Agarwal Mohit and Agarwal Sushant and Saba Luca and Chabert Gian Luca and Gupta Suneet and Carriero Alessandro and Pasche Alessio and Danna Pietro and Mehmedovic Armin and Faa Gavino and Shrivastava Saurabh and Jain Kanishka and Jain Harsh and Nagy Ferenc and Kincses Zsigmond Tamás and Ruzsa Zoltán:
Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0.
Computers in biology and medicine, 146.
Terjedelem: 34 p.-Azonosító: 105571.
ISSN 1879-0534
(2022)
Preview |
Text
agrawal.pdf - Published Version Download (43MB) | Preview |
Creators: |
|
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item Type: | Journal Article | ||||||||||||||||
Szerzők száma: | 46 | ||||||||||||||||
Journal or Publication Title: | Computers in biology and medicine | ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Volume: | 146 | ||||||||||||||||
Page Range: | Terjedelem: 34 p.-Azonosító: 105571 | ||||||||||||||||
ISSN: | 1879-0534 | ||||||||||||||||
Faculty/Unit: | Albert Szent-Györgyi Medical School | ||||||||||||||||
Institution: | University of Szeged (2000-) | ||||||||||||||||
Language: | English | ||||||||||||||||
MTMT rekordazonosító: | 32913470 | ||||||||||||||||
DOI azonosító: | https://doi.org/10.1016/j.compbiomed.2022.105571 | ||||||||||||||||
Date Deposited: | 2022. Jul. 01. 09:38 | ||||||||||||||||
Last Modified: | 2022. Jul. 01. 09:38 | ||||||||||||||||
URI: | http://publicatio.bibl.u-szeged.hu/id/eprint/24630 |
Web of Science® Times Cited: 37 | View citing articles in Web of Science® |
Actions (login required)
![]() |
View Item |