ I in 

∣∣∣∣
DFE 

= 

βin A n 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

. 

Matrix F is an 4 N × 4 N matrix whose row indices change co-

rdinately with indices i and n for 1 ≤ i ≤ 4 and 1 ≤ n ≤ N and

hose column indices change coordinately with indices j and r for

 ≤ j ≤ 4 and 1 ≤ r ≤ N . Its elements, denoted by F in,jr , are as

ollows: 

 in, jr = 

αin A n ̃  T in β jr A r 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

= 

αin A n ̃  T in ̃  c jr β jr 

˜ T jr 
, 

here ˜ c jr is defined in Eq. (10) . Then, matrix F is given by the

ollowing 4 × 4 block matrix, 

 = 

(
F i, j 

)
, for 1 ≤ i, j ≤ 4 , 

here each block is an N × N matrix given as follows 

 i, j = 

⎛ 

⎜ ⎜ ⎝ 

F i 1 , j1 F i 1 , j2 · · · F i 1 , jN 

F i 2 , j1 F i 2 , j2 · · · F i 2 , jN 

. . . 
. . . 

. . . 
. . . 

F iN, j1 F iN, j2 · · · F iN, jN 

⎞ 

⎟ ⎟ ⎠ 

, for 1 ≤ i, j ≤ 4 . 

Matrix V is an 4 N × 4 N matrix given as follows, 
 

 

 

V 1 0 0 0 

0 V 2 0 0 

0 0 V 3 0 

0 0 0 V 4 

⎞ 

⎟ ⎠ 

, 

here V i (1 ≤ i ≤ 4) is N × N matrix and given as follows, 
 

 

 

 

 

 

 

 

 

1 
d i 1 

0 · · · 0 0 0 

−τ1 
1 

d i 2 
0 · · · 0 0 

0 −τ3 
1 

d i 3 
0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 −τ(N−2) 
1 

d i (N−1) 
0 

0 · · · 0 0 −τ(N−1) 
1 

d iN 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 1 ≤ i ≤ 4 . 

ence, matrix V is a lower diagonal matrix and diagonal dominant.

his implies that matrix V −1 exists, and is as follows, 
 

 

 

V 

−1 
1 

0 0 0 

0 V 

−1 
2 

0 0 

0 0 V 

−1 
3 

0 

0 0 0 V 

−1 
4 

⎞ 

⎟ ⎠ 

. 

et a ij be the ( i, j ) entry of V −1 
1 

. Then 

 i j = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 , i < j, 

d 1 i , i = j, 

d 1 i 

i −1 ∏ 

k = j 
τk d 1 k , j < i. 
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Fig. D.1. Population age distribution. The observed distribution (blue circles) is de- 

termined from information in Table D.1 . The simulation age distribution is also 

shown (red squares). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
Matrix V −1 
2 

, V −1 
3 

, and V −1 
4 

can be expressed similarly with the only

change being from 1 to 2, 3, and 4, respectively. 

Note also that all columns of F are multiples of each other,

which implies that rank (F ) = 1 . Using the result that, when A is

an m × n matrix and B is an n × k matrix, 

rank (AB ) ≤ min ( rank (A ) , rank (B )) . 

Then, for the next generation matrix F V −1 , we know that 

rank (F V 

−1 ) = 1 . 

Hence, the spectral radius of the next generation matrix F V −1 is

given by the sum of diagonal elements of the 4 N × 4 N next gener-

ation matrix. It is exactly R v given in Eq. (15) . This can be verified

as follows. 

For the first N rows of the next generation matrix, the diagonal

elements are given by 

(
F V 

−1 
)

11 
= 

α11 A 1 ̃
 T 11 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

N ∑ 

m =1 

β1 m 

A m 

d 1 m 

( 

m −1 ∏ 

k =1 

π1 k 

) 

, 

(
F V 

−1 
)

22 
= 

α12 A 2 ̃
 T 12 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

N ∑ 

m =2 

β1 m 

A m 

d 1 m 

( 

m −1 ∏ 

k =2 

π1 k 

) 

, 

(
F V 

−1 
)

33 
= 

α13 A 3 ̃
 T 13 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

N ∑ 

m =3 

β1 m 

A m 

d 1 m 

( 

m −1 ∏ 

k =3 

π1 k 

) 

, 

. . . 
. . . 

. . . (
F V 

−1 
)
(N−1)(N−1) 

= 

α1(N−1) A (N−1) ̃
 T 1(N−1) 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

N ∑ 

m = N−1 

β1 m 

A m 

d 1 m 

( 

m −1 ∏ 

k = N−1 

π1 k 

) 

, 

(
F V 

−1 
)

NN 
= 

α1 N A N ̃
 T 1 N 

N ∑ 

m =1 

5 ∑ 

j=1 

A m ̃

 T jm 

β1 N A N d 1 N . 

Adding the above N equations leads to 
N ∑ 

k =1 

α1 k A k ̃
 T 1 k ∑ N 

m =1 

∑ 5 
j=1 A m ̃

 T jm 

N ∑ 

m = k 
β1 m 

A m 

d 1 m 

( 

m −1 ∏ 

s = k 
π1 s 

) 

= 

N ∑ 

k =1 

N ∑ 

m = k 
α1 k A k ̃  c 1 m 

β1 m 

d 1 m 

( 

m −1 ∏ 

s = k 
π1 s 

) 

˜ T 1 k 
˜ T 1 m 

. 

imilarly, for the second, third, and fourth N rows of the next gen-

ration matrix, their sums are similar expressions with the only

hange being from sub-index 1 to 2, 3, and 4, respectively. The sum

f these four sums is exactly the expression of R v in Eq. (15) . 

ppendix D. Additional Tables and Figures 
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Table D.1 

Standard life-history parameters by age used for numerical simulations. The growth 

rate of the total population is calculated from the age-dependent parameters and found 

to be q = −3 . 15 · 10 −3 year −1 . 

Age group Age range Mortality rate Activity Fecundity 

n (years) μn ( year −1 ) A n (contacts · day 
−1 

) f n ( year −1 ) 

1 0–1 2 . 1160 · 10 −3 6.36 - 

2 1-2 2 . 7200 · 10 −5 8.37 - 

3 2-3 2 . 7200 · 10 −5 9.44 - 

4 3–4 2 . 7200 · 10 −5 9.39 - 

5 4–5 2 . 7200 · 10 −5 10.20 - 

6 5–6 1 . 4300 · 10 −5 10.27 - 

7 6–7 1 . 4300 · 10 −5 13.89 - 

8 7–8 1 . 4300 · 10 −5 14.77 - 

9 8–9 1 . 4300 · 10 −5 14.11 - 

10 9–10 1 . 4300 · 10 −5 15.38 - 

11 10–11 1 . 4100 · 10 −5 15.88 - 

12 11–12 1 . 4100 · 10 −5 17.81 - 

13 12–13 1 . 4100 · 10 −5 19.31 - 

14 13–14 1 . 4100 · 10 −5 10.71 - 

15 14–15 1 . 4100 · 10 −5 17.54 - 

16 15–16 4 . 9300 · 10 −5 14.35 7 . 8453 · 10 −6 

17 16–17 4 . 9300 · 10 −5 11.40 7 . 8453 · 10 −6 

18 17–18 4 . 9300 · 10 −5 12.14 7 . 8453 · 10 −6 

19 18–19 4 . 9300 · 10 −5 13.31 7 . 8453 · 10 −6 

20 19–20 4 . 9300 · 10 −5 11.62 7 . 8453 · 10 −6 

21 20–25 4 . 4820 · 10 −4 9.16 1 . 8044 · 10 −3 

22 25–30 4 . 7730 · 10 −4 11.15 2 . 2112 · 10 −2 

23 30–35 6 . 1370 · 10 −4 10.60 5 . 7899 · 10 −2 

24 35–40 5 . 6260 · 10 −4 13.98 6 . 2700 · 10 −2 

25 40–45 9 . 1520 · 10 −4 11.87 2 . 9840 · 10 −2 

26 45–55 1 . 9470 · 10 −3 11.10 3 . 60 0 0 · 10 −3 

27 55–65 5 . 3598 · 10 −3 8.48 1 . 8500 · 10 −5 

28 65–75 1 . 3707 · 10 −2 6.18 - 

29 75 + 7 . 5648 · 10 −2 2.67 - 

Table D.2 

Immunization by age. Here, the percent immunized is determined from the percent vaccinated 

and efficacy of the vaccine as described in the Section 4.1 . Age groups that receive neither primary 

vaccination nor booster doses are omitted. 

Age group Age range Percent immunized Immunization Rate Application 

n (years) (% per year) ρn ( year −1 ) 

1 0–1 34.98 0.5382 Primary vaccination 

2 1–2 55.02 1.2250 Primary vaccination 

3 2–3 0 0 - 

4 3–4 0 0 - 

5 4–5 11.06 0.1245 1st booster dose 

6 5–6 62.01 1.6345 1st booster dose 

7 6–7 16.61 0.1995 1st booster dose 

8 7–8 0.29 0.0029 1st booster dose 

9 8–9 0 0 - 

10 9–10 0 0 - 

11 10–11 0 0 - 

12 11–12 0 0 - 

13 12–13 6.93 0.0745 2nd booster dose 

14 13–14 65.07 1.8658 2nd booster dose 

15 14–15 17.88 0.2180 2nd booster dose 

16 15–16 0.12 0.0012 2nd booster dose 

17 16–17 0 0 - 

18 17–18 0 0 - 

19 18–19 0 0 - 

20 19–20 0 0 - 

Table D.3 

Immune-status-dependent parameters used for numerical simulations. The subscript i 

refers to the immune status ranging from 1 (fully susceptible) to 5 (completely im- 

mune). 

Immune status Susceptibility Infectivity Immunity waning Recovery 

i αi β i ( day 
−1 

) ω i ( year −1 ) γ i ( day 
−1 

) 

1 1.00 8.67 ·10 −2 - 1/14 

2 0.75 8.28 ·10 −2 1/4 1/11 

3 0.50 7.59 ·10 −2 1/5 1/9 

4 0.25 0.00 1/6 1/7 

5 0.00 - 1/10 - 



16 R.-M. Carlsson, L.M. Childs and Z. Feng et al. / Journal of Theoretical Biology 497 (2020) 110265 

Fig. D.2. Distribution of individuals in each age class by immune status. The proportion of susceptible (A) or infected (B) individuals from the total population of each status 

with no vaccination (A1)-(B1), with primary vaccination alone (A2)-(B2), with primary vaccination plus one booster dose (A3)-(B3), with primary vaccination plus two booster 

doses (A4)-(B4). (Column (A)) Colors represent the level of susceptibility: fully susceptible S 1 (red), low partial immunity S 2 (orange), medium partial immunity S 3 (yellow), 

vaccinated immunity S 4 (light blue), and complete immunity S 5 (blue). (Column (B)) Colors represent the level of symptoms and transmissibility: severe symptoms and full 

transmissibility I 1 (red), moderate symptoms and transmissibility I 2 (orange), mild symptoms and low transmissibility I 3 (yellow), and neither symptoms nor transmissibility 

I 4 (light blue). The height of the bars in the top row indicates the total proportion in each age class while the bottom row is normalized by age group. Colors from 

Brewer (2013) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. D.3. Distribution of individuals in each age class by immune status. The proportion of susceptible (A) or infected (B) individuals from the total population of each status 

with no vaccination (A1)-(B1), with primary vaccination only (A2)-(B2), with primary vaccination plus one booster dose (A3)-(B3), with primary vaccination plus two booster 

doses (A4)-(B4). (Column (A)) Colors represent the level of susceptibility: fully susceptible S 1 (red), low partial immunity S 2 (orange), medium partial immunity S 3 (yellow), 

vaccinated immunity S 4 (light blue), and complete immunity S 5 (blue). (Column (B)) Colors represent the level of symptoms and transmissibility: severe symptoms and full 

transmissibility I 1 (red), moderate symptoms and transmissibility I 2 (orange), mild symptoms and low transmissibility I 3 (yellow), and neither symptoms nor transmissi- 

bility I 4 (light blue). The height of the bars in the top row indicate the total proportion in each age class while the bottom row is normalized by age group. Colors from 

Brewer (2013) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. D.4. Relative change in incidence by age. Comparisons of the incidence of in- 

fection by age group under different vaccination strategies: Scenario 1 - primary 

relative to no vaccination (blue); Scenario 2 - primary vaccination with a single 

booster dose relative to no vaccination (red); and Scenario 3 - primary vaccination 

with both booster doses relative to no vaccination (orange). The large panel is a 

composite of the smaller ones, which are for individual S classes. Negative values 

on the y-axis indicate a reduction in incidence. In contrast to Fig. 3 , the baseline of 

comparison is absence of vaccination. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. D.5. Relative change in incidence by age. Comparisons of the incidence of in- 

fection by age group under different vaccination strategies: Scenario 1 - primary 

relative to no vaccination (blue); Scenario 2 - primary vaccination with a single 

booster dose relative to no vaccination (red); and Scenario 3 - primary vaccination 

with both booster doses relative to no vaccination (orange). The large panel is a 

composite of the smaller ones, which are for individual S classes. Negative values 

on the y-axis indicate a reduction in incidence. In contrast to Fig. 3 , proportion- 

ate mixing is assumed. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. D.6. Infectious population by symptomatic class under the assumption of proportionate mixing. The proportion of infectious individuals with severe symptoms (A), 

severe and moderate symptoms (B) or any symptoms (C) under no vaccination (blue), primary vaccination alone (red), primary vaccination with the first booster dose 

(yellow) and primary vaccination with both booster doses (purple). Note the y-axis log scale. In contrast to Fig. 5 , proportionate mixing is assumed rather than the observed 

mixing matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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