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Abstract
In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation 
of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of 
shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto 
a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) 
started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. 
Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under 
this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is 
hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using 
whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying 
the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be 
restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process 
in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the 
roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level 
together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) 
on plant regeneration from roots.

Key message 
Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic mark-
ers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding.

Keywords Arabidopsis thaliana · Auxin transport inhibition · Cytokinin · Root explant · Shoot regeneration · Somatic 
embryogenesis · Wounding

Introduction

In vitro plant regeneration techniques are widely used to 
preserve and propagate (clone) superior germplasms as 
well as to increase plant genetic variability via mutagen-
esis/transgenesis (Bhojwani and Dantu 2013). During the ca. 
hundred years of the history of plant cell and tissue culture 
(Sugiyama 2015), uncountable number of research articles 
reported the successful regeneration of various plant species, 
cultivars, explants. Two main systems are widely used for 
in vitro plant regeneration: de novo organogenesis or somatic 
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embryogenesis (SE) (Ikeuchi et al. 2016). During de novo 
organogenesis, the establishment of apical meristems devel-
oping into shoots and roots, respectively, is induced suc-
cessively. In contrast, embryo formation in somatic tissues 
during SE results in the autonomous development of whole 
plantlets in one step (Fehér et al. 2016). Both regeneration 
processes can occur either directly or indirectly without or 
with intermediate callus formation (Ikeuchi et al. 2016).

Auxin and cytokinin are considered as the two most sig-
nificant plant hormones directly involved in plant regenera-
tion but other plant hormones have also been implicated in 
the process (Su and Zhang 2014). It has been recognised 
more than 60 years ago that the ratio of exogenously applied 
auxin and cytokinin controls organ regeneration (Skoog and 
Miller 1957). While high auxin-to-cytokinin ratios promoted 
root development, high cytokinin-to-auxin ratios resulted in 
shoot regeneration on the explants from tobacco pith. High 
concentrations of both hormones resulted in overprolifera-
tion of explant cells and callus formation. This pioneering 
work was followed by the establishment of in vitro organo-
genesis systems in hundreds of plant species including the 
model plant Arabidopsis thaliana. Shoot regeneration on 
Arabidopsis explants is usually achieved in a two-step (indi-
rect) strategy (Feldmann and Marks 1986; Valvekens et al. 
1988): first, callus formation is induced using a balanced 
auxin and cytokinin ratio (callus induction medium; CIM) 
that is followed by shoot meristem formation due to a high 
cytokinin level (shoot induction medium; SIM).

Somatic embryogenesis can be induced by a variety of 
hormone and stress treatments depending on the species and/
or the type of explant. The most prevalent inducer is auxin, 
especially the artificial auxin 2,4-dichlorophenoxyacetic acid 
(2,4-D) (Fehér 2015). The effect of cytokinins on somatic 
embryogenesis is variable. In most systems, a low level of 
cytokinin is applied along with auxin to promote embryo 
induction while in other cases exogenous cytokinins were 
found to inhibit auxin-induced SE (see e.g. Mujib et al. 
2016). In few systems, cytokinins were found to be effective 
as the sole inducers of embryo formation (e.g. Sagare et al. 
2000; Chung et al. 2005; for review, Gaj 2004).

In addition to auxin and cytokinin, other plant hormones, 
such as ethylene and abscisic acid are also implicated in 
plant regeneration, especially in the stress-related induction 
of somatic embryogenesis (reviewed in, Su and Zhang 2014; 
Fehér 2015). Auxin and ethylene interacts during several 
regeneration processes (Su and Zhang 2014). Excessive 
ethylene produced due to ACC treatment generally inhib-
its regeneration. However, a transient increase in ethylene 
generation is hypothesized to be required for 2,4-D-induced 
somatic embryogenesis (Fehér 2015). In Medicago, it was 
shown that ethylene biosynthesis and the ethylene-response 
factor MtSERF1 are required for somatic embryogenesis 
(Mantiri et al. 2008). Abscisic acid is generally considered 

as antagonistic with callus formation and regeneration (Su 
and Zhang 2014). However, exogenous abscisic acid can also 
induce somatic embryo formation in specific explants, such 
as shoot tips of Arabidopsis (Kikuchi et al. 2006; Nishiwaki 
et al. 2000), and may play a role in the auxin-induced initia-
tion of somatic embryogenesis (Su et al. 2013; Fehér 2015).

Although it is the ratio of exogenously applied plant 
hormones what one can easily manipulate to influence 
regeneration responses, it is the proper spatial distribu-
tion and temporal regulation of endogenous hormone lev-
els that determine regeneration success (Jiménez 2005; Su 
and Zhang 2014). Among others, positive correlation was 
described between cytokinin levels and axillary bud out-
growth in various mutants and transgenic plants in which the 
cytokinin level was altered (Chaudhury et al. 1993; Catterou 
et al. 2002; Kakimoto 2001; Sun et al. 2003). Exogenously 
applied hormones and stress treatments also promote/inhibit 
regeneration at least partly via influencing endogenous hor-
mone synthesis and transport (Jiménez 2005; Su and Zhang 
2014; Fehér 2015). Bai et al. (2013) demonstrated that dur-
ing 2,4-D-induced SE initiation in Arabidopsis calli sev-
eral genes of cytokinin, abscisic acid, and ethylene synthe-
sis and signalling were downregulated in parallel with the 
augmented expression of the YUCCA gene responsible for 
endogenous auxin synthesis.

Research on the model plant Arabidopsis thaliana has 
largely contributed to our understanding of many molecular 
and hormonal aspects of plant regeneration. Dynamic gradi-
ents of auxin and cytokinin responses were visualized using 
fluorescent reporters in indirect organogenesis and somatic 
embryogenesis of Arabidopsis (for review, Su and Zhang 
2014). These gradients were in correlation with the de novo 
formation of shoot and/or root meristem organising centres. 
Spatiotemporal regulation of biosynthesis, transport, and 
degradation were found to be associated with the dynamics 
of hormone gradients (Cheng et al. 2013; Bai et al. 2013; 
Su and Zhang 2014). The role of polar auxin transport in 
the establishment of asymmetric hormone distribution is 
well demonstrated during the earliest phases of Arabidopsis 
regeneration (Su et al. 2009, 2015). In agreement, the inhibi-
tion of auxin transport disrupts the spatiotemporal auxin dis-
tribution and prevents shoot regeneration (Cheng et al. 2013) 
as well as somatic embryogenesis (Elhiti and Stasolla 2011).

In addition to external hormones, wounding is also impor-
tant in triggering the regenerative process (Xu and Huang 
2014). One of the key regulators, which is rapidly activated 
in response to wounding and has pivotal role in wound-
induced callus formation, is the WOUND-INDUCED 
DEDIFFERENTIATION 1 (WIND1) transcription factor 
(Iwase et al. 2011a, b; 2015). Induced roots of unwounded 
Arabidopsis seedlings hardly exhibit indirect shoot organo-
genesis (Iwase et al. 2015). However, ectopic expression 
of WIND1 in uncut roots could bypass the requirement for 
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wounding and auxin induction (Iwase et al. 2015). WIND1 
overexpression did not lead to increased auxin accumula-
tion in Arabidopsis, rather, WIND1 acted via a cytokinin 
signalling-dependent pathway to promote callus formation 
and shoot regeneration efficiency (Iwase et al. 2011a).

Auxin-induced initiation of direct somatic embryogenesis 
in Arabidopsis immature zygote explants is characterised 
by the expression of the seed-specific transcription factors 
LEAFY COTYLEDON 1 and 2 (LEC1 and LEC2) and 
FUSCA 3 (FUS3) (Gaj 2001; Gaj et al. 2005; Ledwoń and 
Gaj 2011). Mutants that are unable to express these genes 
fail to regenerate via the direct embryogenic pathway (Gaj 
et al. 2005) while transgenic seedlings ectopically expressing 
LEC1 and LEC2 produce somatic embryos on their cotyle-
dons (Lotan et al. 1998; Stone et al. 2001). LEC2 activation 
resulted in embryogenic callus formation in 35S:LEC2-GR 
transgenic Arabidopsis roots in a wounding-dependent way 
(Iwase et al. 2015). However, exogenous hormone applica-
tion on its own was not reported yet to induce embryogenic 
callus formation from Arabidopsis roots.

Here we report the evaluation of the regeneration potential 
of Arabidopsis roots applying a transient (4-days) high cyto-
kinin treatment. Using the expression of the LEC1, LEC2, 
FUS3 genes as embryogenesis markers, it was revealed that 
in this system the shoot organogenesis and somatic embryo-
genesis pathways were mixed. The cytokinin-treated Arabi-
dopsis root explants expressed the above embryogenic mark-
ers under a subsequent hormone-free culture. Moreover, the 
lec1 mutant exhibited significantly reduced regeneration 
efficiency indicating that in this culture regime part of the 
regeneration proceeds via somatic embryogenesis. Moreo-
ver, it could be established that shoot-derived auxin strongly 
inhibited the indirect shoot regeneration from the roots of 
cytokinin-induced unwounded seedlings, the regeneration 
potential of which could be restored with local auxin trans-
port inhibitor (TIBA) application.

Materials and methods

Plant materials and culture conditions

Col-0 wild type and heterozygous leafy cotyledon1 (lec1) 
mutant (AT1G21970) (Meinke et al. 1994) Arabidopsis thal-
iana seeds were provided by the Nottingham Arabidopsis 
Stock Centre (NASC) (Scholl et al. 2000). To produce wild 
type seedlings, seeds were surface-sterilized with 70% etha-
nol for 60 s followed by immersion in 4% commercial sodium 
hypochlorite solution (having 4.5% active chlorine) for 
10 min. The seeds then were rinsed for 1 min five times with 
sterile water. 90 seeds were placed in each 120 × 120 × 17 mm 
square plastic Petri dishes (Greiner Bio-One, International 
GmbH, Kremsmuenster, Austria) containing full-strength 

Gamborg B5 Medium Including Vitamins (Duchefa Bioche-
mie B.V., Haarlem, The Netherlands,), 1% sucrose (VWR 
International LLC, Radnor, Pennsylvania, United States) and 
1% plant agar (Duchefa Biochemie). The pH of the medium 
was adjusted to 5.7. Petri dishes were fixed vertically by 
special holders and placed in a growth chamber at 21 °C, 
under continuous light with an irradiance of 50 µmol m−2 s−1 
provided by white fluorescent tubes (Sylvania Luxline Plus; 
Feilo Sylvania Europe Limited, London, UK) for 1 week. 
Homozygous lec1 seedlings were produced by culturing 
immature embryos on a medium containing half-strength 
Murashige and Skoog (MS) Medium Including Gamborg 
B5 Vitamins (Duchefa Biochemie), 1% sucrose and 0.5% 
plant agar. Germinated embryos exhibiting the lec1 pheno-
type were selected and the seedlings were cultured under the 
same conditions as the wild type.

The in vitro shoot regeneration experiments were car-
ried out under the same growth chamber conditions as 
described above. 7-days-old whole seedlings were placed 
onto a medium containing full-strength MS Basal Salt Mix-
ture (Duchefa Biochemie), 2 ml/l vitamix [555 mM myo-
inositol (Duchefa Biochemie), 14.8  mM thiamine-HCl 
(B1) (Duchefa Biochemie), 2.4 mM pyridoxine–HCl (B6) 
(SERVA Electrophoresis GmbH, Heidelberg, Germany), 
4.1 mM nicotinic acid (B3) (Reanal, Budapest, Hungary), 
13.3 mM glycine (Molar Chemicals, Halásztelek, Hungary), 
0.2 mM biotin (Reanal)], 3% sucrose, 0.8% plant agar and 
2.7 µM naphthaleneacetic acid (NAA) (Duchefa Biochemie) 
at pH 5.8, and cultured for 24 h vertically. Subsequently, 
each plantlets were transferred for three days to a hormone-
free (HF) MS basal medium supplemented with 2 ml/l vita-
mix, 3% sucrose and 0.8% plant agar (pH 5.8). To induce 
regeneration, roots were excised from the shoots with a scal-
pel under sterile conditions. Sixteen root explants were then 
cultured first on the ARM I medium (Márton and Browse 
1991) including MS Basal Salt Mixture, 2 ml/l vitamix, 3% 
sucrose, 0.8% plant agar and different growth regulators, 
including 17.1 µM indole-3-acetic acid (IAA) (Duchefa 
Biochemie), 0.68 µM 2,4-dichlorophenoxyacetic acid (2,4-
D) (Sigma-Aldrich, St. Louis, Missouri, United States), 
2.68 µM 6-benzyladenine (BA) (Sigma-Aldrich), 1.48 µM 
isopentenyl-adenine (IPA) (Sigma-Aldrich) for 3 days (if not 
indicated otherwise) then on ARM IIr medium (Márton and 
Browse 1991), containing MS Basal Salt Mixture, 2 ml/l 
vitamix, 3% sucrose, 0.8% plant agar, 1.1 µM NAA, 19.7 µM 
IPA. The pH was adjusted to 5.8 for both media. After four 
days, eight root explants were transferred to hormone-free 
medium (MS salts, 2 ml/l vitamix, 3% sucrose, 0.8% plant 
agar). Non-dissected whole seedlings were cultured in the 
same way and in the same number as controls. To examine 
the effect of shoot-derived auxin on the regeneration process, 
5 µM auxin polar transport inhibitor 2,3,5-triiodobenzoic 
acid (TIBA) (Fluka, Chemie GmbH, Buchs, Switzerland) 
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was applied in a low gelling agarose (Sigma-Aldrich) droplet 
at the junction of the shoot to the root. Three independent 
replicates were analysed in all experiments.

Light microscopy

The number of dark-green morphogenic foci on root 
explants/roots and the presence/absence of trichomes on the 
first leaves were determined using an Olympus SZX12 stereo 
dissection microscope (Olympus Corporation, Sindzsuku, 
Tokyo, Japan). For the bright field images, white LED light 
source (Photonic Optics, Vienna, Austria) was used. Photos 
were captured using an Olympus Camedia C7070 digital 
camera and the DScaler software (version 4.1.15).

Scanning electron microscopy (SEM) at low‑vacuum

Samples were vacuum infiltrated and fixed with 100% meth-
anol for 20 min, dehydrated in 100% ethanol for 30 min and 
then left in fresh 100% ethanol for overnight. Next day, the 
samples were critical point dried, mounted on SEM stubs 
and observed in a JSM-7100F/LV scanning electron micro-
scope (JEOL Ltd., Akishima, Tokyo, Japan). The uncoated 
leaves and embryos were imaged by detecting backscattered 
electrons at 15 kV accelerating voltage and 35 Pa pressure 
in the specimen chamber.

Gene expression analysis

Total RNA was extracted using Quick-RNA Miniprep Kit 
(Zymo Research, Irvine, California, United States) which 
includes the removal of contaminating genomic DNA. 500 
to 1000 ng of total RNA was reverse-transcribed for 20 min 
at 42 °C and for 10 min at 75 °C in a 20 μl reaction volume 
using Precision nanoScript 2 RT kit (PrimerDesign Ltd., 
Chandler’s Ford, United Kingdom) according to the manu-
facturer’s instructions. cDNA products were diluted 1:10 
in AccuGENE® water (Lonza, Verviers, Belgium). The 
expression of LEC1 (AT1G21970), LEC2 (AT1G28300), 
FUS3 (AT3G26790) and WIND1 (AT1G78080) genes was 
analysed by real-time quantitative PCR (qPCR). The expres-
sion of the AT2G41960 gene was used as reference. This 
gene was selected using the Arabidopsis Regeneration eFP 
browser at The Bio-Analytic Resource for Plant Biology 
(bar.u-toronto.ca; Winter et al. 2007) allowing the in silico 
analysis of gene expression based on transcriptomic data sets 
of root-to-shoot regeneration experiments (Chatfield et al. 
2013). According to these data, the AT2G41960 gene has a 
constitutive expression during the process.

The RT-qPCR reactions were carried out by the Applied 
Biosystems ABI PRISM 7900HT Fast Real-Time PCR sys-
tem (Thermo Fisher Scientific, Waltham, Massachusetts, 
United States) and the primers listed in Table 1 were used.

The PCR mixture contained (in a total volume of 14 μl) 
6 μl cDNA, 0.5 μl forward primer, 0.5 μl reverse primer, 7 μl 
PrecisionPLUS MasterMix with ROX premixed with SYBR-
Green (PrimerDesign Ltd.). For amplification, a standard 
two-step thermal cycling profile was used (15 s at 95 °C and 
1 min at 60 °C) during 40 cycles, after a 10 min preheating 
step at 95 °C. Finally, a dissociation stage was added with 
95 °C for 15 s, 60 °C for 15 s and 95 °C for 15 s. Data analy-
sis was performed using SDS 2.3 software (Life Technolo-
gies, Carlsbad, California, United States).  CT values were 
analysed using the RQ Manager Software version 1.2 (Life 
Technologies) and then exported to Microsoft Excel 2010 
for further analysis. The ratio of each mRNA relative to the 
AT2G41960 was calculated using the (2)−ΔΔCt method. Data 
were averaged from three independent biological experi-
ments with three technical replicates each.

Statistical analysis and data representation

Statistical evaluations were performed using the SigmaPlot 
v.12.0 statistical software. Quantitative data are presented 
as the mean ± SE and the significance of difference between 
sets of data was determined by one-way analysis of vari-
ance (ANOVA) following Duncan’s multiple range tests; a 
P value of less than 0.05 was considered significant.

Results

Timely removal of cytokinin alters the regeneration 
pathway of Arabidopsis root explants

The length of the period of cytokinin action required for 
the induction of shoot regeneration from Arabidopsis root 
explants was investigated. It was found that approximately 

Table 1  Sequences of the oligonucleotide primers used in the qPCR 
experiments

Primer sequences Gene

F: 5′-GTT ATG GTA TGT TGG ACC 
AATCC-3′

R: 5′-TTC ATC TTG ACC CGA CGA C-3′

AtLEC1 (AT1G21970)

F: 5′-TGA TAC TCC CGA AGA AAG CC-3′
R: 5′-CTA TAC TTG AAG GTC CAA 

ACGTG-3′

AtFUS3 (AT3G26790)

F: 5′-CGC CAT GAA TGG AAA TTC GG-3′
R: 5′-CCA CGT ACG CGT GAT CCT CA-3′

AtLEC2 (AT1G28300)

F: 5′-TGG CGG AGA CTC AGA AAC AG-3′
R: 5′-GGC GAC GAA ACC TTC TTC TCA-3′

AtWIND1 (AT1G78080)

F: 5′-TTC AAT TAA AAG AGG GGA ATGC-
3′

R: 5′-CTT TGT CTA TCA GGA CTT CAT 
CCT C-3′

AT2G41960
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4 days were required on the high cytokinin medium to 
efficiently induce morphogenic foci on the root explants 
(Fig. 1). Interestingly, transferring the root segments to hor-
mone-free conditions after 4 days of cytokinin induction, 
callus growth was restricted, and green globular structures 
appeared on the explants some of which developed into 
somatic embryo-like structures following ca. 6 more days 
of incubation (Figs. 1, 2a, b). Additional 2 weeks on the 
hormone-free medium resulted in plantlet regeneration from 
these structures (Fig. 2c). Approximately half of the regen-
erated plantlets had trichome-less first leaves resembling 
cotyledons (Fig. 2c, d; Table 2). The absence of trichomes 
is often used as a morphological marker for somatic embryo 
formation since somatic embryos develop cotyledon-like 
trichome-less first leaves (e.g. Horstman et al. 2017).

Keeping the root explants continuously on the high cyto-
kinin medium, however, we found, extensive callus forma-
tion (Fig. 2e, f). Culturing the explants for further 2 weeks 
on this medium, shoots appeared on the surface of explants. 
The regenerates had trichome-bearing first leaves (Fig. 2g, 
h) indicating their formation via shoot organogenesis and 
not somatic embryogenesis.

To verify whether the developmental pathway leading to 
trichome-less regenerates is indeed somatic embryogenesis, 
the relative expression of three embryogenesis-associated 
genes (LEC1, LEC2, and FUS3) was determined (Fig. 3). 

It was established that culturing the cytokinin-induced 
root explants on hormone-free medium for 5 days resulted 
in the increased expression of all three investigated genes. 
The expression of the genes was not augmented in cultures 
maintained continuously on the cytokinin-rich medium 
strengthening that shoot organogenesis rather than somatic 
embryogenesis was induced under that condition (Fig. 3). To 
further support the view that the transient cytokinin treat-
ment indeed led to somatic embryogenesis, root explants 
of the embryogenesis pathway defective lec1 mutant was 
subjected to the same culture regime (Fig. 4; Table 2). It was 
found that culturing root explants continuously on the cyto-
kinin-containing medium, the mutant reacted on the same 
way as the wild type (Fig. 4a, b). It formed green calli and 
subsequently shoots. However, if lec1 root segments were 
moved to hormone-free medium after 4 days of cytokinin 
induction, the development of calli was restricted and the 
number of potentially morphogenic green foci was approxi-
mately the half as compared to the wild type (Fig. 4c, d; 
Table 2). From the lec1 roots, only shoots with trichome-
bearing leaves could be regenerated (Table 2). Altogether, 
the above observations indicated that timely removal of 
cytokinin can result in the parallel/mixed development of 
shoots and somatic embryo-like structures while the latter 
is prevented by the continuous presence of high concentra-
tion of cytokinin in the medium. The somatic embryo-like 
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Fig. 1  Callus formation and plant regeneration on root explants cul-
tured for the indicated periods (1–7 days) on the high cytokinin low-
auxin shoot induction medium (ARM IIr) before transferring them to 
hormone-free conditions. Pictures were taken 0, 2, 4 or 6 days after 

the transfer to the hormone-free medium. White arrows point to the 
regenerated somatic embryo-like  structures on roots cultured for 
4 days on the high cytokinin medium (red box) followed by 6 days on 
the hormone-free one. The scale bar is 1 mm. (Color figure online)
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Fig. 2  Plant regeneration of root 
explants after moving them to 
hormone-free conditions follow-
ing a period of 4 days on the 
high cytokinin medium (a–d) 
or in the continuous presence 
of high cytokinin concentration 
(e–h). Pictures of root explants 
(a, e) and their morphogenic 
regions (b, f) were taken 5 days 
after the transfer to hormone-
free medium following the 
previous period of 4 days on the 
high-cytokinin low-auxin ARM 
IIr medium (a, b) or 9 days 
after the transfer to the ARM IIr 
medium (e, f). The first leaves 
of the regenerated plantlets were 
investigated 2 weeks later (c, 
d, g, h). Light microscopy (a, 
c, e, g) and scanning electron 
microscopy (b, d, f, h) were 
used to take the images. The 
bars represent 1 mm (a, c, e, 
g), and 100 µm (b, d, f, h), 
respectively
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structures had no clear bipolar structure, indicating that 
root morphogenesis was inhibited, e.g. due to the remained 
action of the high cytokinin concentration in the previous 
medium.

Shoot‑derived auxin prevents the regeneration 
from the roots of Arabidopsis seedlings

Interestingly, the above described regeneration system was 
inefficient, and no regenerates could be observed when 
whole seedlings were used instead of root explants (Fig. 5; 
Table 2). Roots of the whole seedlings that were cultured 
on high cytokinin medium thickened and became green but 
failed to regenerate calli and shoots (Fig. 5a; Table 2). When 
the seedlings were removed to hormone-free medium after 
4 days of the cytokinin treatment, the thickening and green-
ing of the root did not take place (Fig. 5b). The potential 
role of shoot-derived auxin on the regeneration potential of 
the root was tested using the auxin transport inhibitor TIBA. 
5 µM TIBA in a low gelling temperature agarose drop was 
applied to the shoot-to-root junction of seedlings before 
they were transferred to the high cytokinin medium. TIBA 
application restored the regeneration potential of the seed-
ling roots (Fig. 5c, d; Table 2). Like the excised root explants 
(Fig. 5e, f), the roots of TIBA-treated seedlings regenerated 
only trichome-bearing shoots on the high cytokinin medium. 
Approximately 50% of regenerated shoots were devoid of 
trichomes in case of transient (4 days) cytokinin treatment 
followed by hormone-free culture. The trichome-less plant-
lets are likely the result of somatic embryogenesis. It is 
supported by the increased relative expression of the three 
embryogenesis markers in these roots (Fig. 6). Moreover, the 

regeneration of TIBA-treated lec1 seedlings did not result in 
trichome-less plantlets (Table 2).

Wounding and the wound-induced expression of the 
WIND1 transcription factor are considered to have a central 
role in the increased regeneration potential of root explants 
as compared to the roots of intact seedlings (Iwase et al. 
2015). Therefore, the expression of WIND1 in the roots 
of TIBA-treated seedlings was investigated. Similar to 
wounding, blocking the shoot-to-root auxin transport by 
a TIBA-containing agarose droplet resulted in increased 
WIND1 expression in the root (Fig. 6) in agreement with 
the increased regeneration potential.

Discussion

Exogeneous application of cytokinins (with or without 
auxin) is widely used to induce de novo axillary shoot mer-
istem formation in vitro. This agrees with observations that 
mutations or transgenes elevating the endogenous cytokinin 
level promote shoot formation (Chaudhury et al. 1993; Cat-
terou et al. 2002; Kakimoto 2001; Sun et al. 2003) while 
in mutants with reduced cytokinin synthesis this process is 
prevented (Cheng et al. 2013).

We observed that the expression of embryogenic mark-
ers could be achieved by manipulating the time spent by 
Arabidopsis root segments on high-cytokinin and low-auxin 
(19.7 µM IPA and 1.1 µM NAA) shoot induction medium 
transferring the explants into hormone-free conditions fol-
lowing a four-day-long incubation period (Fig. 3). Under 
these conditions, nearly half of the regenerated plant-
lets exhibited trichome-less cotyledon-like first leaves 

Table 2  Regeneration efficiency 
and type of wild type (Col) and 
lec1 mutant seedling roots/root 
explants with or without TIBA 
treatment

a Green morphogenic foci per root explant (counted after 5  days following transfer to hormone-free 
medium). Average and standard error
b Percentage of the potential morphogenic foci regenerated into normal plantlets per explant. Average and 
standard error
c Percentage of regenerated plantlets having leaves/cotyledons with/without trichomes per explant. Average 
and standard error

Plant material TIBA No. of regenera-
tion foci/roota

% of regenerated 
 plantletsb

% of trichome-
less  plantletsc

% of trichome-
bearing  plantletsc

Col root explant  − 8 ± 0.8 65.6 ± 3.7 56.9 ± 4.7 43.1 ± 4.7
lec1 root explant  − 3.9 ± 0.4 23.8 ± 6.9 0.0 ± 0.0 100 ± 0.0
Col seedling  − 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Col seedling  + 6.8 ± 0.8 43.8 ± 4.5 48.3 ± 3.9 51.7 ± 3.9
lec1 seedling  − 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
lec1 seedling  + 3.3 ± 0.4 15.0 ± 5.1 0.0 ± 0.0 50.0 ± 15.7
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strengthening the view that they were formed via an embryo-
genic pathway (Fig. 2; Table 2). Under the same conditions, 
the somatic embryogenesis-defective lec1 mutant roots 
could regenerate only shoots with trichome-bearing true 
first leaves (Fig. 4; Table 2). The number of lec1 regener-
ants was about the half that of the wild type (Table 2). These 
observations indicated that the shoot regeneration and the 
embryogenesis pathways were induced in parallel and only 
the latter was blocked by the continuous presence of the 
high concentration of cytokinin. The absence of trichomes 
on the first leaves is often used as a morphological marker 
for somatic embryo formation but this marker can be mis-
leading as it can be delayed initially (Horstman et al. 2017). 
However, in our experiments, regenerants with trichomeless 
leaves appeared only in conditions when the embryogenic 
marker genes were also induced, but not if the plant was 
a non-embryogenic mutant (lec1). This made us confident 
that about half of the regenerants used at least initially an 
embryogenic pathway. Parallel induction of the two regen-
eration pathways (shoot organogenesis and somatic embryo-
genesis) has been described in Solanum carolinense explants 
exposed to low concentration of benzyladenine while only 
shoot regeneration was observed at higher concentrations 
(Reynolds 1986). Switching from organogenesis to somatic 
embryogenesis provoked by high sugar concentration in sun-
flower tissue culture was partly ascribed to reduced cyto-
kinin uptake from the medium (Charrière and Hahne 1998). 
These observations could be explained with the inhibitory 
effect of cytokinin on SE. Cytokinin was reported to repress 
the expression of the transcription factors LEC2 and FUS3 
(Casson et al. 2006) having key roles in somatic embryo-
genesis (Horstman et al. 2017). In agreement, moving the 
cytokinin-induced (for ca. 4 days) Arabidopsis root explants 
to hormone-free medium increased the expression of the 
embryogenesis regulators LEC1, LEC2, and FUS3 (Fig. 3).

One can hypothesize that indirect shoot organogenesis 
and indirect somatic embryogenesis share the same initial 
steps at least as the formation of the shoot meristem is con-
cerned (Su et al. 2009, 2015; Cheng et al. 2013; Su and 
Zhang 2014). The multicellular origin of shoot primordia 
and somatic embryos from the same type of cells has been 
demonstrated in several systems further supporting the simi-
larity of the initial steps of the two pathways (Bronner et al. 
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Fig. 3  Real-time quantitative PCR analysis of embryogenic gene 
expression (LEC1, LEC2 and FUS3) in untreated 7-days-old control 
seedling roots as reference (CTR root), in root explants at the time 
of 9 days on the high cytokinin ARM IIr medium (ARM IIr) and in 
root explants cultured 4 days on the ARM IIr medium followed by a 
hormone-free culture for 5 days (ARM IIr + HF). The expression of 
the AT2G41960 gene was used for data normalization (see "Materials 
and methods" for details). Standard errors are shown on the columns. 
The significance of difference between sets of data was determined by 
one-way analysis of variance (ANOVA) following Duncan’s multiple 
range tests; a P value of less than 0.05 was considered significant as 
indicated by different letters
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1994; Yumbla-Orbes et al. 2017). Timely manipulation of 
exogenous/endogenous hormone levels may allow the paral-
lel manifestation of both pathways, in different but even in 
the same regeneration foci.

Removal of the high exogenous cytokinin concentration 
might induced a switch in the Arabidopsis root explants 
affecting endogenous cytokinin or auxin synthesis and/or 
transport. It has been demonstrated in many developmen-
tal systems that cytokinin and auxin mutually regulate each 
other’s level, among others, including the inhibition of polar 
auxin transport by cytokinin (Pernisová et al. 2011; Schaller 
et al. 2015). The similar effect of high endogenous cytokinin 
and auxin transport inhibition, respectively, on in vitro plant 
regeneration was demonstrated using sunflower (Helian-
thus annuus L.) immature zygotic embryo explants. These 
explants regenerate shoots at 3% and somatic embryos at 
12% sucrose concentration in a cytokinin-containing induc-
tion medium (Bronner et al. 1994). It was shown that the 
increased sucrose concentration resulted in lowered cyto-
kinin uptake and an increased endogenous auxin/cyto-
kinin ratio in association with the embryogenic response 
(Charrière et al. 1999). Inclusion of various auxin transport 
inhibitors to the high-sucrose induction medium prevented 
somatic embryogenesis but allowed shoot morphogenesis 

(Charrière and Hahne 1998) mimicking the effect of the 
lower exogenous sucrose and higher endogenous cytokinin 
concentrations.

The inclusion of polar auxin transport inhibitors in the 
induction media prevented somatic embryogenesis in most 
of the cases or led to morphogenic abnormalities (e.g. Schi-
avone and Cooke 1987; Grzyb et al. 2018) although in spe-
cial cases could promote the process at low concentrations 
(Chen and Chang 2004). Here we report that applying only 
a drop of the auxin transport inhibitor TIBA onto the shoot-
to-root junction (an approach widely used to study the effect 
of shoot-derived auxin on root functions; e.g. Reed et al. 
1998; Guo et al. 2005) promoted plant regeneration from the 
roots of unwounded Arabidopsis seedlings that are otherwise 
unresponsive to induction.

An interesting feature of indirect shoot regeneration 
from Arabidopsis roots that it is efficient only from excised 
explants but not in whole seedlings (Iwase et al. 2015) 
(Fig. 5a, b). In contrast, the direct conversion of lateral root 
primordia to shoot meristems in response to high exogenous 
cytokinin concentration can take place in whole seedling 
roots (Chatfield et al. 2013; Rosspopoff et al. 2017). Fur-
thermore, mutant or transgenic plants with high endogenous 
cytokinin concentration exhibit increased shoot regeneration 

Fig. 4  Plant regeneration of 
the embryogenesis defective 
lec1 mutant (a, c) and wild 
type (wt) (b, d) root explants 
in the continuous presence of 
high cytokinin concentration 
(a, b) or after moving them to 
hormone-free conditions follow-
ing a period of 4 days on the 
high cytokinin medium (c, d). 
Pictures of root explants were 
taken 9 days after the transfer 
to the high cytokinin ARM IIr 
medium (a, b) and 5 days after 
the transfer to hormone-free 
medium following the previous 
period of 4 days on the ARM IIr 
medium (c, d), respectively. The 
scale bars represent 1 mm
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only on in vitro cultured root explants, but not on the roots 
of whole seedlings (Chaudhury et al. 1993; Catterou et al. 
2002; Kakimoto 2001; Sun et al. 2003). Wounding was 
shown to promote regeneration-competent callus develop-
ment from Arabidopsis roots in a WIND1 transcription fac-
tor-dependent way (Iwase et al. 2011a, b; 2015; Ikeuchi et al. 
2016). Endogenous auxin level is not significantly changed 
in wounded Arabidopsis hypocotyls (Iwase et al. 2017) and 
WIND1 has no effect on endogenous auxin level (Ikeda and 
Ohme-Takagi 2014; Iwase et al. 2017) but was shown to acti-
vate cytokinin synthesis and responses (Iwase et al. 2017).

Here we show that the effect of wounding on cytokinin-
mediated shoot/embryo regeneration from roots could be 

mimicked blocking the auxin transport from the shoot to the 
root (Fig. 5; Table 2). Local auxin transport inhibitor (TIBA) 
application to the shoot-to-root junction resulted in increased 
WIND1 expression in the unwounded roots of seedlings 
(Fig. 6) in association with their increased shoot/embryo 
regeneration potential (Fig. 5; Table 2). Our observation 
indicates that either the removal of the shoot as the auxin 
source or blocking the shoot-to-root auxin transport result in 
increased WIND1 expression and enhanced competence for 
callus/shoot/embryo regeneration under appropriate induc-
tive conditions. Shoot-derived auxin somehow interfere with 
this process. Polar auxin transport from the shoot to root is 
known to be required for lateral root formation (Reed et al. 

Fig. 5  Plant regeneration of the 
roots of whole seedlings (a–d) 
and root explants as controls 
(e, f) cultured in the continu-
ous presence of high cytokinin 
concentration (a, c, e) or after 
moving them to hormone-free 
conditions following a period 
of 4 days on the high cytokinin 
medium (b, d, f). In the case of 
whole seedlings, some of them 
was treated by applying 5 µM 
TIBA in an agarose droplet to 
the shoot–root junction (c, d). 
Pictures were taken 9 days after 
the transfer to the high cyto-
kinin ARM IIr medium (a, c, 
e) and 5 days after the transfer 
to hormone-free medium fol-
lowing the previous period of 
4 days on the ARM IIr medium 
(b, d, f), respectively. The bars 
represent 1 mm
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1998) as well as for proper root responses to localized supply 
of nitrate (Guo et al. 2005). Inhibition of shoot-to-root auxin 
transport and lateral root primordium formation might pro-
mote regeneration competence altering the root’s responses 
to exogenous hormones.
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