Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0.

Agarwal Mohit and Agarwal Sushant and Saba Luca and Chabert Gian Luca and Gupta Suneet and Carriero Alessandro and Pasche Alessio and Danna Pietro and Mehmedovic Armin and Faa Gavino and Shrivastava Saurabh and Jain Kanishka and Jain Harsh and Nagy Ferenc and Kincses Zsigmond Tamás and Ruzsa Zoltán: Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0.
Computers in biology and medicine, 146. Terjedelem: 34 p.-Azonosító: 105571. ISSN 1879-0534 (2022)

[thumbnail of agrawal.pdf]
Preview
Text
agrawal.pdf - Published Version

Download (43MB) | Preview
Creators:
Agarwal Mohit
Agarwal Sushant
Saba Luca
Chabert Gian Luca
Gupta Suneet
Carriero Alessandro
Pasche Alessio
Danna Pietro
Mehmedovic Armin
Faa Gavino
Shrivastava Saurabh
Jain Kanishka
Jain Harsh
Nagy Ferenc
Kincses Zsigmond Tamás MTMT
Ruzsa Zoltán MTMT
Item Type: Journal Article
Szerzők száma: 46
Journal or Publication Title: Computers in biology and medicine
Date: 2022
Volume: 146
Page Range: Terjedelem: 34 p.-Azonosító: 105571
ISSN: 1879-0534
Faculty/Unit: Albert Szent-Györgyi Medical School
Institution: University of Szeged (2000-)
Language: English
MTMT rekordazonosító: 32913470
DOI azonosító: https://doi.org/10.1016/j.compbiomed.2022.105571
Date Deposited: 2022. Jul. 01. 09:38
Last Modified: 2022. Jul. 01. 09:38
URI: http://publicatio.bibl.u-szeged.hu/id/eprint/24630
Web of Science® Times Cited: 37 View citing articles in Web of Science®

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year