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Effects of Pooling in ParallelGlobal with Low Thread Interactions
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The first step toward a new version of Global is discussed. It is a fully distributed algorithm. While the
proposed implementation runs on a single machine, gossip based information sharing can be built into and
be utilized by the algorithm. ParallelGlobal shows a feasible way to implement Global on a distributed
system. Further improvements must be made to solve big real world problems with the algorithm.

Povzetek: Predstavljena je nova verzija algoritma Global z imenom ParallelGlobal.

1 Introduction

Global is an optimization algorithm built from multiple
modules working in an ensemble. While older implemen-
tations viewed the algorithm as a whole, the most recent
GlobalJ framework handles algorithms as a collection of
interlocking modules. GlobalJ has several implementations
for local search algorithms and variants of Global. Main
characteristics of the single threaded version were estab-
lished in [4]. In recent years Global was further devel-
oped [6] and it has several applications [5, 7] where it aids
mostly other research works. To speed up optimization pro-
cesses we developed an algorithm [1] that is capable of uti-
lizing multiple computational threads of a single machine.
It cannot be directly implemented for distributed systems
as the millisecond order of magnitude latency in communi-
cation would significantly slow down the synchronization
of threads. To mitigate this problem we propose Parallel-
Global, a parallel implementation suitable for distributed
systems with high latency or even with unreliable commu-
nication channels. In this paper we introduce an experi-
mental version whose main purpose is to test the feasibility
of the proposed solution. It provides an algorithm skeleton
for a real distributed implementation.

2 Global

Global is a global optimizer designed to solve black box
unconstrained optimization problems with a low num-
ber of function evaluations and probabilistic guarantees
[1, 2, 3, 4, 6, 8, 9, 11]. It uses local search algorithms to
refine multiple sample points hence Global is a multi-start
method. Global also utilizes the Single Linkage Clustering
algorithm to make an estimation about the values of sam-
ples from the aspect of optimization.

2.1 Updated global algorithm
While the updated Global algorithm has only minor
changes and in a lot of cases performs equally to the origi-
nal, it is superior in execution order, therefore we consider
it as the basis for improvements.

Global has an iterative framework where samples in an
iteration compete with samples of previous iterations. The
original version contains four phases in every iteration con-
sisting of sampling, reduction, clustering, and local search.
In the updated algorithm the clustering and local search
phases are merged by an implementation which alternates
them.

Algorithm 1 GLOBAL
1: while termination-criteria() is not true do
2: S ← S ∪ {uniform(lb, ub) : i ∈ [1, new samples]}
3: S ← sort(F (si) < F (si+1)), si ∈ S
4: R← {si : i ∈ [1, reduced set size]}
5: S ← S \R
6: while R is not ∅ do
7: for C in clusters do

8: dc ←
(

1− α
1

|clustered|+|R|−1

) 1
dim(F )

9: N ←
{
ri : dc > ‖ri − cj‖∞ ∧ F (ri) > F (cj)

}
10: if N is not ∅ then
11: C ← C ∪N
12: R← R \N
13: repeat iteration
14: end if
15: end for
16: l← local-search(r1 ∈ R)

17: Cl, dmin ← argmin
C∈clusters

∥∥∥∥∥l − argminci∈C,
F (ci)

∥∥∥∥∥
∞

18: if dmin < dc/10 then
19: Cl ← Cl ∪ {l, r1}
20: else
21: clusters← clusters ∪ {{l, r1}}
22: end if
23: R← R \ {r1}
24: end while
25: end while

Algorithm 1 describes the updated Global in detail. In
lines 2-5 the algorithm performs the sampling phase. Se-
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lection of sample points is random, using uniform distribu-
tion in the search space. The generated samples are placed
in container S which has a list structure. To find the most
promising samples, S is sorted and a reduced set of sam-
ples is acquired with the lowest function values. R contains
the reduced set, which is removed from S.

When samples are ready to be processed, in lines 6-
24 the algorithm alternates between clustering and local
searches while there are unprocessed samples left. At lines
7-15 samples in R are tried against the clustered samples.
To determine if ri ∈ R is part of cluster C we need the dis-
tance threshold dc. This depends on the dimension of the
objective function, the number of samples currently known
in the clustering process, and the α ∈ [0, 1] parameter. The
latter controls the decrease speed of dc while more samples
are added, in order to adapt to the expected decrease in dis-
tance between two random samples. With dc set, sample
pairs (ri ∈ R, cj ∈ C) are evaluated to determine if ri
is part of C. The two criteria are having a clustered sam-
ple cj with function value lower than ri and it being closer
with the infinity norm (Manhattan distance) than dc. Sam-
ples in R satisfying both of them are moved to the current
cluster C. When a point is clustered, all samples in R can
potentially be clustered too, therefore ri ∈ R is rechecked
against C. After the for cycle finished, samples in R can-
not be the part of an existing cluster, therefore performing
a local search is inevitable.

Local searches are performed in lines 16-23, where l is
the local optimum reached from r1. To determine if l is a
newly found local optimum, a comparison with the cluster
centers is needed. The center of a cluster is the sample
in the cluster with the lowest function value. By finding
the cluster with the closest center the algorithm can decide
whether the optimum is already found. If the distance dmin
to the clusterCl with the closest center is lower than a tenth
of the dc threshold, it is considered to be the same local
optimum. In this case l and r1 are added to Cl, otherwise
they form a new cluster. Since r1 is either in an already
existing cluster or in a newly created one, we can remove
it from R. The while loop in lines 6-24 repeats until R
becomes empty. With no unclustered samples left Global
finished an iteration. The number of executed iterations is
limited by the termination criteria.

3 ParallelGlobal

Our goal is to derive an implementation from the updated
Global which is multi-threaded with few interactions be-
tween threads. The necessity for few thread interactions
comes from the fact that on huge scale optimization tasks
a single computer is not sufficient and in multi-computer
environments the communication between machines is rel-
atively slow compared to inter-thread communication. We
address this problem by removing the synchronization of
computational threads and replacing it with a message
based information sharing scheme.

We can view ParallelGlobal as a naive parallelization of
Global. The main idea lies in the parallel execution of
Global iterations, while sharing information between com-
putational threads. Consequently, inter-thread communica-
tion is necessary, however only a few selected data con-
tainers have to be shared. Also, the shared containers have
independent data points and no deletions, therefore incon-
sistencies cannot arise from data insertions. These con-
siderations make the algorithm for distributed systems vi-
able. Luckily information gathering techniques of Global
can be maintained with messaging, therefore results almost
always apply to ParallelGlobal as well.

3.1 ParallelGlobal worker
Algorithm 2 describes the ParallelGlobal worker which is
the implementation of a single computational thread. The
worker might run on a machine by itself, or multiple work-
ers can use the multi-threaded environment of a computer.

Algorithm 2 ParallelGlobal
1: while termination-criteria() is not true do
2: exchange-data()
3: S ← uniform(lb, ub)
4: R← reduce (S)

5: dc ←
(

1− α
1

|clustered|+1−1

) 1
dim(F )

6: for C in clusters do
7: N ←

{
ri : dc > ‖ri − cj‖∞ ∧ F (ri) > F (cj)

}
8: C ← C ∪N
9: R← R \N

10: end for
11: rmin ← argmin

ri∈R
F (ri)

12: l← local-search(rmin)

13: Cl, dmin ← argmin
C∈clusters

∥∥∥∥∥l − argminci∈C
F (ci)

∥∥∥∥∥
∞

14: if dmin < dc/10 then
15: Cl ← Cl ∪ {l, rmin}
16: else
17: clusters← clusters ∪ {{l, rmin}}
18: end if
19: end while

Similarly to Global, ParallelGlobal also runs in a loop to
complete iterations until a termination criterion is met. Un-
like Global, the new algorithm needs a data exchange step
(line 2). At the start of every iteration, received messages
can be processed and new messages can be sent according
to a suitable policy. The messages contain evaluated data
points arranged into clusters. These clusters can be handled
as if they were evaluated locally by clustering the center
point (minimizer point) of the cluster. If the center point
corresponds to an existing cluster, the two clusters should
be merged while duplicate points are filtered out. Other-
wise, the received cluster describes a previously unknown
local optimum and it can be added to the existing clusters
without modifications.

Lines 3 and 4 perform sampling and reduction. In pre-
vious Global versions sampling and reduction was per-
formed by taking a randomized sample set, then using a
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sorted sample pool and taking the best samples out. Par-
allelGlobal cannot utilize efficiently a fully synchronized
common pool due to the distributed nature of the system.
In this version we envisioned simple solutions providing a
similar effect to a shared pool. Also with more complicated
solutions closer approximates are possible. The evaluated
implementations are discussed in Subsection 3.2.

In lines 5-10 the clustering occurs. It is very similar to
the original clustering algorithm. The only change is that
we know that no more than one sample is in R. This is also
true for the local search (lines 12-18) which is identical
with the local search part of the original.

3.2 Current implementation
The current implementation of ParallelGlobal only simu-
lates the described functionality with some simplification.
First, it runs on a single machine with multiple threads as
a single program. Second, messaging is simulated by syn-
chronization on the given containers while they are writ-
ten, but reading operations happen simultaneously. During
clustering, the cluster list is only read to a point determined
before the process starts, hence new clusters will be ex-
cluded from already started searches. This also resembles
the effects of messaging, like delays and losses in infor-
mation spread. Because no real messaging is present, the
exchange-data() function is only a placeholder for now.

To evaluate the differences between Global and Parallel-
Global in more depth, we implemented the latter with two
kinds of reduce() functions. The naive pool-less imple-
mentation ignores the reduce() function, in every iteration
it creates a sample that is evaluated with clustering, and
then (if not clustered) with local search. The ’pooled’ im-
plementation simulates the sample pool and reduction by
generating a local pool. Along with Global, we use the no-
tion of the sample reducing factor. Global generates a num-
ber of samples and takes a fraction of that number from the
common pool. Pooled ParallelGlobal creates samples such
that one sample has to be picked according to the fractional
reduction.

Beyond these pooling and sample reduction strategies
much more exist, for example taking a single sample ev-
ery iteration and using random sample reduction, possibly
aided with spatial measures on the samples information
value. A more complex but possible solution would be a
distributed sample pool. Samples could be transferred be-
tween local pools over reliable data connection. This would
ensure that a sample is only evaluated by a single worker
and would create a bigger variety of samples to choose
from.

4 Results
The algorithms were examined from two aspects; compari-
son in the number of function evaluations and scaling of run
time with additional threads. Numerical results were ob-
tained on the following functions, definitions can be found
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Figure 1: Numeric results of the poolless version on the
Shubert (left) and Spikes (right) functions.

in [10]. Ackley, Discus, Easom, Griewank, Levy, Rastrigin,
Schaffer, Schwefel, Shekel-5, Shekel-7, Shekel-10, Shubert,
Spikes1, and Zakharov. For the evaluations we used two ter-
mination criteria, the maximum number of function evalu-
ations is 105 which is a soft condition therefore overshoot
is possible. To check whether an optimum point is reached
we use the expression

|F (x∗)− F (x)| < 10−8 + |F (x∗)| · 10−6,

where x∗ is a known global optimum point and x is the
point in question. To emulate computationally more ex-
pensive functions we defined the hardness level. A hard-
ness level of H means that the function will be evaluated
for 10H microseconds at the requested point. Please note
that microsecond level timings can be inaccurate and only
have effect in trends, while at the millisecond scale the tim-
ings show the real 10x factor.

Global is a stochastic optimizer, moreover Parallel-
Global is also affected by the operating system’s thread
scheduling, consequently run times and the number of
function evaluations can differ largely from one optimiza-
tion process to the other. To reduce the noise induced by
this, we obtained data points by averaging the results of
100 runs with every configuration. The algorithm parame-
terizations were identical except for the number of threads.

On the left side of Figure 1 we show results for Pool-
less ParallelGlobal on the Shubert test function, namely
the number of function evaluations (NFEV) and the speed
of the optimization process (1/runtime), both relative to
Global. On the horizontal axes we see the number of

1Spikes function definition:

f(x) =

{
1000, if ‖x− (15.25, 15.75)‖2 ≤ 1

4

1002 + Πxisin(2πxi), otherwise
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threads. The vertical axes show the number of function
evaluations and optimization processes run in unit time re-
spectively, both divided by the result of Global on a sin-
gle core. H0 to H3 denotes the hardness value for the
given data series. Shubert is a function with many local
optima and a flat global trend. In case of Global, NFEV
is mostly in the [500, 2000] range with an average of 900.
On the top-left graph relative NFEV shows that we have
an increase with a factor of two. On a single thread the
multiplier of 21 = 2 shows that the algorithm is by itself
inferior to Global. This static multiplier is explained by
the lack of a sample pool which could reduce the neces-
sary number of local searches. They give the bulk of the
NFEV and while Global uses 5 local searches on average
ParallelGlobal needs much more, around 18. The dynamic
growth is also explained by the local searches, combined
with multi-threading. Finding the global optimum with lo-
cal search takes several function evaluations in sequence.
Since multiple threads start local searches independently,
more evaluations can happen until one of them reaches the
global optimum. Moreover when the optimum is found, the
program does not terminate immediately, all local searches
have to finish. This phenomenon increases the NFEV due
to the intrinsic usage of multi-threading and local searches.

The bottom-left subgraph of Figure 1 shows the speedup
with additional threads and different hardness values.
While for H0 and H1 the additional threads caused a slow-
down due to synchronization time and increased NFEV,
on computationally more demanding versions we achieved
a significant speedup. The results are promising because
for the hardness value of 3 on a single thread a function
evaluation took only 1ms on average. With higher evalua-
tion times, the additional computational power would have
more effect.

On the right side of Figure 1, we show the results for the
Spikes test function which also has many local optima and
a flat global trend. Poolless ParallelGlobal suffers from the
lack of a sample pool on the Spikes function too. On the
other hand, no dynamic change in NFEV is experienced.
Without a sample pool ParallelGlobal had a much harder
time finding the global optimum, which would often ex-
ceed the 105 NFEV limit. This resulted in close to constant
NFEV and saturation of threads only on low hardness val-
ues. Based on the relative speed graph, we gain speed lin-
early with additional CPU power on higher hardness levels.
Since the function is very cheap to evaluate and Parallel-
Global has to do much more evaluations, only H2 and H3
gives an advantage to the multi-threaded implementation.

On the left side of Figure 2 we show results for Pooled
ParallelGlobal on the Shubert and Spikes test functions. As
before the NFEV and execution speed is examined, relative
to the same data on Global.

Pooled ParallelGlobal halved the NFEV on one thread,
then grew to 16 times the single thread value. This phe-
nomenon is independent of hardness, and hence curves
closely match on the top-left subgraph. The single thread
NFEV is halved because Global takes a set of 400 sam-

PooledParallel on Shubert

2
−2

2
−1

2
0

2
1

2
2

2
3

2
4

 1  2  4  8  16

P
a

ra
lle

l 
÷

 G
lo

b
a

l

NFEV Relative to Global on Shubert

H0
H1
H2
H3

2
−3

2
−2

2
−1

2
0

2
1

2
2

 1  2  4  8  16

P
a

ra
lle

l 
÷

 G
lo

b
a

l

Threads

Speed Relative to Global on Shubert

H0
H1
H2
H3

PooledParallel on Spikes

2
−1

2
0

2
1

 1  2  4  8  16

P
a

ra
lle

l 
÷

 G
lo

b
a

l

NFEV Relative to Global on Spikes

H0
H1
H2
H3

2
−1

2
0

2
1

2
2

2
3

2
4

 1  2  4  8  16

P
a

ra
lle

l 
÷

 G
lo

b
a

l

Threads

Speed Relative to Global on Spikes

H0
H1
H2
H3

Figure 2: Numeric results of the pooled version on the Shu-
bert (left) and Spikes (right) functions.

ples in every iteration and then uses another 400 samples to
find the optimum summing to 800 NFEV. Pooled Parallel-
Global takes only 27 samples per iteration and also needs
around 400 samples to find the optimum summing close
to 400. The NFEV almost exactly grows with the num-
ber of threads, pointing to the failure of job parallelization
in a way when effectively the same job is done by every
thread. This is supported by the fact, that for this configu-
ration the number of local searches matches the number of
threads, and hence no parallelization is possible. This hap-
pens on functions where the optimum is found by a single
local search, or less local searches than threads.

As the left bottom graph of Figure 2 shows, the speed
gain with additional threads in case of Shubert is coun-
tered by the NFEV and further decreased by the thread
synchronization. An interesting feature is the higher rela-
tive speed with higher hardness levels, regardless of thread
count. This is caused by the limit of the evaluation timing
when applying hardness. Timing of low complexity func-
tion evaluations can be very inaccurate and constant over-
heads in execution exist, causing a non-linear relationship
between NFEV and runtime. This effect evens out lower
hardnesses and smaller NFEVs more. With a T1H0 con-
figuration (1 thread, 0 hardness) we have an execution of
110 FEVs and 27 ms runtime. The same setup also ex-
ecuted with 1186 FEVs and 59 ms runtime which is 10
times the evaluations but only twice the runtime. This ef-
fect is almost negligible with H3 configurations. Unlike the
Poolless version, the execution speed decreases with added
threads, even with higher hardnesses. This is also caused
by multiple factors interacting. The Poolless version on
a single thread uses on average 16 local searches which
means that 16 simultaneous local searches will have almost
the same effect, pushing up the number of local searches
with additional threads slightly. The poolless version uses
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Figure 3: Relative runtimes on all test functions with 16 threads and hardness 3.

around 3000 FEVs with 16 threads that are almost entirely
used in local searches. On the other hand the pooled ver-
sion uses only 3 local searches on a single thread and over
3 it closely matches the number of threads. On 16 threads
1500 FEVs in 16 local searches are needed but 8000 FEVs
are necessary in total. This shows that the addition of the
sample pool both helped and worsened the optimizer for
this particular type of function.

The top right graph of Figure 2 shows what we stated
above; the pooled implementation erased the 21 multiplier
in NFEV, it evened the Global and ParallelGlobal algo-
rithms. Similar to the Poolless implementation we have
close to linear speedup with additional threads with hard-
ness 3 and significant speedups on lower hardness values.
On this function optimizers need a lot of local searches,
therefore ParallelGlobal managed to accelerate the process.

We deliberately chose Shubert and Spikes to showcase
a good and bad scenario for the single thread and parallel
optimizers as well. Shubert can be solved with few longer
local searches, while Spikes needing only random sampling
is the exact opposite. Figure 3 shows the overall picture on
all of the tested functions.

On Figure 3 we show relative runtimes for the configu-
ration of 16 threads and hardness 3 (T16H3) on every test
function. Since the plot is logarithmic, 20 and values below
mean similar and better results compared to Global. Error
bars show the minimum and maximum data points from
the averaged 100. On the functions which experienced
slowdown either the lack of a sample pool or the intrin-
sic properties of ParallelGlobal prevented gains in speed.
More than 50% of the functions with speedup were solved
successfully, in these cases the NFEV limit had no effect.

5 Conclusion
We came to multiple important conclusions about the Par-
allelGlobal algorithm. The most needed change is the
implementation of a distributed sample pool with sample
sharing between threads. Having a set of probe points in
the search space ensures that local searches only start from
promising regions. This change moved the algorithm much
closer to the NFEV values of Global.

Many of our results show slowdown with ParallelGlobal,
but huge improvements as hardness values increase, as we
have seen on the Spikes function. To keep our run times
manageable we kept the hardness value relatively low. By
going up from the current millisecond order to the second
or 10 second order in function evaluations we would have a
clearer image on how much speedup can we achieve. This
would still undershoot the evaluation time of many prac-
tical problems, however it would be sufficient for proper
testing on distributed systems.

To achieve these improvements, first the addition of a
distributed framework is needed. Both the sharing of probe
samples and cluster information would rely on it. It is also
a key for testing on computationally expensive problems.
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