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Graphical Abstract

The MM500 meta-study aims to establish a knowledge basis of the tumor pro-
teome to serve as a complement to genome and transcriptome studies. The
melanoma proteome landscape, obtained by the analysis of 505 well-annotated
melanoma tumor samples, is defined based on almost 16 000 proteins, includ-
ing mutated proteoforms of driver genes. This data covers 65% and 74% of the
predicted and identified human proteome, respectively.
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Abstract
The MM500 meta-study aims to establish a knowledge basis of the tumor pro-
teome to serve as a complement to genome and transcriptome studies. Somatic
mutations and their effect on the transcriptome have been extensively charac-
terized in melanoma. However, the effects of these genetic changes on the pro-
teomic landscape and the impact on cellular processes in melanoma remain
poorly understood. In this study, the quantitative mass-spectrometry-based pro-
teomic analysis is interfaced with pathological tumor characterization, and
associated with clinical data. The melanoma proteome landscape, obtained by
the analysis of 505 well-annotated melanoma tumor samples, is defined based
on almost 16 000 proteins, including mutated proteoforms of driver genes.
More than 50 million MS/MS spectra were analyzed, resulting in approximately
13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding
genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation
sites, and 4 400 acetylation sites were successfully annotated. This data covers
65% and 74% of the predicted and identified human proteome, respectively. A
high degree of correlation (Pearson, up to 0.54) with the melanoma transcrip-
tome of the TCGA repository, with an overlap of 12 751 gene products, was found.
Mapping of the expressed proteins with quantitation, spatiotemporal localiza-
tion, mutations, splice isoforms, and PTM variants was proven not to be pre-
dicted by genome sequencing alone. The melanoma tumor molecular map was
complemented by analysis of blood protein expression, including data on pro-
teins regulated after immunotherapy. By adding these key proteomic pillars, the
MM500 study expands the knowledge on melanoma disease.

KEYWORDS
acetylation stoichiometry, BRAF, driver mutations, histopathology, metastatic melanoma,
phosphorylation, posttranslational-modification, proteogenomics
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1 INTRODUCTION

Malignant melanoma is the deadliest of skin cancers1.
Incidence has increased dramatically over the past three
decades, outpacing almost all other cancers.2–4 Early diag-
nosis and surgical excision cures most patients; however,
some patients suffer from metastatic disease with a poor
prognosis. During the last decade, modern drugs have dra-
matically improved the outcome with a median survival
increasing from months to years.5–9
The development of kinase inhibitors targeting the

mutated serine/threonine-protein kinase BRAF, such as
vemurafenib, dabrafenib, and encorafenib, have provided
significant improvement. Mutations located at BRAF posi-
tion 600, where the V600E accounts for 90% of the cases,
have been associated with increased tumor proliferation,
mainly by dysregulation of MEK/ERK receptors.10–12 The
BRAF inhibitors have been combined with cobimetinib,
trametinib, and binimetinib that target MEK, another
member of the mitogen-activated protein kinase (MAPK)
signaling pathway. This treatment modality has led to
improved overall and progression-free survival.13–16
Parallel advances of the understanding of molecu-

lar mechanisms of T cell activation and inhibition and
immune homeostasis allowed for the development of
checkpoint inhibitors.17,18 The therapy targets key regu-
lators of the immune system that restrain T cells from
full and persistent activation and proliferation under nor-
mal physiologic conditions, but are used by cancer cells
to evade the immune response. The best-known examples
are monoclonal antibodies that block CTLA-4 and PD-1.
These were the first class of therapies shown to improve
the overall survival for patients with advanced melanoma,
with long-term, durable tumor regression becoming a real-
ity for some patients.19
The existing drug treatments outlined above can pro-

long survival in metastatic melanoma in more than 50%
of patients.20,21 However, the majority of patients relapse,
due to lack of response and development of resistance. The
resistance may develop due to multiple mechanisms, such
as tumor cells evading inhibition by promoting alterna-
tive survival pathways, mutational events, and changes in
the tumor microenvironment.22–25 Clonal expansion due
to inherent tumor heterogeneity is important in the con-
text of resistance development.26–30
The Cancer Genome Atlas (TCGA) recently presented

a genomic and transcriptomic study with an implication
and impact ofmutation and genomic classification of cuta-
neous melanoma31 (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga).32
However, mapping the expressed proteins with quan-
titation, spatiotemporal localization, mutations, splice
isoforms, and posttranslational modifications (PTMs)

HIGHLIGHTS

∙ Amelanoma proteome landscape, complement-
ing genome and transcriptome studies.

∙ Mass-spectrometry-based analysis of almost
16 000 tumor proteins, PTM variants, driver
mutations, and missing proteins, reaches 65%
and 74% of the predicted and identified human
proteome, respectively.
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cannot be predicted by genome sequencing alone.1 In the
present MM500 study, we outline together with the TCGA
transcript expressions, the proteogenomic signature map
generated from 505 well-annotated melanoma samples.
This achievement will also allow the development of
open-source bioinformatics tools to access and further
mining the data by the scientific community.

2 RESULT AND DISCUSSION

This publication belongs to a series of two on the Human
Melanoma Proteome sent for publication in Clinical and
Translational Medicine. Both are integral parts of the
MM500 study. The other manuscript is entitled “The
Human Melanoma Proteome Atlas—Defining the Molec-
ular Pathology”. It describes the anatomical sites from
which the tumors were isolated, the clinicohistopathologi-
cal features of the cohort, a detailed histological character-
ization of the samples, and introduces the protein profiles
of analyzedmelanoma tumors including the chromosomal
and cellular localization, as well as the differential expres-
sion of proteins in melanoma cultured cell lines and in tis-
sues with high levels of tumor cells or stroma.
The present proteogenomic melanoma study integrates

a comprehensive proteomic analysis with the genomic
data from TCGA. The mass spectrometry-based pro-
teomics is based on the amino acid sequence of all pro-
teins expressed in patient tumors. The results from the
MM500 study are dependent on the detailed knowledge
of the human genome and its modifications in melanoma
with a direct bearing on protein function.33,34
The workflow process undertaken in the MM500 study

includes tumor tissue handling, sample preparation, LC-
MS/MS analysis, and data processing are outlined in Fig-
ure 1. This molecular pathology process workflow has

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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F IGURE 1 Comprehensive view of proteomic workflows used in the MM500 study. (Upper panel) 505 melanoma tissue samples and
four cultured cell lines were analyzed. 1549 LC-MS/MS experiments produced a proteomic signature of melanoma based on the quantification
of 15 973 protein groups representing more than 360 000 nonredundant peptides. (Sample preparation) Several protocols were used which
included protein extraction in the presence of urea or SDS with the aid of a Sonifier or a Bioruptor, followed by manual or automatic
enzymatic digestion. (Global proteomics) This was performed using both DDA and DIA. DDA data was generated by TMT 11-plex technology
combined with high pH RP-HPLC fractionation; by SCX stepwise separation of peptide mixtures, by the analysis of fractions derived from the
MED-FASP method, and also by shotgun proteomics. (Acetylomics) DIA-MS was used to determine naturally occurring protein acetylation
sites. This was achieved by modifying protein-free lysine e-amino groups with deuterium-labeled acetyl groups, which upon MS peptide
identification and quantitation allowed distinguishing chemically labeled acetylation from endogenous acetylation.80 (Phosphoproteomics)
Enrichment of phosphopeptides was performed in the Bravo AssayMap robot110 and isolated phosphopeptides were directly analyzed by DDA
or DIA. (Spectral Libraries of DIA-MS) MS/MS spectral libraries for DIA-MS global proteomics acetylomics and phosphoproteomics were
built out of DDA-LC-MS/MS data. This included shotgun analysis of the very same samples submitted to DIA-MS, of other samples from
melanoma tissues and cultured cells used in this meta-study, as well as the analysis of a mixture of these samples previously fractionated by
high pH RP-HPLC. (Shotgun analysis) Individual samples were submitted to LC-MS/MS analysis either in DDA or DIAmodes. (Data analysis)
The programs Proteome Discoverer and Spectronaut were used throughout all the experiments for protein identification and quantitation



BETANCOURT et al. 5 of 25

F IGURE 2 The Melanoma Protein Abundance Map. LC-MS/MS data was first normalized across batches of analysis in the MM500
study. (A) Violin plots showing the distribution of intrabatch coefficients of variation for the 45 proteins, identified in 100% of the samples and
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been extensively automated with high-end technology
platforms.

2.1 Global quantitation of the
melanoma proteome

The MM500 cohort was processed and analyzed in subse-
quent sample batches for both, global proteomic and phos-
phoproteomic quantitative studies. These multiple data
sets were combined to estimate a median abundance for
every protein. Raw abundance measurements were first
log2 transformed and the median value for all the proteins
in each sample was subtracted. Next, 45 proteins with the
lowest variability (CV < 60%) and commonly identified
across all sampleswere selected (Figures 2A and 2B). These
proteins were strongly correlated with biological processes
and molecular functions that primarily included regula-
tion of cellular component organization, regulation of pro-
tein localization, and cytoskeleton organization; indeed,
acting as housekeeping proteins. Protein abundance nor-
malization was then performed in each batch of analysis
by subtracting themedian abundance for these 45 proteins.
The box-plots of the protein abundances of all the sam-
ples before and after the normalization procedure are illus-
trated in Figure 2C. The data showed a good level of nor-
malization that adequately corrected for different sample
processing or other technical biases. Finally, the protein
relative abundances in the melanoma proteome were esti-
mated taking into account the median abundance across
the MM500 in the normalized dataset.
The procedure described above enabled ranking of

all identified proteoforms in the global proteomics and
the PTMs analysis based on their relative abundance in
melanoma. In total 15 973 identified proteoformswere plot-
ted, including the mutated proteins BRAF, NRAS, and
CDKN2A (Figure 2D and Table S1). This analysis enabled
direct positioning of the protein expression of melanoma
driver mutations35 with wild-type (WT) proteins and ver-
ification on the frequency of detection within the tumors

isolated from patients. WT IDH1 and WT RAC1 had the
highest expression and were present in almost all tumor
samples. The WT variants of BRAF, TP53 and the sub-
units p16-INK4a and p14ARF of CDKN2A were quanti-
fied in 362 (72%), 152 (30%), 256 (51%), and 159 (32%) of
the tumor samples, respectively. On the other hand, pro-
teins bearing driver mutations, including BRAF V600E,
NRAS Q61K/R, and p16-INK4a P114L, had lower abun-
dance and were identified in considerably fewer samples
than the corresponding WT proteins (Figure 2D). It also
became apparent that in discovery proteomics the detec-
tion of key mutations in melanoma can only be achieved
through deep mining experiments where 10 000 or more
proteins are identified. Overall, the data output presented,
displays the expressed protein abundance of melanoma in
a range of approximately six orders ofmagnitude and allow
to extensively map and quantify biological pathways dys-
regulated duringmelanoma development and progression.
The majority of the proteins identified in this study were
quantified in a high number of samples (Figure 2D).
The most abundant proteins are involved in key func-

tions in the cell, such as proteins involved in cytosolic ribo-
some and translation, the cytoskeleton, metabolic path-
ways such as glycolysis and biosynthesis of amino acids
and proteins from the transcription machinery. Besides,
the high-abundance melanoma proteome is significantly
enriched in mitochondrial proteins, particularly those
linked to the energy production through the TCA cycle and
oxidative phosphorylation, highlighting themitochondrial
function dependence. These findings provide evidence to
further explore mitochondrial pathways as potential ther-
apeutic vulnerabilities in melanoma.36–38 Oppositely, the
melanoma low abundant proteome is composed by pro-
teins involved in the regulation of transcription and other
related processes, and signaling cascades. Not surprisingly
a large set of the low-abundance proteins were reported
as integral components of the membrane which are gen-
erally difficult to identify due to their hydrophobicity,
and they are usually underrepresented in global proteome
studies.

with less than 60% of variation in all batches. (B) Box plots of the relative abundance of the 45 less variable proteins in each batch. The median
abundance in each batch was used for inter-batch abundance correction of the melanoma proteome. (C) Box plots of protein relative
abundance across all samples of the the study, before (top panel) and after (bottom panel) intra- and interbatch abundance normalization
using the 45 proteins with the lowest variability. (D) Distribution of the malignant melanoma proteome ranked according to protein
abundance across all samples (left y-axis) and the number of samples where the protein was identified (right y-axis). Proteins were
represented by the gene names. The lines point to WT protein products of genes with driver mutations in melanoma. Proteins involved in
pathways commonly dysregulated in melanoma, proteins with known driver mutations, and proteins linked to melanoma therapy are marked
in different colors as indicated. The number in parentheses specifies the designated isoform of the protein. A typical example is the protein
Transforming acidic coiled-coil-containing protein 1, where the canonical protein TACC1, the isoform 2 TACC1(2), and isoform 4 TACC1(4)
were quantified. A more complex example is represented by the gene CDKN2A that codes for the canonical proteins p16-INK4a and p14ARF
being both quantified, together with the isoform 4 of the former (CDKN2A (4) p16-INK4a) and the mutated protein p16-INK4a P114L. At the
edges of the plot are highlighted enriched pathways for high- (red) and low- (blue) abundance proteins
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F IGURE 3 Comparison of MM500 melanoma proteome, TCGA melanoma transcriptome, and the Human proteome. (A) Overlapping
of transcripts (TCGÀ), identified melanoma protein-coding genes (canonical proteins) and the human proteome (NextProt). In NextProt,
proteins are categorized in a PE1-PE5 structure, in acceptance within the scientific community
(https://www.uniprot.org/help/protein_existence),114 with five types of evidence for the existence of a protein: (1) experimental evidence at
protein level; (2) experimental evidence at transcript level; (3) protein inferred from homology; (4) protein predicted; (5) protein is uncertain.
(B) Correlation relationships between mRNA and mean protein expressions. Scatter plot of median intensity of the proteins identified in this
study versus the median intensity of transcripts coming from RNA sequencing data from 443 melanoma tumors downloaded from the TCGA
repositories. RNA sequencing data were classified according to the number of samples where the transcript was detected. The Pearson
correlation and best-fitting curve were provided for the whole dataset and those transcripts quantified in more than 99% of the samples. Both
datasets were scaled to the range between 10 and 35. (C) Representation of the 1D KEGG annotation enrichment of the differences between the
median intensity in all samples of the transcripts and the proteins. Bars indicate the level of enrichment according to a Benjamini-Hochberg
FDR truncation strategy. Blue correspond to pathways overrepresented for proteins relatively more abundant than their transcripts and Red
bars correspond to pathways overrepresented in those transcripts showing relatively more abundance than their corresponding protein.
Pathways were sorted based on their KEGG classification. The 1D annotation enrichment analysis was performed under the Perseus platform

2.2 RNA-protein overlap and
comparison with the human proteome

The detected 15 973 proteoforms accounted for the identifi-
cation of 13 176 different protein-coding genes. These were
compared with the available transcriptomic data from 443
melanoma tumor tissues in the TCGA repository. Here, we
selected the 17 431 transcripts, corresponding to 17 368 dif-
ferent genes, with at least ten reads from theRNA sequenc-

ing (Figure 3A). We found that nearly than 400 protein-
coding genes identified in this study were not detected at
the transcript level. These set of “orphan” proteins were
plotted based on their abundance and number of sam-
ples that where they were detected (Figure S1A). The
results showed that most of these proteins were identified
in large number of samples and across a large range of
abundances. The functional annotation enrichment anal-
ysis and protein interaction network reveal that these

https://www.uniprot.org/help/protein_existence
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proteins mostly come from mitochondrial genome coded
proteins, the extracellular space and from blood (Figure
S1B). Transcripts originated in the mitochondrial matrix
were not analyzed in the RNA sequencing data from the
TCGA repositories ofmelanoma tumors (see data and code
availability under Materials and methods). The present
data on melanoma proteome includes 12 out of the 13
proteins produced in the mitochondria. The identifica-
tion of proteins acting in the extracellular space could be
attributable to the diverse tissue compositions between the
TCGA and the MM500 cohorts, since we did not impose
any filter in the cell content of the samples. The blood pro-
tein origin for some of the proteins was confirmed by the
detection of more than 100 of these proteins (mostly anti-
bodies) in a pool of blood plasma of melanoma patients
(see Section 2.8). The absence of transcript counterparts
in the TCGA dataset for antibodies, histones, and pro-
teins of the MHC complex I/II could also be explained
by the sequence variabilities of these proteins across indi-
viduals. Interestingly, HLA proteins are also known to
be heavily mutated in several cancers and particularly in
melanoma.39,40 Moreover, the exclusion of transient tran-
scripts with less than 10 reads from the TCGA dataset,
should also be considered, which was the filter applied to
the RNA sequencing data.
The RNA sequencing dataset contains 4617 transcripts

that had no protein counterpart in the MM500 melanoma
data, which could indicate that a fraction of the melanoma
transcriptome has very low or absent translation, or tight
regulation of their protein stability. This observation can
also be partially explained by the fact that these datasets
were derived from different tumor cohorts, suggesting the
expression of a fraction of themelanomaproteomenot cap-
tured within the MM500 meta-study. These analyses were
contrasted with the 20 350 annotated human genes (Fig-
ure 3A). It was found that 2608 proteins included in the
full human proteome were not identified in the present
melanoma data, nor were any corresponding transcripts
detected in the TCGA data. Most of these proteins (74%)
are part of the so-called missing proteins and classified as
PE2 (696 proteins with evidence at the transcript level in
other studies), PE3 (551 proteins with sequence similari-
ties), PE4 (104 proteins with in silico prediction) and PE5
(551 proteins derived from pseudogenes or with dubious
information). The remaining 26% are classified as PE1; that
is, they do have strong experimental evidence supporting
their identification. These results should be put into per-
spective to the entire MM500 study. The 13 176 protein-
coding genes identified in melanoma samples covered
65% and 74% of the predicted and identified human pro-
teomes, respectively. Besides, when complemented with
the TCGA data, altogether transcriptomic and proteomic
data in melanoma have provided evidence for 87.3% and

99.4% of the predicted and the identified human pro-
teomes, respectively.

2.3 MM500—NextProt and TCGA
database annotations frommelanoma
tumors

Next, the protein relative abundance from MM500 global
proteomics (15 530 proteoforms, 12 878 different genes) was
compared with the melanoma tumors mRNA expression
levels from the TCGA repository. The relative abundance
of the transcripts in melanoma was calculated based on
the mean across all the samples, similar to the proteomic
data in the MM500 study. A total of 12 751 gene products
were commonly identified in both datasets. By plotting the
abundance of proteins and transcripts a significant positive
correlation of 0.44 was observed. This result is in line with
previous findings onprotein-mRNAexpression correlation
inmammalian cells.41 Moreover, when taking into account
transcripts detected in 99% of the samples the correlation
rises to 0.54 (Figure 3B). Despite the high correlation, some
proteins showed a disproportional higher abundance than
their corresponding transcripts. Not surprisingly, in this
group we found proteins from blood, for example albu-
min and all subunits of hemoglobin, represented in Fig-
ure 3B. Also, most of the histone variants were overrep-
resented in the melanoma proteome, which is indicative
of the low clearance rate of these proteins. Interestingly,
several MHC protein elements were underrepresented in
relation to their corresponding transcripts, highlighting an
important aspect of melanoma development and progres-
sion by modulating the antigen presentation at the protein
level.
To better understand the disparities between the

melanoma transcriptome and proteome a functional
annotation enrichment analysis using the differences in
abundance between proteins and transcripts was per-
formed. According to the KEGG pathways annotations,
the melanoma proteome is overrepresented in most of the
metabolic pathways, particularly, those linked to energy
and proliferation intermediates production, including the
metabolism of amino acids. Oppositely, when compare to
the transcriptome, the melanoma proteome is underrep-
resented in genetic and environmental information pro-
cessing related pathways, including signaling pathways
and cellular processes (Figure 3C). The antigen process-
ing and presentation, which plays a critical role in the
immune system response, was underrepresented in the
proteome. In this sense, the melanoma strategy to down-
regulate at the translational level the antigen presenta-
tion, allows the progression of the disease by evading the
immune surveillance.42
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F IGURE 4 Identification of mutated variants of NRAS and WT NRAS by mass spectrometry. (A) Assigned MS/MS spectrum of the
TMT-labeled peptide QVVIDGETCLLDILDTAGK corresponding to the mutation NRAS Q61K. (B) Assigned MS/MS spectrum of the
TMT-labeled peptide QVVIDGETCLLDILDTAGR corresponding to the mutation NRAS Q61R. (C) Assigned MS/MS spectrum of the
TMT-labeled peptide QVVIDGETCLLDILDTAGQEEYSAMR of WT NRAS. The Q61K/R mutations introduced an additional trypsin cleavage
in the sequence of the WT protein, rendering shorter mutated peptides lacking the C-terminal part (-EEYSAMR) of the WT peptide sequence

2.4 Missing proteins

Recently, we reported mass spectrometry evidence and
associationswith cancer-related functions for 33 novel pro-
teins from well-characterized 140 metastatic melanoma
samples that were also included within the MM500
cohort.43 Here, new mass spectrometry data for 26 new

“missing proteins were added after the analysis of the
505 melanoma samples” (Table S2). The new proteins
are distributed as PE2 (n = 20), PE3 (n = 2), and
PE5 (n = 4), (Figure 3A). Three of them were identi-
fied with at least two uniquely mapping peptides with
length ≥ 9 amino acids (AA), which is in agreement
with the Human Proteome Project (HPP) interpretation
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TABLE 1 Summary of mutations identified in this study

Gene Mutation Identified peptideb # PSMsc

BRAF V600Ea IGDFGLATEK 8
NRAS Q61Ka QVVIDGETCLLDILDTAGK 12

Q61Ra QVVIDGETCLLDILDTAGR 3
G12A LVVVGAAGVGK 1

KRAS G13D LVVVGAGDVGK 1
c-KIT N566D VVEEINGDNYVYIDPTQLPYDHK 1
CDKN2A P114La LLVDLAEELGHR 1
GNA11 N266K SSVILFLNK 3

aMutation identification supported by previous genomic studies on the samples.
bSubstituted amino acid is highlighted in red.
cPeptide Spectrum Matches indicates the number of MS/MS spectra that were assigned to the mutated peptide.

guidelines for missing proteins (https://www.hupo.org/
HPP-Data-Interpretation-Guidelines).44 In contrast, 19
(73%) out of these 26 proteins were also identified as tran-
scripts in melanoma tumor samples. Notably, the Small
Proline-rich protein 4 was identified for the first time, with
two peptides ≥ 9 AA. In the present study, a total of eight
proteins from the family (SPRR1 to SPRR4) were identi-
fied, all of them also identified at the RNA level. To the
best of our knowledge, there is little evidence of the identi-
fication of this family of proteins in melanoma samples.45
The SPRRs proteins are encoded by a multigene family
clustered within the epidermal differentiation complex on
human chromosome 1, and have been associated with the
progression of several types of tumors such as colorectal,
breast, and brain tumors.46,47

2.5 Identification of melanoma protein
mutations

Large-scale genetic studies have provided important land-
scapes of mutations in melanoma. Mutations may alter
the amino acid sequence of the proteins, which in turn
can potentially affect the protein folding, stability, abun-
dance, function, interactionswith other proteins, subcellu-
lar localization and may be related to disease progression.
Little is known about the protein expression of mutations
in melanoma, most probably due to low abundance and
technology limitations.
In melanoma, the main driver mutation, which is

responsible for at least 50% of melanomas, is BRAF
V600E. BRAF is a kinase that activates the MAPK sig-
naling pathway through the phosphorylation of MAP2K1.
Mutated BRAF is constantly activated which promotes
proliferation signals in the cell. Other melanoma driver
mutations are also involved in the regulation of this
pathway, as is the case of mutated NRAS and MAP2K1.

The clinical relevance of the BRAF V600E mutation in
melanoma is well known and understood. BRAF V600E
mutation analysis at the DNA level in melanoma sam-
ples is used to select patients who could respond to
BRAF inhibitors.48 Noteworthy, the drugs developed are
directed toward the mutated protein and not to the cor-
responding gene. It is not fully known to which extent
the BRAF V600E gene is translated into protein and
the association between the levels of the target pro-
tein and therapy efficacy has not been characterized in
detail. Recently our group published data to support a
link betweenBRAFV600Emutated protein andmelanoma
patient survival.49
We explored our ability to identify melanoma key

mutations by including amino acid sequences containing
known driver mutations of the disease in the database
used for protein identification. The applied strategy iden-
tified eight of these mutations in six proteins (Table 1, Fig-
ures 4 and S2). Except for BRAF V600E (Figure S2E), this
result constitutes the first report of identification by mass
spectrometry of these mutations at the protein level in
melanoma tumor samples.
Four mutations in two members of the RAS family, the

small GTPase proteins NRAS and KRAS were identified.
Figures 4A, 4B, S2A, and 4C show the MS/MS spectra
corresponding to peptides QVVIDGETCLLDILDTAGK61,
QVVIDGETCLLDILDTAGR61, LVVVGA12AGVGK and
QVVIDGETCLLDILDTAGQ61EEYSAMR of NRAS with
the mutations Q61K, Q61R, G12A, and the peptide without
mutation at Gln61, respectively. NRAS is the second
most prevalent oncogene after BRAF in melanoma and
has been found mutated in 15%-30% of cases.31 NRAS
mutations at positions Gln61 and Gly12 are among the
most frequently observed for this gene. They cause an
altered GTPase activity that keeps NRAS activated, which
induces a constitutive activation of the MAPK pathway
with cell proliferation, dysregulation of the cell cycle, and

https://www.hupo.org/HPP-Data-Interpretation-Guidelines
https://www.hupo.org/HPP-Data-Interpretation-Guidelines
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activation of other pro-survival pathways.35 Melanoma
patients with mutated NRAS have different features
compared to those harboring BRAF mutations: they are
older, have a history of UV exposure, have thicker primary
tumors, and a higher rate of mitosis.50 KRAS mutations
have been observed in approximately 2% of cases in
cutaneous melanoma. The G13D mutation, detected in
the peptide LVVVGGD13GVGK (Figure S2B) is rather rare
and known to decrease GTP binding and its hydrolysis.51
To date, despite the extensive efforts to target these genes,
therapeutic inhibition of RAS has failed.
CDKN2A (cyclin-dependent kinase 2A) is the major

high-penetrance susceptibility gene with germline muta-
tions identified in 20%-40% of melanoma families.52 The
CDKN2A gene encodes two proteins, p16 (INK4A) and p14
(ARF), with both function as tumor suppressors by regu-
lating cell growth and survival. We identified the peptide
LL114VDLAEELGHR correspondng to the mutation P114L
in p16-INK4a (Figure S2C).The p16-INK4a P114L is one
of the most frequently recurring mutations for CDKN2A
in melanoma tumors53 and it is known to confer a loss of
function to the proteins.54
We also identified the peptide 267SSVILFLNK268, which

provided indirect evidence of the mutation N266K (Fig-
ure S2D) in the highly homologous proteins GNA11 (gua-
nine nucleotide-binding protein subunit alpha-11) and
GNAQ (Guanine nucleotide-binding protein G(q) subunit
alpha). The unlikely cleavage by trypsin atAns266 (the pre-
ceding amino acid to the identified peptide) suggested the
presence of the mutation N266K, which generated a spe-
cific cleavage site such as a Lys residue for the enzyme.
GNA11 acts as a molecular switch for G-proteins and plays
an important role in the hydrolysis of guanosine triphos-
phate (GTP).
Mutations in GNA11 have been associated with activa-

tion of the MAPK pathway and cell proliferation in uveal
melanoma.55–58 Although rare, the occurrence of GNAQ
and GNA11 mutations in nonuveal melanoma, like in the
present study, has been documented. It has been found that
metastatic GNA11 mutant nonuveal melanomas respond
poorly to available systemic therapies, including immune
checkpoint inhibition, which points to the urgency of
novel therapeutic approaches for these tumors.59
Finally, we have tentatively assigned

the c-KIT N566D mutation in the peptide
VVEEINGD566NYVYIDPTQLPYDHK. The c-KIT gene
encodes a tyrosine kinase receptor, involved in both the
MAP kinase and AKT pathways, which are intimately
involved with cell proliferation and survival.60,61 Intra-
cellular signaling through KIT plays a critical role in
melanocyte development. For the last ten years, it has had
an emerging role as an oncogene and therapeutic target
in melanoma.62–64 KIT mutations are found in only 3%

of all melanomas but a disproportionate amount of KIT
aberrations has been identified in melanoma arising from
chronically sun-damaged skin in acral andmucosal tissue;
the N566D mutation being among the most commonly
found in this gene.65,66 KIT mutations are nearly always
mutually exclusive with NRAS or BRAF and thus define
a unique subtype of melanoma. The N566D mutation
was detected by automated protein identification but this
could not be fully confirmed by manual interpretation
of the MS/MS spectrum like in the above-mentioned
mutations.
The detection of the mutations BRAF V600E, NRAS

Q61K/R, and CDKN2A-p16(INK4A) P114L was also sup-
ported by previous analysis of DNA and RNA of the tumor
samples.67,68 This served as validation of the mass spec-
trometry detection and allowed a precise quantification of
these mutations. The results suggest that driver mutations
are expressed at a lower levelwhen comparedwith the con-
stituent proteins of the melanoma proteome map outlined
in our study (Figure 2D).

2.6 Posttranslational modification
(PTM) analysis

Two prevalent covalent posttranslational modifications
(PTM) of proteins are phosphorylation on serine, threo-
nine, and tyrosine residues, as well as acetylation of the
lysine residues.69–71 These events are crucial for the cell
machinery and signaling pathways, which may include
crosstalk between the PTMs and even become key regu-
lators with link to cancer disease.72–77

2.6.1 Phosphoproteome

The phosphoproteome of 200 melanoma tumor samples
comprising primary tumors and lymph node metastases
was analyzed. Overall 52 605 phosphospeptides, including
mono- and multiply phosphorylated peptides were identi-
fied in 6939 proteins (Figures 5A-5B and Table S4). These
proteins were matched to 6793 unique coding genes. Inter-
estingly, this melanoma phosphoproteome contributed
with 470 additional proteins to the melanoma proteome
reached through global proteomics experiments. The
melanoma phosphoproteome is distributed throughout
the whole protein abundance range. Moreover, a fraction
of the phosphoproteome correspond to very low-abundant
proteins that were only detected after phosphopeptide
enrichment (Figure 5B). Besides, the mapped phospho-
proteome is widely distributed across most of the cellular
pathways and processes, including all described signaling
pathways dysregulated during melanoma development
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F IGURE 5 Melanoma phosphoproteome and kinome analysis. (A) Number of identified mono-, di- and multiphosphorylated peptides.
(B) Abundance distribution of the melanoma proteome phosphoproteome and acetylome. The relative abundance of the proteins was
calculated based on the quantitative proteomic data, with the exception of the 439 proteins that were only detected after phosphopeptide
enrichment. In that case the abundance was calculated from the phosphopeptides identified. (C) Distribution of the melanoma
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and progression (Figure 5C). Particulary for the MAPK
phosphorylation signaling cascade, the phosphorylation
sites in the majority of intermediates and effector proteins
were found.

2.6.2 Melanoma kinome

Protein kinases are essential executors of phosphorylation
events in signal transmission, and their comprehensive
analysis can offer significant understandings of biological
mechanisms. Altered expression or activity of kinases is
often involved in disease processes such as immunodefi-
ciencies, endocrine disorders, and cancers. Consequently,
protein kinases have been extensively studied to identify
drug targets for therapy, define new biomarkers, or dis-
cover drug efficiency related biomarkers.
The melanoma kinome was described based on com-

putational kinase-specific phosphorylation site prediction
from the phosphoproteome data and direct proteomic
kinase identification. We found 38 392 phosphopeptides
linked to 210 phosphorylation motifs (Figure 5D and Table
S5), which translated into the prediction for 244 kinases
(Table S6). As an example,MAPK3 andMAPK1 (ERK1 and
ERK2), two important kinases known to be involved in
melanoma development and progression, were predicted
based on the identification of 695 and 1408 phosphorylated
peptides respectively. In total, the phosphorylated peptides
were mapped to 65 different substrate proteins highlight-
ing the fact that most of these proteins are targeted by
ERK1/2 in multiple sites. The protein interaction network
of the identified ERK1/2 substrates reveals that a large
subset of these proteins is already reported as ERK1/2
targets. Moreover, the functional annotation enrichment
analysis exposes a role of ERK1/2 in the regulation of crit-
ical signaling cascades for cancer cells such as the MAPK,
ErbB, mTOR, HIF-1, and PI3K-Akt pathways, and also in
the regulation of the actin cytoskeleton (Figure S3). On
the other hand, 425 kinases were directly identified in the
melanoma proteome data generated (Figure 5E). Overall,
the melanoma kinome data covered more than 84% (522)
of the defined human kinome. Identified and predicted
kinases were displayed in a dynamic force-directed
kinome network using Coral,78 encoding qualitative
kinase attributes in branch and node colors. The kinases

were rather evenly distributed across all major classes of
this protein family (Figure 5F, Table S7).

2.6.3 Lysine acetylome

The lysine acetylome was analyzed for 60 melanoma
tumor samples including primary tumors, andmetastases.
For the identification of site-specific acetylated proteins
full chemical acetylation of free amino groups followed by
trypsin digestion of the modified proteins was performed.
Generated peptides were delimited by arginine residues
because trypsin cannot cleave after acetyl-lysine residues,
thus resembling the results of Arg-C-like digestion. Chem-
ically incorporated acetyl groups carried heavy isotopes
to differentiate them from endogenous acetylation. This
strategy allows not only the identification of site-specific
lysine acetylation sites but also the quantification of their
occupancy.79,80
Among the analyzed samples, 16 correspond to primary

melanoma, 23 to lymph node metastases, and 21 to metas-
tases found in other organs. The results did not showmajor
differences in terms of identification of acetylated peptides
or the distribution of their site-specific occupancy (Fig-
ure 6A). The number of acetylated peptides by samples
ranged from 200 to 2000, which depended on the total
number of identified peptides (Figure 6A). Despite of a
wide range of identified peptides, the distribution of the
acetylation occupancy, represented as violin plots, were
very similar across all samples under study. In total we
identified 4421 acetylated peptides corresponding to 2325
proteins (Table S1). The abundance distribution of acety-
lated proteins showed a shift toward the high abundant
proteins (Figure 5B), which is linked to a technical lim-
itation of current MS instruments and the fact that the
vast majority of acetylation sites show low occupancy (Fig-
ure 6A).
On average, the acetylation site occupancy was below

15% in the majority of the samples. These findings are in
agreement with previous results reported by our group
and others.79–82 Metabolic pathways such as glycolysis, the
TCAcycle, and amino acid and fatty acidmetabolism,were
significantly enriched in the melanoma acetylome (Fig-
ure 6B). Coincidently, these pathways have been found
dysregulated in melanoma with important implications

phosphoproteome based on enriched KEGG pathway analysis. (D) First 20 phosphorylation motifs in the output list of the motifeR software.
(E) Venn diagram of the melanoma kinome comprising the kinases directly identified in this meta-study and kinases predicted based on
detection of phosphorylation motifs of identified phosphosites, both covering a comprehensive part of the human kinome. (F) Kinome
network mapping based on direct identification of kinases and computational kinase-specific phosphorylation site prediction. Kinases
identified, predicted, identified/predicted, and not found have different color nodes and are clustered in different categories based on the
branch color
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F IGURE 6 Distribution of the acetylome identified in melanoma tumors. (A) Violin plots showing the distribution of the site-specific
acetylation occupancy (acetylation stoichiometry [%], left axis) of peptides in the 60 samples submitted to acetylome analysis. The samples
were grouped according to their origin: primary tumors (red), lymph node (blue), and other metastases (green). The number of acetylated
peptides identified in each sample is represented with red dots and connected lines within origin based groups (no. of acetylated peptides,
right axis). (B) KEGG pathways significantly enriched in the melanoma acetylome. Bars correspond to the number of acetylated proteins
involved in the annotated pathway. The enrichment –log(P value) represented as red dots was plotted for each pathway annotation (right axis)

to the progression of the disease83 (Figure 6B). Previous
reports have also pointed at pathways and proteins regu-
lated by acetylation, which were also found enriched in
our melanoma acetylome. These included ribosomes, pro-
teins involved in the translation machinery, transcription,
and RNA processing at different levels.83,84 Furthermore,
our differential analysis between transcriptomics and pro-
teomics revealed a disparate enrichment for most of these
pathways (Figure 3C), which might indicate a potential
role for acetylation in the stability of target proteins.
Our findings confirm that lysine acetylation is a

widespread PTM and regulate an increasing number of
biological pathways and processes. The melanoma acety-
lome provides the foundation to better understand the reg-
ulatory mechanisms driven by acetylation and controlling
enzymes, and to explore new therapeutic opportunities.

Both phosphorylation and acetylation regulate a large
and increasing number of proteins with known implica-
tions in the pathogenesis of melanoma.

2.7 Drug therapy directed signatures of
protein expression

Protein profiling studies that involve mass spectrometry-
based proteomics have been utilized to analyse and
evaluate the regulation of proteins under various con-
ditions including therapy, elucidate molecular mecha-
nisms, and determine the status of protein networks in
melanoma.85,86 In the MM500 study we identified 35 pro-
teins recognized as dysregulated in tumors of melanoma
patients under different treatment schemes.86–88 All these
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proteins have also been detected at the transcription
level (according to the TGCA repository) in melanoma
tumor (Figure 7A, top panel, yellow colour [RNAseq]).
A functional annotation clustering performed with these
proteins (https://david.ncifcrf.gov/home.jsp), revealed
three major functional clusters related to immunity,
extracellular activities and signalling respectively (Fig-
ure 7A, bottom panel). Nine of these proteins, which were
previously reported by our group as also associated with
melanoma treatment88 were here identified in more than
350 (> 70%) samples (Figure 7A, top panel, indicated in
magenta colour). Notably, the proteins SRSF3, PLG, FGG,
C3, and SERPINA1 have also been related to survival in
melanoma patients.68 According to the functional anno-
tation clustering, these proteins are mostly extracellular
and associated with cell signalling in the case of C3, with
immune response (Figure 7A, bottom panel). Two of the
main treatment approaches used in melanoma include
strategies to target the CTLA-4 protein and Programmed
Death-1/Programmed Death Ligand-1 (PD-1/PD-L1). In
our data, PD-L1 (CD247) was successfully identified in 147
melanoma samples (Figure 7A, top panel). However, the
protein PD-1 (PDCD1) was only identified in one sample
andwewere unable to identify CTLA-4, despite of the large
number of samples studied and LC-MS/MS experiments.
According to the Peptide Atlas (http://www.peptideatlas.
org, “24 November 2020, date last accessed”),89 these two
proteins have only been reported once in independent
mass spectrometry studies.90,91 Consequently, we followed
the 24 proteins identified by Harel et al86 as proteomics
signatures of the melanoma response to immunotherapy
(Figure 7A, top panel, indicated in green colour). These
proteins were detected in 173 samples of our study, and a
fraction of them (19) were identified in 357 samples. The
functional annotation clustering revealed that they are
related to immune response, interferon-gamma signalling,
MHC 1 and 2 complexes, among others (Figure 7A, bottom
panel).

2.8 Protein expression signature in
pooled plasma

Blood sampling and automated fractionation into plasma,
serum, lymphocytes, and erythrocytes, were conducted
within the study. Fifteen percent of the entire sample set
was mapped in pooled plasma. Within this sample set,
approx. 8505 peptide sequences were annotated, resulting
in more than 1000 identified proteins (Table S8). These
results constitute the first plasma proteome profile of
melanoma patients, performed by our pooling principle.
The plasma proteins identified were widely distributed
according to their class and cellular function (Figure 7B).

By relating to all FDA-approved plasma biomarkers, the
present data verified 63% of these disease markers.92
Most of the proteins identified in plasma were detected

at both the transcript and protein levels in the melanoma
tumors (Figure 7C). We hypothesize that proteins originat-
ing fromblood plasmawere not detected in RNASeq exper-
iments of tissue samples. These proteins (112 in total) were
identified with lower frequency in tissue samples than the
rest of the proteins (Figure 7D and Table S8). For exam-
ple, 45%of the proteins originating fromblood plasmawere
present in 252 (approx. 50%) of the tissue samples whereas,
in this same number of samples were detected 74% of the
plasma proteins with transcript evidence. We found that
less than 3% of the proteins identified in each melanoma
tissue sample originated from blood plasma, and for 85% of
the samples, these proteins represented less than 1% of all
the identifications (Figure 7E). Overall, 84% of the proteins
originating from blood plasma identified in the analysis
of tumor samples were immunoglobulins. Though sample
preparationmay have influenced the crossed identification
of plasma proteins in tissue samples, other factors includ-
ing the vascularization and immune components should
be considered, as they reflect important aspects of tumor
development in interaction with the microenvironment.
Interestingly, the proteins identified by both transcrip-

tomics and proteomics of melanoma tumors have previ-
ously been identified in exosomes93 (http://www.exocarta.
org/).94 Thus, a major part of the proteins annotated in the
plasma samples may be of exosome origin. The exosomes
are membrane-bound extracellular vesicles of endothe-
lial origin, and there is a growing interest for exosomes
as potential clinical use as biomarkers. Despite emerging
evidence of bioactive material transport by exosomes in
melanoma, the functions of exosomes in cancer progres-
sion remains fundamentally unknown.95–97

3 CONCLUSIONS

By analyzing a wide range of well-characterized primary
and metastatic tumors, a “Melanoma Protein Blueprint”
was built. In comparison to the recent publication “High-
Stringency Blueprint of the Human Proteome,”1 cover-
ing 90.4% of the human protein-coding genes, the current
study of themelanoma proteome has an overlap of approx-
imately 74% with the observed human proteome.
A database was established that covers proteins that can

be expected in any melanoma, whether these are primary
or metastatic and could be used in further research for
the identification of prognostic and predictive factors in
melanoma. The potential impact of the present dataset
under the clinical treatment cycle of a typical melanoma
patient is visualized in Figure 8.

https://david.ncifcrf.gov/home.jsp
http://www.peptideatlas.org
http://www.peptideatlas.org
http://www.exocarta.org/
http://www.exocarta.org/
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F IGURE 7 Melanoma therapy-associated proteins and blood plasma protein profiles from pooled patient samples. (A) Distribution of 35
therapy-associated proteins identified in our samples (Top panel).The bar length indicates the number of MM500 tumor samples where the
proteins were identified. The bottom panel shows a functional clustering of these proteins. The analysis was performed including nine
proteins previously described by our lab as responders to several drug treatments, two well-known treatment-targeted proteins (CD274,
PDCD1), and a signature of 24 proteins described by Harel et al (2019) as markers of response to immunotherapy.80 (B) Box-plot of quantified
proteins in plasma, related to the protein classes, and functions. The abundances were calculated according to NSAF criteria. (C) Pie chart
representation of the 1000 proteins identified in an a pool of blood plasma of melanoma patients. The figure single out specific fractions that
have been identified in proteomic or transcriptomic studies on MM tissues as well as those related to exosomal expression. (D) Representation
of plasma proteins distribution among tissue samples. The x-axis represent the percentage of plasma proteins categorized as proteins
originating from blood plasma (in red “only in Proteomics of MM tissues”) or proteins identified in blood plasma and also expressed in MM
tissues (in blue “Proteomics and RNASeq of MM tissues”). The y-axis represents the percentage of MM tissue samples where the plasma
proteins were identified. The intersection points marked in red represent the percentage of samples (30%, 50%, and 80%) where the plasma
proteins were identified. (E) Distribution of protein originating from blood plasma across MM tissue samples. The x-axis represents the tissue
samples and y-axis represents the percentage of proteins originating from blood plasma that were identified in MM samples (100 × (# proteins
originating from blood/total number of proteins in MM tissue))
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F IGURE 8 The Proposed impact of the MM500 study data under the clinical treatment cycle, where the patient from a healthy state
enters into a progressive disease evolvement process. The first indication of early melanoma disease onset is discovered by an image capture,
for example, CT (high resolution), and/or MR, accompanied by a genomic mutation signature, along with protein localization and expression.
Assignments of posttranslational modifications, as well as pathway biology activations, and histopathology characterizations added to the
disease status. Based on the diagnosis output, a dedicated and optimized drug treatment is presented to the patient. The melanoma disease
cycle is reinforced upon metastasis development, that entails a resistance build up

With the 15 973 expressed proteins within theMelanoma
Proteome, a remarkably high fraction is dedicated to cell
division, splicingmechanisms, andmetabolism, highlight-
ing the biological challenge of maintaining normal protein
function and structure in cancer. One finding suggests that
the mitochondrial function is of particular importance in
melanoma.98–100
Our study also indicated that several mutations asso-

ciated with genomic classification and drivers of the dis-
ease, are expressed at very low levels in melanoma tumors.
Hence, approaches such as targeted proteomics in combi-
nation with peptide fractionation or enrichment protocols
should be used to overcome this barrier, and successfully
identify and quantify more of the keymutations at the pro-
tein level in melanoma.
In summary, a comprehensive analysis of the over-

all proteome in melanoma is presented, based on well-
annotated tumor tissues combined with blood samples.
This molecular signature data in combination with the
in-depth histopathological characterization of the tumors
may support the discovery and development of key
biomarkers as well as new drug development.

4 MATERIALS ANDMETHODS

Note: Chemicals, reagents, tissue specimens, sample
preparation for mass spectrometry, LC-MS/MS analysis
and protein identification were similar, and performed as
described in the manuscript “The Human Melanoma Pro-
teome Atlas—Defining the Molecular Pathology Expres-
sion,” submitted to this same journal. In addition, sev-
eral methods were additionally introduced in the present
manuscript: Immunodepletion of the 14 most abun-
dant proteins from plasma; automated, phosphopeptide
enrichment by Fe(III)-IMAC-based workflow; data anal-
ysis for melanoma phosphoproteome, acetylome, and
kinome.

4.1 Chemicals and reagents

Dithiothreitol (DTT), iodoacetamide, ammonium bicar-
bonate (Ambic), ammonium hydroxide, sodium doce-
cylsulphate (SDS), trifluoroacetic acid (TFA), sodium
deoxycholate (SDC), tris(hydroxymethyl)aminomethane
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(Tris), formic-acid, and urea were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Triethylamonium bicar-
bonate (TEAB) and hydroxylamine were from Thermo
Fisher Scientific. Water and organic solvents were all
LC-MS grade and supplied by Merck (Darmstadt, Ger-
many) or (Thermo Fisher Scientific). Endoproteinase
Lys-C was obtained from Wako (Osaka, Japan) and
sequencing-grade modified trypsin was purchased from
Promega (Madison, WI, USA). Cell lines SK MEL2 (HTB-
68), SK MEL28 (HTB-72), and RPMI-7951 (HTB-66) were
obtained from the American Type Culture Collection
(ATCC).

4.2 Tissue specimen

Tumor samples were obtained from University clinics
in Sweden and Hungary (Table S1A-B of the manuscript
“The Human Melanoma Proteome Atlas—Defining
the Molecular Pathology Expression”). All studies were
approved by the local ethical committees; at Lund Univer-
sity, Southern Sweden (DNR 191/2007, BioMEL biobank
101/2013, 2015/266 and 2015/618), at Semmelweis Uni-
versity, Hungary (191-4/2014), and University of Szeged,
Hungary (MEL-PROTEO-001). All patients provided writ-
ten informed consent. The malignant melanoma primary
and metastatic tissue samples were snap-frozen within
30 minutes after surgical resection with a small amount
of isopentane in liquid nitrogen or put on dry ice within
20 minutes of collection. Multiple pieces were collected
from most of the tumor specimens. The source of the
analyzed tissue samples and patients who provided them
was as follows: Lund University Hospital 289 samples
from 147 patients, Semmelweis University Hospital 165
samples from 75 patients, and Szeged University Hospital
51 samples from 10 patients.
Fresh-frozen tissues collected at LundUniversity Hospi-

tal were stored in theMelanoma biobank, BioMEL, Region
Skåne, Sweden. Tissues collected at sites in Hungary were
stored at the respective biobanks of Semmelweis Univer-
sity and the University of Szeged. Samples transportation
from Hungary was carried out in liquid nitrogen for the
tissues or put on dry ice for the blood samples. In the case
of formalin-fixed paraffin-embedded (FFPE) samples, the
fixation of tumor tissues was performed right after surgery
with 4% cc. buffered formaldehyde. Samples were then
dehydrated in xylene/alcohol solution and embedded into
paraffin and stored at room temperature. Sections of 10 μm
were used for further analysis. The study has been per-
formed in compliance with GDPR.
All tumors were processed with integrated Biobank-

ing consolidations within all involved medical centers.

The workflow was built according to Swedish biobank-
ing laws and best practices and guidelines provided
by the BBMRI-ERIC, ESBB, and ISBER (https://www.
bbmri-eric.eu/services/quality-management).101 The pro-
cess flow enabled rapid sample handling whereby col-
lected tissues were stored at an ultra-low temperature in a
biobank at a cycle time of approx. 20 minutes. Using the
same data management system and database reconnais-
sance, sample integrity was ensured via electronic surveil-
lance. The patient and sample processing workflow and
protocols were transferred and integrated at all of the clini-
cal centers and interfacedwith theRedCapdatabase (https:
//www.project-redcap.org/).102

4.3 Cell cultures

For cell culture, melanoma cell lines (SK-MEL-2,
SKMEL28, and VMM1) were purchased from Ameri-
can type culture collection (ATCC). All cell lines were
cultured and maintained in the standard conditions
and recommendations according to the manufacturer’s
instructions. In detail, SK-MEL-2 and SKMEL28 were
maintained with DMEM (Dulbecco’s modified Eagle’s
medium) supplemented with 10% fetal bovine serum
(FBS) and penicillin-streptomycin (P/S).VMM1 were
maintained with RPMI-1640 supplemented with 10% FBS
and P/S. All cells were maintained at 37◦C in a humidified
5% CO2 incubator.

4.4 Plasma samples

Blood samples from 47 melanoma patients from Sem-
melweis University Hospital, whose tumors were also
included in theMM500 study were subjected to automated
fractionation into plasma, serum, lymphocytes, and ery-
throcytes as published before.103,104 For some patients sev-
eral samples were taken at a different stage of the disease
and a pool of 57 plasma samples was prepared.

4.5 Histopathological analysis

Stepwise sectioning of the tissues was performed, and on
average, three sections were evaluated. Tissue sections
were placed on glass slides, stained with hematoxylin and
eosin, and then placed in an automated slide scanner sys-
tem (Zeiss Mirax, Jena, Germany). The slides were then
evaluated for tissue content: tumor, necrosis, connective
tissue, and adjacent background tissue—mostly lymphatic
cells—lymph node area.68

https://www.bbmri-eric.eu/services/quality-management
https://www.bbmri-eric.eu/services/quality-management
https://www.project-redcap.org/
https://www.project-redcap.org/
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4.6 Sample preparation for mass
spectrometry

4.6.1 Deparaffinization of FFPE tissue

The FFPE tissue sections were incubated with 1 mL of 1:50
diluted EnVision™ FLEX Target Retrieval Solution High
pH (Agilent Dako) at 97˚C for 10minutes (500 RPM). Incu-
bation was followed by a brief centrifugation at 14 000 g at
4˚C for 3minutes, removal of theEnVision solution and the
paraffin. These steps were repeated until complete paraffin
removal as previously described.81

4.6.2 Immunodepletion of the 14 most
abundant proteins from plasma

A pool of 57 plasma samples from 47 melanoma patients
was submitted to immunodepletion using a Multiaffin-
ity Removal Column human-14 (4,6 × 100 mm) (Agilent
Technologies), according to the instructions provides by
the manufacturer. Buffer exchange using Amicon Ultra
Centrifugal filter (0.5 mL—10 kDa, Millipore, Ireland)
was performed following depletion.After being transferred
to the Amicon 10 kDa, the samples were centrifuged at
13 000 g for 20 minutes. One more step of centrifuga-
tion was done at 13 000 g for 20 minutes, following the
addition of 400 μL 50 mM Ambic. The last step was
repeated, and the sampleswere centrifuged for 30minutes.
Finally, 70 μL of 10% SDS/25 mM DTT in 100 mM TEAB
was transferred to the Amicon 10 kDa and the sample
recovering was performed by centrifugation at 1000 g for
5 minutes.

4.6.3 Protein extraction

For fresh-frozen tissues, the lysis buffers contained
100 mM ammonium bicarbonate or 100 mM Tris pH 8.6
and up to 6 M Urea or 2% SDS. Lysates were generated by
sonication in an ice bath using a Branson Sonifier 250 (out-
put 4, 10% duty cycle) or using the Bioruptor plus, model
UCD-300 (Dieagenode) for 40 cycles. Each cycle consisted
of 15 seconds at high power and 15 seconds without sonica-
tion at 4◦C. Samples were centrifuged at 10 000 g and 4◦C
for 10 minutes and the supernatants were transferred into
a new tube and the pellet was discarded.
In the case of FFPE tissue samples, the protein extrac-

tion was performed by adding 100 mM TEAB containing
25mMDTT and 10w/v% SDS pH 8. The samples were incu-
bated at 99˚C for 1 hour with shaking (500 RPM) and soni-
cated in the Bioruptor R© Plus UCD-300 (Diagenode) for 40

cycles (15 seconds on and 15 seconds off) at 4˚C, followed
by centrifugation at 20 000 g at 18˚C for 10 minutes.

4.6.4 Protein determination

The protein in each one of the samples was determined
using a colorimetric micro BCA Protein Assay kit (Thermo
Fisher Scientific, Rockford, IL) following the manufac-
turer’s instructions.

4.6.5 Protein digestion

Proteins were reduced with 10 mM DTT for 1 hour at
37◦C and alkylated with 40 or 50 mM iodoacetamide
for 30 minutes, in the dark, at room temperature. Pro-
teins were digested overnight with trypsin or Lys-C and
trypsin using published and optimized protocols includ-
ing buffer exchange68,105,106 or urea in-solution digestion107
which comprised automated sample handling.108 SDS was
removed from the samples by theMED-FASP109 method or
by ethanol precipitation.80 The later was followed by pro-
tein solubilization in 50 mMAmbic with 0.5 SDC (Sodium
deoxycholate) and trypsin digestion. For acetylation anal-
ysis, the samples were processed and digested as pre-
viously described which resembles an Arg-C like enzy-
matic hydrolysis80 (see Material and Methods of Support-
ing Information).
FFPE-derived protein extracts were digested using the S-

trapmethod following themanufactures’ instructionswith
a few modifications as reported in recently.81
The undepleted plasma sample was diluted in Miliq

water in a ratio of 1:10. Approximately 70 μg of protein
of each sample was added to 42.25 μL of 10% SDS/25 mM
DTT in 100 mM TEAB solution before protein digestion.
Undepleted and depleted plasma samples were then incu-
bated for 5 minutes at 99 ◦C, 500 rpm. Samples were
alkylated with iodoacetamide in a final concentration of
50 mM for 30 minutes in the dark, at room temperature.
Protein digestion was carried out also using the S-trap
methodology.

4.6.6 Automated Fe(III)-IMAC-based
workflow

We enriched phosphorylated peptides using the Phospho
Enrichment v2.0 protocol on the AssayMAP Bravo plat-
form as previously described.110 The 5 μL Fe(III)-NTA car-
tridges were primed with 100 μL 50% ACN, 0.1% TFA at
a flow rate of 300 μL/min and equilibrated with 50 μL
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loading buffer (80% ACN, 0.1% TFA) at 10 μL/min. High
pH Rp-fractions obtained previously were loaded onto the
cartridge at 3.5 μL/min. The columns were washed with 50
μL loading buffer and the elution of phosphorylated pep-
tides was performed with 25 μL 5% ammonia directly into
10 μL 50% formic acid (FA). Samples were lyophilized in a
vacuum concentrator and stored at –80◦C until analysis by
LC-MS/MS.

4.6.7 TMT 11 plex labeling

TMT labeling was performed according to manufacturer’s
instructions.

4.6.8 Peptide fractionation

TMT-11 and labeled-free peptides were separated by basic
pH reversed-phase liquid chromatography (HpH RP-
HPLC) on a Phenomenex Aeris C8 column (100 mm ×

2.1 mm, 3.6-μm particles) using an Agilent 1100 HPLC sys-
tem and a gradient with solvent A 20 mM ammonium for-
mate (pH 10) and solvent B 80%ACN-20%water containing
20mM ammonium formate (pH 10). Labeled-free peptides
were also fractionated by strong cation exchange (SCX)
using Microspin columns (MA SEM HIL-SCX, 10-100 μg
capacity, The Nest group Inc., South Borough) in stepwise
elution.105,106

4.6.9 Peptide desalting

Enzymatic digestions were quenched by adding formic
acid to a final concentration of 1%. Proteolytic peptides
were desalted prior to LC-MS/MS experiments. We used
C18-microcolumns (The Nest Group, MA, USA) follow-
ing the manufacturer’s instruction, or the AssayMAP
Bravo platform using the peptide cleanup v2.0 protocol
with C18 cartridges (Agilent, 5 μL bed volume). Peptides
were eluted in 80% ACN, 0.1% TFA, dried on a Spee-
vac, and dissolved in 0.1% formic acid or 0.1% TFA. Pep-
tides generated by digestion with SDC protocol or on
the S-traps were directly analyzed by LC-MS/MS without
desalting.

4.6.10 Peptide determination

The peptide quantity in each sample and fraction was
determined using the Pierce Quantitative Colorimetric
PeptideAssay according to the instructions provided by the
manufacturer.

4.7 LC-MS/MS analysis

Weused twomain LC-MS/MS setups: System 1 and System
2. System 1 comprised an Easy nLC-1000 (Thermo Fisher
Scientific) coupled to a Q Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific, San Jose, CA). Here the
peptides (∼1 μg) were initially loaded onto a trap column
(Acclaim PepMap 100 precolumn, 75 μm i.d. × 2 cm, C18,
3 μm, 100 Å; ThermoFisher Scientific, San Jose, CA) and
then separated on an analytical column (EASY-Spray col-
umn, 75 μm i.d. × 25 cm, PepMap RSLC C18, 2 μm, 100 Å;
ThermoFisher Scientific, San Jose, CA). System 2 com-
prised an Ultimate 3000 nLC (Thermo Scientific, San José,
CA, USA, BremenGermany) coupled to a QExactiveHF-X
mass spectrometer (Thermo Scientific). For this case, the
peptides (∼1 μg) were loaded in a trap column (Acclaim1
PepMap 100 precolumn, 75 μm, 2 cm, C18, 3 μm, 100 Å,
Thermo Scientific) and then separated on an analytical col-
umn (EASY-Spray column 25 or 50 cm, 75 μm i.d., PepMap
RSLC C18, 2 μm, 100Å, Thermo Scientific). Both systems
used a flow rate of 300 nL/min and a water/ACN gradient
in 0.1% formic acid and samples were measured in DDA
andDIAmodes. TheDIA-MS Spectral library was built out
of DDA-LC-MS/MS analyses of samples from tissue and
cultured cell origin, with spiked in iRT peptides (Biogno-
sis AG). This also included the analysis of the mixture of
samples previously fractionated by HpH RP-HPLC.

4.8 Data analysis

4.8.1 Peptide and protein identification and
quantitation in DDA-MS experiments

Raw DDA-LC-MS/MS files were analyzed with the Pro-
teomeDiscoverer™Software (ThermoScientific™) against
Uniprot Human dataset to which were added Fasta for-
mat protein sequences of known driver mutations of
melanoma disease.35 The search engine Sequest HT was
used for peptide identification. Carbamidomethylation
was set as a static modification as well as TMT 6 plex
(+229.1629 Da) at peptide N-terminus and lysine for label-
ing experiments. Oxidation of methionine residues and
acetylation at protein N-termini were selected as dynamic
modifications. Precursor and fragmentmass tolerance was
set as 20 ppm and 0.02 Da, respectively, and two missed
cleavages were allowed for peptides. For the case of phos-
phopeptides, the ptmRS algorithmwas used to score phos-
phorylation sites with a site probability threshold>75. The
Minora node was included in the search for identification
using retention time alignment and the match-between-
runs features. For label-free experiments the quantifica-
tion was carried out using the TOP3 method where the
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protein abundance is reported as the mean of the three
highest peptides (unique and razor) areas measured
for each protein. For TMT labelling experiments pro-
tein abundances were calculated as the summed areas
of reporter ions considering unique peptides. Identifica-
tion and sorting of unique peptides of missing proteins
were carried using the neXtProt tool “Peptide unique-
ness checker” (https://www.nextprot.org/tools/peptide-
uniqueness-checker).111

4.8.2 Peptide and protein identification and
quantitation in DIA-MS experiments

A Global proteomics spectral library was generated from
DDA experiments as described above. Raw files were con-
verted to HTRMS files with a special converter provided by
Biognosys AG and searched in the Spectronaut X platform
(Biognosis AG) against the Homo sapiens database from
Uniprot containing isoforms. Dynamic retention time pre-
diction was selected to enable nonlinear alignment of pre-
cursor retention times between the (iRT, normalized reten-
tion time) spectral library and the DIA-MS data by seg-
mented regression. The following parameters were used:
cysteine carbamidomethylation (+57.0215 Da) as fixed
modification and methionine oxidation (+15.9949 Da), N-
terminal acetylation (+42.0105 Da) as dynamic modifica-
tions. A maximum of two missed cleavages were accepted.
Precursor mass tolerance was set to 10 ppm and for the
MS/MS fragments it was set to 0.02 Da. Between 3 and
25 fragments were collected per peptide. Phosphoryla-
tion (+79.9663 Da) on serine, threonine, and tyrosine was
selected as variable modifications for the phosphopro-
teomics analysis. The phosphosite localization algorithm
was set according to previous description.112 Phosphosites
with a score thatwas equal or higher than 0.75were consid-
ered as Class I. Filteringwas performed at a 1% false discov-
ery rate (FDR) for all the peptides and proteins that were
used to construct the spectral library. The resulted library
containing identified spectra for 220 360 peptides repre-
senting 12 293 proteins. The software computed MS1 pep-
tide abundance as the summed precursor XIC (Extracted-
Ion Chromatogram, from the monoisotopic precursor ion
plus isotopic envelope). The protein abundance resulted
from the average of the top three most intense precursor
ions corresponding to unique and razor peptides.

4.9 Bioinformatic and statistical
analysis

4.9.1 Protein normalization

The results from protein identification and quantifica-
tion were imported into Perseus software.113 Data were

normalized by log2 transforming the protein intensities,
and standardization was performed by subtracting indi-
vidual values by the median in each sample. The proteins
showing less variability across all batches that were identi-
fied in 100% of the samples were used to correct the abun-
dance differences between batches. To do that, individ-
ual protein intensities in each batch were subtracted by
the median abundance of selected proteins in the specific
batch. After correction, the median abundance for each
protein across all samples was calculated and reported as
the relative abundance in our melanoma proteome.

4.9.2 Stoichiometry of acetylated lysines

The lysine acetylation stoichiometry identification and
quantification were estimated as previously described.80,81
Briefly, raw files were analyzed with Pview software to
identify and calculate the site-specific acetylation occu-
pancy. Also, only those peptides identified in both, Pview
and Proteome Discoverer were considered for reporting
their acetylation stoichiometry.

4.9.3 Kinase-specific phosphorylation site
prediction

Phosphopeptides sequences were edited to include “#” in
front of the S, T, or Y phosphorylation sites. The back-
ground database consisted of a fasta file from all iden-
tified phosphorylated proteins in this study. The soft-
ware motifeR112 was used to align the phosphopeptide
sequences with the background database, providing a uni-
form sequence length of 15 amino acids. The motifeR was
also used to enrich phosphorylation motifs and retrieve
kinase-substrate annotation. All kinases identified in the
MM500 proteome and kinases predicted by the enriched
motifs were visualized in the context of the human kinome
superfamily using Coral.78

DATA AND CODE AVAILAB IL ITY
The data that support the findings of this study are
openly available in ProteomeXchange at http://www.
proteomexchange.org/, reference numbers PXD001725,
PXD001724, PXD009630, PXD017968, and PXD026086
and will be complemented by the addition of more
data from the study. The TCGA data was downloaded
from cBioPortal https://www.cbioportal.org. The code
for MM500 study can be found at https://github.
com/rhong3/TCGA_melanoma. Table S1 of Support-
ing Information is available at https://github.com/
rhong3/TCGA_melanoma/tree/master/Supporting%
20Information%20tables.

https://www.nextprot.org/tools/peptide-uniqueness-checker
https://www.nextprot.org/tools/peptide-uniqueness-checker
http://www.proteomexchange.org/
http://www.proteomexchange.org/
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