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Abstract: Kynurenic acid (KYNA) is an endogenous tryptophan (Trp) metabolite known to pos-
sess neuroprotective property. KYNA plays critical roles in nociception, neurodegeneration, and
neuroinflammation. A lower level of KYNA is observed in patients with neurodegenerative dis-
eases such as Alzheimer’s and Parkinson’s diseases or psychiatric disorders such as depression and
autism spectrum disorders, whereas a higher level of KYNA is associated with the pathogenesis of
schizophrenia. Little is known about the optimal concentration for neuroprotection and the threshold
for neurotoxicity. In this study the effects of KYNA on memory functions were investigated by
passive avoidance test in mice. Six different doses of KYNA were administered intracerebroven-
tricularly to previously trained CFLP mice and they were observed for 24 h. High doses of KYNA
(i.e., 20–40 µg/2 µL) significantly decreased the avoidance latency, whereas a low dose of KYNA
(0.5 µg/2 µL) significantly elevated it compared with controls, suggesting that the low dose of KYNA
enhanced memory function. Furthermore, six different receptor blockers were applied to reveal the
mechanisms underlying the memory enhancement induced by KYNA. The series of tests revealed the
possible involvement of the serotonergic, dopaminergic, α and β adrenergic, and opiate systems in
the nootropic effect. This study confirmed that a low dose of KYNA improved a memory component
of cognitive domain, which was mediated by, at least in part, four systems of neurotransmission in
an animal model of learning and memory.

Keywords: tryptophan; kynurenine; kynurenic acid; passive avoidance; cognitive domain; memory;
cognitive enhancer; neurotransmission; receptor blockers; translational

1. Introduction

Worldwide, around 50 million people suffer from major neurocognitive disorders.
Alzheimer’s disease (AD) represents 60–70 percent of cases, imposing a physical, psy-
chological, social, and economic burden on the elderly, their families, caregivers, and
society [1]. Patients who develop AD first demonstrate a subtle decline in memory and
learning, followed by changes in executive cognitive function and in language and visu-
ospatial processing; indeed, recent evidence suggests that impairments in the ability to
process contextual information and in the regulation of responses to threat are related to
structural and physiological alterations in the prefrontal cortex (PFC) and medial temporal
lobe, addressing how this progressive brain deterioration can eventually cause patterns
of cognitive dysfunctions that might be observed in patients with AD [2]. The cause of
major neurocognitive disorders remains unknown, but it is considered to be caused by
convergence of multifactorial factors including genetic, environmental, infectious, and
nutritional components, together with lifestyle, among others [3,4]. There is no remedy for
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neurodegenerative diseases. Disease-modifying and symptom-relieving measures are main-
stays of treatment. Thus, a tremendous effort has been made to identify pathomechanisms,
discover interventional targets, and design novel pharmaceutical agents [5].

KYNA is a metabolite of the Trp-kynurenine (KYN) metabolic system, known to
possess a neuroprotective property [6]. The neuroprotective activities are considered to
be attributed to the antagonism of the excitatory amino acid receptors (EAARs) such as
the N-methyl-D-aspartate (NMDA) receptor, the α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor, and the kainic acid receptor [7–10]. Furthermore, KYNA
acts as an agonist of the G-protein-coupled receptor 35 (GPR35) and the aryl hydrocarbon
receptor (AHR) [11–14]. In addition, opioid receptors are presumed to be interacting
partners with KYNA [15,16].

It was previously postulated that the main component of KYNA-induced inhibition in
glutamatergic neurotransmission may attribute to noncompetitive inhibition of α7-nicotinic
acetylcholine receptors at glutamatergic presynaptic axon terminals [17], thereby regulating
the release of glutamate. However, these results could not be subsequently reproduced by
four different and independent groups. Thus, it is still questionable that KYNA may affect
glutamate release via the mechanism [18–22]. KYNA plays crucial roles in the regulation
of the intracellular Ca2+ and mitochondrial dysfunction-induced neuronal cell death in
conditions associated with excitotoxicity (Figure 1).

Biomedicines 2022, 10, x FOR PEER REVIEW 2 of 20 
 

tious, and nutritional components, together with lifestyle, among others [3,4]. There is 
no remedy for neurodegenerative diseases. Disease-modifying and symptom-relieving 
measures are mainstays of treatment. Thus, a tremendous effort has been made to iden-
tify pathomechanisms, discover interventional targets, and design novel pharmaceutical 
agents [5]. 

KYNA is a metabolite of the Trp-kynurenine (KYN) metabolic system, known to 
possess a neuroprotective property [6]. The neuroprotective activities are considered to 
be attributed to the antagonism of the excitatory amino acid receptors (EAARs) such as 
the N-methyl-D-aspartate (NMDA) receptor, the 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, and the 
kainic acid receptor [7–10]. Furthermore, KYNA acts as an agonist of the 
G-protein-coupled receptor 35 (GPR35) and the aryl hydrocarbon receptor (AHR) 
[11–14]. In addition, opioid receptors are presumed to be interacting partners with 
KYNA [15,16]. 

It was previously postulated that the main component of KYNA-induced inhibition 
in glutamatergic neurotransmission may attribute to noncompetitive inhibition of 
α7-nicotinic acetylcholine receptors at glutamatergic presynaptic axon terminals [17], 
thereby regulating the release of glutamate. However, these results could not be subse-
quently reproduced by four different and independent groups. Thus, it is still question-
able that KYNA may affect glutamate release via the mechanism [18–22]. KYNA plays 
crucial roles in the regulation of the intracellular Ca2+ and mitochondrial dysfunc-
tion-induced neuronal cell death in conditions associated with excitotoxicity (Figure 1). 

 
Figure 1. KYNA influences neuronal and glial glutamatergic neurotransmission. 

Recently, KYNA and its novel pharmacokinetically favorable analogues demon-
strated beneficial effects in animal models of neurologic diseases including pathologic 
pain sensation, migraine, ischemic stroke, and epilepsy, neurodegenerative diseases, and 
psychiatric disorder including depression, anxiety, and addiction [23–39]. Accordingly, 
neuroprotective KYN metabolites, their analogues, the inhibition of Trp-KYN enzymes 
that are responsible for production of toxic metabolites, their use for biomarkers, and 
their interaction with adjacent biosystems are under extensive research [40–48]. 

The beneficial effects were detected when these molecules were peripherally ad-
ministered in an acute or semichronic manner with relatively high (millimolar) concen-
trations. Lower levels of KYNA were observed in patients with neurodegenerative dis-

Figure 1. KYNA influences neuronal and glial glutamatergic neurotransmission.

Recently, KYNA and its novel pharmacokinetically favorable analogues demonstrated
beneficial effects in animal models of neurologic diseases including pathologic pain sensa-
tion, migraine, ischemic stroke, and epilepsy, neurodegenerative diseases, and psychiatric
disorder including depression, anxiety, and addiction [23–39]. Accordingly, neuroprotective
KYN metabolites, their analogues, the inhibition of Trp-KYN enzymes that are responsible
for production of toxic metabolites, their use for biomarkers, and their interaction with
adjacent biosystems are under extensive research [40–48].

The beneficial effects were detected when these molecules were peripherally adminis-
tered in an acute or semichronic manner with relatively high (millimolar) concentrations.
Lower levels of KYNA were observed in patients with neurodegenerative diseases and
psychiatric disorders [3,6,32,49]. Those illnesses are generally characterized by alterations
in inflammatory mediators and mu-opioid receptor, and increased levels in neurotoxic
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Try-KYN metabolites, which, furthermore, lead to changes in the amygdala [50]. However,
manipulations to elevate KYNA levels have a potential risk of interfering with cognitive
functions. Indeed, elevated levels of KYNA in the brain or its chronic application in higher
doses are known to evoke cognitive impairment by inhibiting predominantly the gluta-
matergic system, a phenomenon having been linked to the pathophysiology of AD [51].
Furthermore, prenatal exposure of high levels of KYNA has also been experimentally
shown to be associated with sustained cognitive deficits, with implications to schizophre-
nia [52,53]. Therefore, it is essential to identify the doses of KYNA and KYNA-related
molecules to provide neuroprotection without any associated cognitive side effects.

In humans, KYNA is robustly synthesized in the endothelium and its serum levels
correlate with homocysteine, a risk factor for cognitive decline; recent studies have sug-
gested that a selective hippocampal increase in the KYNA level may be an important
factor contributing to KYNA-related cognitive impairment. Identifying the mechanisms by
which high KYNA levels in the hippocampal area may contribute to the deterioration of
cognition would provide insight that might be used to manage inflammation-associated
mental health disorders, including the discovery of new diagnostic and treatment therapies
for depression. Recently, several studies have suggested the effectiveness of noninvasive
brain simulation (NIBS) to interfere and modulate the abnormal activity of neural circuits
including the amygdala-mPFC-hippocampus, involved in the acquisition and consolida-
tion of memories, which are altered in psychiatric disorders, such as fear-related disorder,
including anxiety disorder, phobias, posttraumatic stress disorder, and depression [54–56].

Our previous studies did not detect any behavior impairment of animals when they
were treated intraperitoneally (i.p.) with millimolar doses of KYNA or its analogues [23,57].
The administration of KYNA and its analogues increased inducibility of long-term potentia-
tion (LTP) in the CA1 region in rats, indicating better hippocampal function [58]. However,
few data are available on the effects of a low dose KYNA. It was reported that KYNA
has a dose-dependent dual action on AMPA receptors; the nanomolar and micromolar
concentrations of KYNA could facilitate the responses of AMPA receptors via modulating
their desensitization, whereas the millimolar doses of this compound antagonized these
receptors [59].

It was demonstrated that KYNA was able to reduce the amplitudes of the field exci-
tatory postsynaptic potentials (EPSPs) in hippocampal slices of young rats at micromolar
concentrations, whereas the nanomolar concentrations evoked stimulation. Therefore,
KYNA as a ‘Janus-faced’ molecule may display different effects according to its concentra-
tion by acting on different receptors and through mechanisms [60]. A lower endogenous
formation of KYNA induces positive effects in cognition. Indeed, the role of the kynurenine
aminotransferase II (KAT II), an enzyme responsible for the endogenous KYNA synthesis
in the human brain, has been recently emphasized in the mechanisms of memory; activities
of KAT I and II showed age-dependent increase with an exception for KAT II in the frontal
cortex, which could be related to functional alterations in the PFC reported in psychiatric
and brain-damaged patients’ memory and learning abilities. Furthermore, recent studies
revealed that naturally occurring bilateral lesions in the human ventromedial PFC com-
promise the capacity of associative learning [61–63], suggesting that PFC dysfunctions
cause impairment of aversive learning and emotional memory circuits, which might be
transversal across many psychiatric disorders in humans [64]. Pharmacological inhibition
or genetic ablation of KAT II reduced KYNA levels in the brain and improved the per-
formance in working/spatial memory and sustained attention tasks in different animal
models [65–67]. The inhibition of KAT II, with a subsequent reduction in an endogenous
KYNA level, restores normal cognitive function; thus, a manipulation of KYNA levels
may be a promising therapeutic target in cognitive impairment associated with elevated
concentrations of KYNA in the brain.
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2. Materials and Methods
2.1. Experimental Animals and Ethics Statement

All animal experiments complied with the principles of animal care outlined in the in-
structions of the Ethical Committee for the Protection of Animals in Research of the Univer-
sity of Szeged (Szeged, Hungary), which specifically approved this study (XXIV/352/2012)
and the protocol for animal care approved both by the Hungarian Health Committee
(40/2013 (II.14.)) and by the European Communities Council Directive (2010/63/EU).
CFLP male mice (body weight 25–28 g) were used. The animals were kept and handled
during the experiments in accordance with the Regulations of the Faculty of Medicine,
University of Szeged, Ethical Committee for the Protection of Animals in Research. Five
animals per cage were housed under laboratory conditions with a 12 h dark/12 h light
cycle in a temperature-controlled room (24–25 ◦C) in the Laboratory Animal House of the
Department of Neurology in Szeged. Standard mouse chow and tap water were available
ad libitum.

2.2. Surgery

The mice were anaesthetized with 40% Euthasol (in a dose of 60 mg/kg administered
i.p.), and a plastic cannula was introduced into the lateral cerebral ventricle and fixed to the
skull. The animals were allowed to recover for 5 days. The correct location of the cannula
was controlled when dissecting the brain following the completion of the experiments.
Only animals with the correct location of the cannula were used in the evaluation of the
experiments. All experiments were performed during the morning period.

2.3. Materials

KYNA was purchased from Sigma-Aldrich Ltd. (Budapest, Hungary). The follow-
ing receptor blockers were applied: cyproheptadine, a nonselective 5-HT2 serotonergic
receptor antagonist, in a dose of 5 mg/kg (Tocris, Bristol, UK); phenoxybenzamine hy-
drochloride, a nonselective α-adrenergic receptor antagonist, in a dose of 2 mg/kg (Smith
Kline and French, Hertz, UK); naloxone, a nonselective opioid receptor antagonist, in a
dose of 0.3 mg/kg (Endo Lab Inc., Malvern, PA, USA), haloperidol, a D2, D3, D4 dopamine
receptor antagonist, in a dose of 10 µg/kg (Richter Gedeon Plc., Budapest, Hungary),
propranolol hydrochloride, a nonselective β-adrenergic receptor antagonist, in a dose
of 2 mg/kg (ICI Ltd., Macclesfield, UK), atropine sulfate, the nonselective muscarinic
acetylcholine receptor antagonist in a dose of 2 mg/kg (EGIS, Budapest, Hungary). The
effective doses of the receptor antagonists have been determined based on the previous
studies published and our previous work. The doses are calibrated in which no change in
tested behaviors is observable [68–70]. KYNA was freshly dissolved in 0.9% aqueous saline
solution and its pH was set to approximately 7.4 before use. The control animals received
only 0.9% saline solution.

2.4. Experimental Groups and Treatments

Animals in the pilot study were divided into 4 groups (1 control and 3 for the differ-
ent doses of KYNA applied). For the dose-effect examination, 7 groups were examined
(1 control and 6 for the different doses of KYNA applied). Animals for further studies
were divided into 24 groups (6 control, 6 KYNA, 6 for the different receptor blockers, and
6 combined groups) and the treatments were carried out following the training behavioral
test (post-trial) on the second day, as presented in Table 1. KYNA was administered through
a polyethylene tube with an external diameter of 1.09 mm (Becton Dickinson PE20) inserted
stereotaxically into the right lateral brain ventricle in a volume of 2 µL i.c.v. The different
receptor blockers were administered i.p. The dose of KYNA was selected based on the
results of the dose–effect study (Figure 2); only the most effective dose was used during the
different receptor blocker-testing experiments.
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Table 1. Protocol of passive avoidance test and treatments.

1th Day 2nd Day 3rd Day

Groups Trials Trial Post-Trial Treatments Measure

Control 3 × 2 min Footshock in
the dark part i.p. saline

30 min
later

i.c.v.
saline 300 s

KYNA 3 × 2 min Footshock in
the dark part i.p. saline i.c.v.

KYNA 300 s

Receptor
blockers 3 × 2 min Footshock in

the dark part
i.p. receptor

blocker
i.c.v.

saline 300 s

Combined 3 × 2 min Footshock in
the dark part

i.p. receptor
blocker

i.c.v.
KYNA 300 s
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2.5. Behavioral Test: Passive Avoidance

The passive avoidance test was performed as previously described in Palotai et al.
2016 [71–74]. On the first day of testing, the mice were placed on an illuminated platform
and were allowed to enter the dark compartment for 2 min. Since mice prefer the dark
to the light, they normally entered within 5 s. This session was repeated 3 times with all
animals, and an additional trial was performed on the following day. However, during
this second trial, when the mice entered the dark part of the box, an unavoidable but not
harmful mild electric footshock (0.75 mA, 2 s) was given through the grid floor. The gate
between the light and dark compartments was closed and the animal could not escape.
This learning trial was not repeated, but the mice were immediately removed from the
apparatus and treated. The consolidation of passive avoidance behavior was tested 24 h
later. Each animal was placed on the light platform and the latency to enter the dark
compartment was measured up to a maximum of 300 secundum.

2.6. Statistical Analysis

Following the analyses of normality and variance, parametric tests were used in all
cases of the receptor blocker measurements, but a nonparametric test was carried out
in the KYNA dose–response investigation. The one-way analysis of variance (ANOVA)
test was followed by Tukey post hoc test for multiple comparisons with unequal cell
size. Kruskal–Wallis rank sum test was followed by pairwise comparisons using Tukey
and Kramer (Nemenyi) test with Tukey-Dist approximation for independent samples.
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Probability values (p) of less than 0.05 were considered significant. The data in the plots
are presented as means ± SEM. The results (probability values) of treatments as presented
in Table 2.

Table 2. The doses and binding affinity of receptor blockers and p-values.

Receptor Blockers
(Doses)

Binding Affinity
(Ki)

Control
vs.

Receptor Blocker

Control
vs.

KYNA

KYNA
vs.

Receptor Blocker

KYNA
vs.

Receptor Blocker
Combined

Cyproheptadine
(5 mg/kg) 1–9 nM [75] p < 0.384 p < 0.013 p < 0.001 p < 0.002

Phenoxybenzamine
(2 mg/kg) 108 nM [76] p < 0.739 p < 0.002 p < 0.001 p < 0.001

Naloxone
(0.3 mg/kg)

1 nM
[77] p < 0.814 p < 0.022 p < 0.004 p < 0.006

Haloperidol
(10 µg/kg) 1.1 nM [78,79] p < 0.351 p < 0.014 p < 0.001 p < 0.003

Propranolol
(2 mg/kg) 8.7 nM [80] p < 0.711 p < 0.043 p < 0.003 p < 0.046

Atropine
(2 mg/kg) 0.5 nM [81] p < 0.998 p < 0.030 p < 0.041 p < 0.092

3. Results
3.1. Passive Avoidance Tests
3.1.1. Pilot Study

To determine the most preferable effective dose of KYNA in the cognitive processes,
10, 20, and 40 µg of KYNA dissolved in 2 µL saline was administered i.c.v. to the mice
(n = 5/group). In this preliminary experiment, we observed that 40 µg of KYNA sub-
stantially decreased the avoidance latency, whereas the lower doses did not significantly
influence this parameter, as compared with the control animals. These results suggested
that the positive cognitive effects of KYNA could be expected when administered in doses
lower than 10 µg (data not shown).

3.1.2. Dose–Effect Examination

Male mice were used (n = 10–27/group) to determine the dose of KYNA that could
significantly increase the avoidance latency. We investigated the effect of KYNA in doses
of 0.25, 0.5, 1, 2, 4, and 8 µg in 2 µL saline. The 0.5 µg of KYNA prominently elevated
the time until the animals entered the shock-associated dark part of the box, as compared
with the control group (p < 0.044). We concluded that KYNA in a dose of 0.5 µg improved
memory consolidation; therefore, this dose was used for further testing. Higher doses of
KYNA were associated with significantly shorter avoidance latency as compared with the
0.5 µg KYNA-treated group (2 µg KYNA vs. 0.5 µg KYNA, p < 0.013; 4 µg KYNA vs. 0.5 µg
KYNA, p < 0.001). Other doses did not significantly influence the avoidance behavior of
mice (Figure 2).

3.1.3. Examination of Different Receptor Blockers

In all cases, the 0.5 µg/2 µL dose of KYNA significantly increased the avoidance latency
of mice as compared with the healthy control group in the passive avoidance behavioral
test. All groups of the tested receptor blockers were associated with significantly shorter
avoidance latency as compared with the 0.5 µg KYNA-treated group. Furthermore, the
groups receiving combined treatments (KYNA plus different receptor blocker compounds)
were associated with significantly diminished time spent in the light part of the box, as
compared with the group treated with 0.5 µg of KYNA alone, except for the one receiving
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atropine (Table 2, Figure 3). Compared to the control group, the applied receptor blockers
did not influence remarkably the avoidance latency (in accordance with that previously
reported in [71–74]), whereas the latency values observed in the combination groups did not
differ significantly from those observed in the groups treated with the respective receptor
blocker alone (Table 2, Figure 3).

1 
 

 

  Figure 3. Cont.
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Figure 3. (a–c) The effects of different receptor blockers and their interaction with KYNA treatment in
mice in the passive avoidance test: Cyproheptadine, a nonselective 5-HT2 serotonergic receptor antago-
nist (a); phenoxybenzamine, a nonselective α-adrenergic receptor antagonist (b); naloxone, a nonselective
opioid receptor antagonist (c); * p < 0.05, the data in the plots are presented as means ± SEM. The
exact subject numbers per group are indicated in brackets below the corresponding bar in the plots.
(d–f) The effects of different receptor blockers and their interaction with KYNA treatment in mice in
the passive avoidance test. Haloperidol, a D2, D3, D4 dopamine receptor antagonist (d); propranolol,
a nonselective β-adrenergic receptor antagonist (e); and atropine, a nonselective muscarinic acetyl-
choline receptor antagonist (f); * p < 0.05, the data in the plots are presented as means ± SEM. The
exact subject numbers per group are indicated in brackets below the corresponding bar in the plots.
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4. Discussion

Preclinical translational animal studies play a major role in neuroscience research to
understand the roles of neuropeptides, neurohormones, and endogenous biomolecules in
the normal function of human life such as cognition, emotion, and social interaction, and
in pathological alterations developing into neurological and psychiatric disorders [82–97].
Various bioactive molecules are synthesized in the Try-KYN metabolic system. KYNA is
generally described as a neuroprotective molecule, but it is also suspected of being a culprit
of cognitive exacerbation in schizophrenia. Thus, the role of KYNA in cognitive function in
the brain remains inconclusive [3,48].

This study attempts to determine whether KYNA influences the cognitive function
positively in sufficiently low doses, to thus exhibit ‘Janus-faced’ property. The effects of low
doses of exogenous KYNA administered by the intracerebroventricular (i.c.v.) route were
examined in the passive avoidance cognitive test in mice, with special focus on memory
consolidation, retention, and retrieval functions. The possible target(s) and transmitter
system(s) involved in the observed effects of KYNA were evaluated by the application of
different receptor blockers.

In a previous study, Chiamulera et al. detected that the KYNA treatment did not
significantly change the avoidance latency in the passive avoidance tests in mice [98]. On
the other hand, Potter et al. observed that the KAT II knockout mice performed better on
the passive avoidance behavior test than their wild-type counterparts. The observation
was linked to elevated levels of KYNA in the brain and cerebrospinal fluid patients with
schizophrenia [67].

Our study confirms that KYNA influences the behavior of mice in the passive avoid-
ance test. While high doses (i.e., 40 µg/2 µL) significantly decreased the memory perfor-
mance of mice, a low dose of 0.5 µg/2 µL significantly enhanced the memory consolidation
of mice by increasing in the avoidance latency.

To assess the mechanism of KYNA action in neurotransmission, we apply various
receptor antagonists in combination (cyproheptadine for serotonergic neurotransmission;
benzamine hydrochloride for α-adrenergic neurotransmission; naloxone for opioid neuro-
transmission; haloperidol for dopaminergic neurotransmission; propranolol hydrochloride
for β-adrenergic neurotransmission; and atropine sulfate for muscarinic acetylcholine neu-
rotransmission). The receptor blockers prevented the action of KYNA on passive avoidance
learning, suggesting that the memory enhancement of KYNA is at least involved in sero-
toninergic, adrenergic, dopaminergic, and opiate systems, and implicating an indirect but
functionally significant crosstalk between the kynurenine pathway and these systems of
neurotransmission in the brain.

The glutamatergic synapse has decisive roles in cognitive brain functions (i.e., learn-
ing and memory); the role of NMDA receptors is important for triggering learning-
related plasticity, whereas the AMPA receptors are essential for the expression of synaptic
changes [58,99,100]. The activation of AMPA receptor-mediated neurotransmission am-
pakines was proposed as nootropics for mental disability, cognitive disturbances, and
memory impairment [101].

Our presumption is that the applied doses of KYNA and its targets have crucial roles
in the observed outcome effects. A shift in the balance of the Trp-KYN metabolic system
toward the relative excess of neurotoxic molecules such as quinolinic acid (QUIN) has
been implicated in the pathomechanisms of several neurological, neurodegenerative and
psychiatric disorders, including epilepsy, Huntington’s (HD), Parkinson’s (PD), AD, and
depressive disorder. Intervention to restore the balance or KYNA supplementation in the
brain has been widely linked to neuroprotective actions in animal models of various dis-
eases [102,103]. However, the influence of the KYN metabolites on certain diseases remains
controversial. A potentially protective dose of KYNA may cause cognitive impairment
via interfering with physiological NMDA- and AMPA-mediated currents [104,105]. In
line with these findings, two concepts emerge regarding the role of an elevated KYNA
levels in AD: a pathogenic factor in the development of memory impairment in AD and a
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compensatory mechanism against neurotoxicity [106]. Calibrating the equilibrium in the
Trp-KYN metabolic system appears to be a complex maneuver.

In healthy subjects, the concentration of KYNA is in the nanomolar and micromolar
ranges in the brain and the blood plasma, respectively; however, significant alterations
were observed in the concentrations of KYN metabolites in neurodegenerative diseases
associated with cognitive impairment [105,107]. Inhibitory effects of peripherally admin-
istered L-kynurenine (L-KYN) (single or daily repeated injections) were detected in rats
in several behavioral tests; however, these treatments were applied in higher doses (100
and 200 mg/kg i.p.) [108]. These effects may be attributed to the inhibition of ionotropic
glutamate receptors, for KYNA blocks both the AMPA and the kainate subtypes, and it
has the highest dose-dependent affinity for the strychnine-insensitive glycine-binding site
and the glutamate-binding site of NMDA receptors [7,109,110]. The antagonistic action can
also induce neuroprotection via the prevention of glutamate excitotoxicity, predominantly
through the inhibition of overactivated NMDA receptors localized extrasynaptically [105].

KYNA has dose-dependent dual effects on the AMPA receptors, for it exerts an
inhibitory effect in the micromolar concentration range, whereas it evokes facilitation in
low nanomolar concentrations [59,60]. The latter effect may be associated with a positive
modulatory binding site at the AMPA receptors. The possible molecular mechanisms were
detailed recently [111]. It can be hypothesized that the cognitive enhancing effect of KYNA
may be attributed to this partial agonism at the AMPA receptors with a sufficient low dose
of KYNA. It is suggested that a slight increase in the level of KYNA in the postsynaptic
area may exert a preferential inhibition on the extrasynaptic NMDA receptors, thereby
being able to protect against excitotoxic neuronal injury, while sparing or (in case of AMPA)
even facilitating the physiological synaptic glutamate receptor-mediated currents without
interfering with cognitive functions, or possibly even enhancing them (Figure 4).

The effects of cognitive enhancement by KYNA slightly resemble those of memantine,
a molecule with a noncompetitive antagonistic low-to-moderate affinity to the NMDA
receptors, which thereby has a modest beneficial effect on cognition [112–114]. Our results
support that KYNA may have a cognitive enhancer effect when applied in low doses.
However, KYNA is barely permeable to the blood–brain barrier (BBB) [115]. The injection
procedure applied in our study is far from physiological circumstances, but at present this
is the only method available to test the direct effects of KYNA. Our research group has
attempted to package KYNA into core-shell nanoparticles to facilitate the penetration of
KYNA through the BBB, thereby enhancing the concentration of KYNA in the brain [116].
The high doses of KYNA induced marked ataxia, stereotyped behavior, and muscular
hypotonia in a dose-dependent manner. The effects can be alleviated by i.c.v. pretreatment
with D-serine, a selective agonist at the strychnine-insensitive glycine binding site of the
NMDA receptor complex [117].

L-KYN in combination with probenecid, an organic amino acid transporter inhibitor,
improved the spatial memory in animal models of AD and PD [118,119]. The unwanted ef-
fects of KYNA and its analogues were tested in several behavioral tests such as spontaneous
locomotor activity, working memory performance, and long-lasting, consolidated reference
memory; however, the results showed that the higher concentration of KYNA in the brain
via the administration of KYNA or its analogue does not cause a perturbation of working
memory function or lead to impaired cognitive functions or any significant systemic side ef-
fect [23,57,120]. Additionally, an electrophysiological study revealed that one of the KYNA
analogues did not decrease but rather increased the potentiation of field EPSPs. It can
also be hypothesized that a partial agonistic effect of KYNA or its analogue on glutamate
receptors accounts for the paradox effect [58,60]. There are data indicating a relationship
between the adrenergic and KYN systems. Indeed, selective beta receptor agonists can
increase the cortical endogenous level of KYNA in rat brain slices and mixed glial cultures,
an effect that can be blocked by propranolol. This mechanism appears to be mediated by
cyclic adenosine monophosphate- and protein kinase A-dependent processes [121].
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Figure 4. Hypothetical mechanisms, receptorial and current alterations in normal conditions of
glutamatergic neurons and in the presence of KYNA in different dose. A slight increase in the level
of KYNA in the postsynaptic area may exert a preferential inhibition on the extrasynaptic NMDA
receptors, thereby being able to protect against excitotoxic neuronal injury.

Furthermore, the kynurenines and the dopaminergic systems are in a close relationship,
for specific inhibition of KAT II markedly reduces the firing activity of dopaminergic
neurons in the ventral tegmental area. The effect is proposed to be specifically carried
out by NMDA-receptors and mediated indirectly via a γ-aminobutyric acidergic (GABA)
disinhibition [122]. Trp is the common precursor for both serotonin and L-kynurenine.
Thus, alteration in the activity of the rate-limiting step of the Trp-KYN metabolic system
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influences the serotonin pathway as well. This is suggested in the pathomechanisms of
migraine, depression, and certain other psychiatric syndromes [123].

Finally, an indirect interaction may exist between the opioid and the KYN system. The
activity of opioid receptor-mediated G-protein activity decreased after chronic systemic
treatment with KYNA or its analogue in an animal study [16]. The widespread, complex
molecular interactions of KYNA with different receptors may underlie its variable dose-
dependent neuromodulatory effects and its significance in the processes of the central
nervous system. It would be essential to unveil the effects of low doses of chronically
administered KYNA by the systemic route. This would enable the identification the
appropriate methods and doses that may be associated with both neuroprotective and
cognitive enhancer effects without unwanted adverse effects.

5. Conclusions

Our results suggest that low doses of KYNA can facilitate learning and memory
consolidation, as revealed by an experimental cognitive paradigm in healthy mice. Further,
investigations are expected to reveal the potentially similar effects of low-dose KYNA in
other memory tests, and longitudinal studies with extended follow-up are warranted to
determine the effects of chronically administered KYNA in low doses. This approach may
represent a potential therapeutic tool in neurodegenerative diseases and chronic conditions
with associated cognitive impairments.
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Abbreviations

AD Alzheimer’s disease
AHR aryl hydrocarbon receptor
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
BBB blood–brain barrier
EAARs excitatory amino acid receptors
EPSPs excitatory postsynaptic potentials
GABA α-aminobutyric acid
GPR 35 G-protein-coupled receptor 35
HD Huntington’s disease
5-HT2 5-hydroxy-triptamin-2 receptor
KYNA kynurenic acid
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KYN kynurenine
KAT II kynurenine aminotransferase II enzyme
L-KYN L-kynurenine
LTP long-term potentiation
NMDA N-methyl-D-aspartate receptor
PD Parkinson’s disease
PFC prefrontal cortex
QUIN quinolinic acid
Trp Tryptophan
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